

Серия «Математика» Том 1 (2007), № 1, С. 161—174

Онлайн-доступ к журналу: http://isu.ru/izvestia И З В Е С Т И Я Иркутского государственного

ўниверситета

УДК 514.76

О классе линейных групп, родственных особой группе G_2^n

H. M. Kyзyб (knm1@mail.ru)

Иркутский государственный университет, Иркутск

Аннотация. Рассматривается матричная реализация простой некомпактной алгебры Ли типа g_2 в изотропном базисе, делается обобщение этой конструкции. Перечисляются все возможные алгебры Ли, принадлежащие этому классу.

Ключевые слова: гиперкомплексные числа, октава, особая группа G_2^n , алгебра Ли g_2^n .

Введение

В большинстве случаев G_2 -структуры рассматриваются на семимерных римановых многообразиях [1]. Значительно реже эти структуры рассматриваются на псевдоримановых многообразиях.

Дифференциальная геометрия семимерных многообразий и различных подмногообразий (кривых, поверхностей, гиперповерхностей и так далее) в пространствах со структурной группой G_2^n (нормальная форма комплексной особой группы Ли G_2^c) очень богата по сравнению даже с обычной октавной геометрией. Это связано с тем, что стандартное семимерное представление этой группы имеет более сложную структуру пространства орбит из-за наличия изотропных векторов и изотропных подпространств. Тем более это относится к линейным многообразиям различных размерностей.

В семимерном пространстве эта геометрия наиболее подходящая для исследования, так как в случае маленьких структурных групп касательные пространства многообразий и подмногообразий чрезмерно неизотропны. В то же время в случае большой структурной группы, например SL(7), имеется мало инвариантов. Но в семимерном пространстве исключительное значение имеют компактная форма и нормальная некомпактная форма группы Ли G_2 .

1. Алгебра Кэли-Диксона

Алгебру Кэли-Диксона [2], элементами которой являются гиперкомплексные числа (числа Кэли), можно представить в виде прямой суммы: $R \cdot 1 \oplus V$, где V — ортогональное дополнение к единице. Тогда $V = R^7$ является антикоммутативной алгеброй без единицы. При этом, в V существует базис $\{e_1, \ldots, e_7\}$ со следующей таблицей умножения [3]:

$$[e_1,e_2] = e_3, \quad [e_1,e_3] = -e_2, \quad [e_1,e_4] = -e_5, \quad [e_1,e_5] = e_4, \quad [e_1,e_6] = -e_7, \\ [e_1,e_7] = e_6, \quad [e_2,e_3] = e_1, \quad [e_2,e_4] = -e_6, \quad [e_2,e_5] = e_7, \quad [e_2,e_6] = e_4, \\ [e_2,e_7] = -e_5, \quad [e_3,e_4] = -e_7, \quad [e_3,e_5] = -e_6, \quad [e_3,e_6] = e_5, \quad [e_3,e_7] = e_4, \\ [e_4,e_5] = e_1, \quad [e_4,e_6] = e_2, \quad [e_4,e_7] = e_3, \quad [e_5,e_6] = e_3, \quad [e_5,e_7] = -e_2, \\ [e_6,e_7] = e_1.$$

Умножение в этой алгебре индуцирует векторные и скалярные произведения в семимерном псевдооктавном векторном пространстве, то есть получаем псевдооктавную геометрию.

Группой ее автоморфизмов является группа Ли G_2^n размерности 14. Ей соответсвует алгебра Ли g_2^n .

Рассмотрим группу автоморфизмов алгебры Кэли-Диксона G_2^n . Соответствующая ей алгебра Ли состоит из эндоморфизмов \mathcal{D} , удовлетворяющих условию:

$$\mathcal{D}[e_i, e_j] = [\mathcal{D}e_i, e_j] + [e_i, \mathcal{D}e_j], \ i, j = \overline{1, 7}.$$

Таким образом получаем алгебру Ли g_2^n со следующими соотношениями на элементы матрицы \mathcal{D} :

$$d_{ij}=-d_{ji},$$
 если $i=\overline{1,3},$ $j=\overline{1,3}$ и $i=\overline{4,7},$ $j=\overline{4,7},$ $d_{ij}=d_{ji},$ если $i=\overline{1,3},$ $j=\overline{4,7}$ и $i=\overline{4,7},$ $j=\overline{1,3},$

$$d_{12} = d_{56} + d_{47}, \ d_{16} = d_{25} - d_{34}, \ d_{13} = d_{57} - d_{46}, \ d_{17} = d_{35} + d_{24},$$

 $d_{14} = d_{36} - d_{27}, \ d_{23} = d_{67} + d_{45}, \ d_{15} = -d_{26} - d_{37}.$

Следовательно, она определяется 28 двучленными и 7 трехчленными линейными соотношениями на элементы матрицы седьмого порядка.

Итак, V — семимерное векторное пространство с антикоммутативным умножением [x, y] таким, что группа автоморфизмов векторного произведения есть особая некомпактная группа Ли G_2^n (нормальная форма комплексной особой группы Ли G_2^n).

Иногда удобнее пользоваться другой матричной реализацией группы G_2^n , в которой, в частности, более естественно представлены подалгебра Картана и корневые векторы.

Введем новый базис в пространстве V. Для этого сделаем следующую замену:

$$m_1 = e_1 + e_5$$
, $m_2 = e_2 + e_6$, $m_3 = e_3 + e_7$, $m_4 = e_4$, $m_5 = e_1 - e_5$, $m_6 = e_2 - e_6$, $m_7 = e_3 - e_7$.

Полученный базис $\{m_i\}$ будем называть изотропным, в том смысле, что $m_i^2 \equiv 0$, при $i \neq 4$, то есть мы хотим иметь максимальное количество изотропных векторов в составе базиса. При этом, $m_4^2 = -1$, $\langle m_1, m_5 \rangle = 2$, $\langle m_2, m_6 \rangle = 2$, $\langle m_3, m_7 \rangle = 2$, а остальные скалярные произведения равны нулю.

Векторное произведение [,] в новом базисе $\{m_1, \ldots, m_7\}$ задается следующей таблицей умножения:

$$[m_1, m_1] = 0, [m_2, m_2] = 0, [m_3, m_3] = 0, [m_4, m_4] = 0,$$

 $[m_5, m_5] = 0, [m_6, m_6] = 0, [m_7, m_7] = 0.$

Следовательно, получаем другую матричную реализацию алгебры g_2^n , которую обозначим \bar{g}_2 . Она состоит из матриц вида

где $d_{11} + d_{22} + d_{33} = 0$.

Опишем структуру матриц такого типа.

Во-первых, элементы d_{ij} , в случаях, когда $i=\overline{5,7}$, а $j=\overline{1,3}$ или когда $i=\overline{1,3}$, а $j=\overline{5,7}$, образуют произвольные кососимметричные матрицы K_1 и K_2 .

Далее, пусть λ вектор с координатами (λ_1 , λ_2 , λ_3) в евклидовом трехмерном пространстве V^3 . Тогда

$$ad_{\lambda} = \begin{pmatrix} 0 & -\lambda_3 & \lambda_2 \\ \lambda_3 & 0 & -\lambda_1 \\ -\lambda_2 & \lambda_1 & 0 \end{pmatrix}.$$

Следовательно, матрицы K_1 и K_2 можно представить в форме ad_λ и ad_μ в пространстве V^3 , λ , $\mu \in V^3$. Их можно записать как $K_1 = ad_\lambda$ и $K_2 = -ad_\mu$, где $\lambda = (d_{14},\ d_{24},\ d_{34}),\ \mu = (d_{54},\ d_{64},\ d_{74}).$

В этих обозначениях матрицу \mathcal{D} можно также записать в блочном виде:

$$\mathcal{D} = \begin{pmatrix} B & \lambda & -ad\mu \\ 2\mu^T & 0 & 2\lambda^T \\ ad_{\lambda} & \mu & -B^T \end{pmatrix},$$

причем TrB=0, а $\lambda,$ μ — произвольные трехмерные векторы, представленные столбцами.

Теперь опишем закон умножения в алгебре Ли \bar{g}_2 в явном виде.

Теорема 1. Алгебра Ли \bar{g}_2 может быть представлена тройками (B, λ, μ) такими, что $\lambda, \mu \in V_3, B \in sl(3)$, причем закон умножения задается формулой:

$$\begin{split} [(B_1,\ \lambda_1,\ \mu_1),\ (B_2,\ \lambda_2,\ \mu_2)] = \\ = ([B_1,\ B_2] + 3(\lambda_1 \otimes \mu_2^T) - 3(\lambda_2 \otimes \mu_1^T) - \langle \lambda_1,\ \mu_2 \rangle + \langle \lambda_2,\ \mu_1 \rangle, \\ 2[\mu_2,\ \mu_1] + B_1\lambda_2 - B_2\lambda_1,\ 2[\lambda_1,\ \lambda_2] - B_1^T\mu_2 + B_2^T\mu_1). \end{split}$$

Доказательство. Пространство V, разлагается в прямую сумму подпространств $V=U\oplus R\oplus U^*$, где U,U^* — трехмерные подпространства, R — одномерное. При этом подпространство U^* является сопряженным к U. Поэтому элемент пространства V представляет собой тройку компонент (u, t, v), где $u \in U, t \in R, v \in U^*$.

Матрица $\mathcal D$ действует на элементы пространства V следующим образом:

$$\begin{cases} \mathcal{D}u = (Bu, 2\langle \mu, u \rangle, [\lambda, u]) \\ \mathcal{D}t = (t\lambda, 0, t\mu), \\ \mathcal{D}v = (-[\mu, v], 2\langle \lambda, v \rangle, -B^Tv) \end{cases}$$

где \langle,\rangle , [,] — обычные скалярное и векторное произведения в трехмерном евклидовом пространстве. Матрица $\mathcal D$ определяется тройкой $(B,\ \lambda,\ \mu)$.

В множестве троек (B, λ, μ) умножение индуцируется переносом матричного коммутирования. Коммутатор матриц \mathcal{D}_1 и \mathcal{D}_2 обозначим как $\mathcal{D}_3 = [\mathcal{D}_1, \mathcal{D}_2]$. Он имеет такую же структуру, что и матрицы \mathcal{D}_1 и \mathcal{D}_2 . Обозначим B_i, λ_i, μ_i — компоненты матриц $\mathcal{D}_i, i = \overline{1,3}$.

В результате действия коммутатора \mathcal{D}_3 на элементы пространства V получим следующие соотношения:

$$\lambda_3 = 2[\mu_2, \, \mu_1] + B_1 \lambda_2 - B_2 \lambda_1, \mu_3 = 2[\lambda_1, \, \lambda_2] + B_2^T \mu_1 - B_1^T \mu_2,$$

$$\begin{array}{lll} \langle \lambda_3, \ v \rangle &=& \langle \lambda_2, \ B_1^T v \rangle - \langle \lambda_1, \ B_2^T v \rangle + \langle \mu_2, \ [\mu_1, v] \rangle - \langle \mu_1, \ [\mu_2, \ v] \rangle, \\ \langle \mu_3, \ u \rangle &=& \langle \mu_1, \ B_2 u \rangle - \langle \mu_2, \ B_1 u \rangle + \langle \lambda_1, \ [\lambda_2, \ u] \rangle - \langle \lambda_2, \ [\lambda_1, \ u] \rangle, \\ B_3 u &=& [B_1, \ B_2] u + [\mu_2, \ [\lambda_1, \ u]] - [\mu_1, \ [\lambda_2, \ u]] + \\ & & + 2 \langle \mu_2, \ u \rangle \lambda_1 - 2 \langle \mu_1, \ u \rangle \lambda_2, \\ B_3^T v &=& [B_2^T, \ B_1^T] v + [\lambda_1, \ [\mu_2, \ v]] - [\lambda_2, \ [\mu_1, \ v]] + \\ & & + 2 \langle \lambda_1, \ v \rangle \mu_2 - 2 \langle \lambda_2, \ v \rangle \mu_1, \\ [\lambda_3, \ u] &=& [\lambda_1, \ B_2 u] - [\lambda_2, \ B_1 u] + B_2^T [\lambda_1, \ u] - B_1^T [\lambda_2, \ u] + \\ & & + 2 \langle \mu_2, \ u \rangle \mu_1 - 2 \langle \mu_1, \ u \rangle \mu_2, \\ [\mu_3, \ v] &=& [\mu_2, \ B_1^T v] - [\mu_1, \ B_2^T v] + B_1 [\mu_2, \ v] - B_2 [\mu_1, \ v] + \\ & & + 2 \langle \lambda_1, \ v \rangle \lambda_2 - 2 \langle \lambda_2, \ v \rangle \lambda_1. \end{array}$$

Из этой системы выражаем λ_3 , μ_3 , B_3 . Так как в трехмерном пространстве выполняются классические соотношения

$$[[x, y], z] = \langle x, z \rangle y - \langle y, z \rangle x, (x \otimes y^T) z = x \langle y, z \rangle,$$

то получаем, что остальные равенства системы верны, если выполняется следующее условие: $B_i^T[x,\ u]+[x,\ B_i\ u]+[B_i\ x,\ u]=0$, где i=1,2.

В свою очередь, последнее соотношение является верным при условии, что $TrB_i=0.$

2. Обобщенная алгебра

Теперь выясним, насколько далеко можно обобщить результат предыдущего параграфа на многомерный случай.

Рассмотрим (2n+1)-мерное векторное пространство V, которое разлагается в прямую сумму подпространств $V=U\oplus R\oplus U^*,\ U,U^*$ — два n-мерных пространства с невырожденной симметричной билинейной формой \langle , \rangle , так что U^* можно считать пространством, сопряженным к U. Предполагается также, что в U, а потому и в U^* , задан антикоммутативный закон умножения [,], для которого выполняется тождество Якоби. R — одномерное пространство. Элемент пространства V представляет собой тройку элементов $(u,\ t,\ v)$, где $u\in U,\ t\in R,\ v\in U^*$.

Предположим, что оператор \mathcal{D} действует на элементы пространства V следующим образом:

$$\begin{cases} \mathcal{D}u = (Bu, Q\langle \mu, u \rangle, [\lambda, u]) \\ \mathcal{D}t = (t\lambda, tC \cdot TrB, t\mu), \\ \mathcal{D}v = (-[\mu, v], R\langle \lambda, v \rangle, -B^T v) \end{cases}$$

где $Q,\ R,\ C$ — некоторые вещественные константы, B — эндоморфизм линейного пространства $U,\ \lambda,\mu$ — линейные функции на U.

Таким образом, оператор \mathcal{D} можно записать в блочном виде:

$$\begin{pmatrix}
B & \lambda & -ad\mu \\
Q \mu^T & C \cdot TrB & R \lambda^T \\
ad_{\lambda} & \mu & -B^T
\end{pmatrix}.$$
(2.1)

Множество таких матриц образует алгебру Ли тогда и только тогда, когда выполняются следующие соотношения:

$$\begin{array}{lll} \lambda_{3} & = & 2[\mu_{2}, \ \mu_{1}] + B_{1}\lambda_{2} - B_{2}\lambda_{1} + C \ \lambda_{1} \ TrB_{2} - C \ \lambda_{2} \ TrB_{1}, \\ \mu_{3} & = & 2[\lambda_{1}, \ \lambda_{2}] + B_{2}^{T}\mu_{1} - B_{1}^{T}\mu_{2} + C \ \mu_{1} \ TrB_{2} - C \ \mu_{2} \ TrB_{1}, \\ R \ \langle \lambda_{3}, \ v \rangle & = & R \ \langle \lambda_{2}, \ B_{1}^{T}v \rangle - R \ \langle \lambda_{1}, \ B_{2}^{T}v \rangle + Q \ \langle \mu_{2}, \ [\mu_{1}, v] \rangle - \\ & & - Q \ \langle \mu_{1}, \ [\mu_{2}, \ v] \rangle + RC \ \langle \lambda_{2}, \ v \rangle TrB_{1} - \\ & & - RC \ \langle \lambda_{1}, \ v \rangle TrB_{2}, \\ Q \ \langle \mu_{3}, \ u \rangle & = & Q \ \langle \mu_{1}, \ B_{2}u \rangle - Q \ \langle \mu_{2}, \ B_{1}u \rangle + R \ \langle \lambda_{1}, \ [\lambda_{2}, \ u] \rangle - \\ & & - R \ \langle \lambda_{2}, \ [\lambda_{1}, \ u] \rangle + QC \ \langle \mu_{2}, \ u \rangle TrB_{1} - \\ & & - QC \ \langle \mu_{1}, \ u \rangle TrB_{2}, \\ B_{3}u & = & [B_{1}, \ B_{2}]u + [\mu_{2}, \ [\lambda_{1}, \ u]] - [\mu_{1}, \ [\lambda_{2}, \ u]] + \\ & + Q \ \langle \mu_{2}, \ u \rangle \lambda_{1} - Q \ \langle \mu_{1}, \ u \rangle \lambda_{2}, \\ B_{3}^{T}v & = & [B_{2}^{T}, \ B_{1}^{T}]v + [\lambda_{1}, \ [\mu_{2}, \ v]] - [\lambda_{2}, \ [\mu_{1}, \ v]] + \\ & + R \ \langle \lambda_{1}, \ v \rangle \mu_{2} - R \ \langle \lambda_{2}, \ v \rangle \mu_{1}, \\ [\lambda_{3}, \ u] & = & [\lambda_{1}, \ B_{2}u] - [\lambda_{2}, \ B_{1}u] + B_{2}^{T}[\lambda_{1}, \ u] - B_{1}^{T}[\lambda_{2}, \ u] + \\ & + Q \ \langle \mu_{2}, \ u \rangle \mu_{1} - Q \ \langle \mu_{1}, \ u \rangle \mu_{2}, \\ [\mu_{3}, \ v] & = & [\mu_{2}, \ B_{1}^{T}v] - [\mu_{1}, \ B_{2}^{T}v] + B_{1}[\mu_{2}, \ v] - B_{2}[\mu_{1}, \ v] + \\ & + R \ \langle \lambda_{1}, \ v \rangle \lambda_{2} - R \ \langle \lambda_{2}, \ v \rangle \lambda_{1}, \\ C \ TrB_{3} & = & (Q - R) \ \langle \lambda_{2}, \ \mu_{1} \rangle + (R - Q) \ \langle \lambda_{1}, \ \mu_{2} \rangle, \end{array} \tag{2.22}$$

для любых $u \in U$, $v \in U^*$.

Лемма 1. Если пространство U одномерное, то возможны следующие случаи алгебр Ли матриц вида (2.1),

a) присоединенное представление алгебры sl(2):

$$\left(\begin{array}{ccc}
b & \lambda & 0 \\
\mu & 0 & \lambda \\
0 & \mu & -b
\end{array}\right),$$

b) трехмерная разрешимая алгебра

$$\begin{pmatrix} b & \lambda & 0 \\ 0 & Cb & 0 \\ 0 & \mu & -b \end{pmatrix},$$

 $r \partial e \ C - \kappa o h c m a h m a$.

Доказательство. Рассмотрим случай, когда n=1.

Для данного случая умножение в алгебре Ли U нулевое: [x, y] = 0, а скалярное произведение $\langle x, y \rangle = \varepsilon xy$, где $\varepsilon = \pm 1, x, y \in U$.

Тогда из системы уравнений (2.2) получим следующие соотношения:

$$\begin{array}{lll} \lambda_{3} &=& b_{1}\lambda_{2}-b_{2}\lambda_{1}+C\lambda_{1}b_{2}-C\lambda_{2}b_{1},\\ \mu_{3} &=& b_{2}\mu_{1}-b_{1}\mu_{2}+C\mu_{1}b_{2}-C\mu_{2}b_{1},\\ \varepsilon R \lambda_{3} &=& \varepsilon R \lambda_{2}b_{1}-\varepsilon R \lambda_{1}b_{2}+\varepsilon RC \lambda_{2}b_{1}-\varepsilon RC \lambda_{1}b_{2},\\ \varepsilon Q \mu_{3} &=& \varepsilon Q \mu_{1}b_{2}-\varepsilon Q \mu_{2}b_{1}+\varepsilon QC \mu_{2}b_{1}-\varepsilon QC \mu_{1}b_{2},\\ b_{3} &=& \varepsilon Q \mu_{2}\lambda_{1}-\varepsilon Q \mu_{1}\lambda_{2},\\ b_{3} &=& \varepsilon R \lambda_{1}\mu_{2}-\varepsilon R \lambda_{2}\mu_{1},\\ C b_{3} &=& \varepsilon (Q-R) \lambda_{2}\mu_{1}+\varepsilon (R-Q) \lambda_{1}\mu_{2}. \end{array} \tag{2.3}$$

А) Предположим, что параметры R, Q ненулевые.

Из системы уравнений (2.3) находим λ_3 , μ_3 , b_3 . В результате получим, что Q=R и $Cb_3=0$.

Предположим, что C = 0. Тогда получим уравнения:

$$\begin{array}{lll} \lambda_3 &=& b_1\lambda_2 - b_2\lambda_1, \\ \mu_3 &=& b_2\mu_1 - b_1\mu_2, \\ b_3 &=& \varepsilon \; Q \; (\mu_2\lambda_1 - \mu_1\lambda_2), \\ Q &=& R, \\ C &=& 0. \end{array}$$

Итак, если $C=0, Q=R\neq 0$, то матрицы вида

$$\left(\begin{array}{ccc}
b & \lambda & 0 \\
Q\mu & 0 & Q\lambda \\
0 & \mu & -b
\end{array}\right)$$

образуют алгебру Ли.

Заменой базиса можно привести коэффициент Q к единице. Следовательно, имеем алгебру Ли матриц:

$$\begin{pmatrix}
b & \lambda & 0 \\
\mu & 0 & \lambda \\
0 & \mu & -b
\end{pmatrix}$$

— присоединенное представление алгебры sl(2).

Если предположим, что $C \neq 0$, то $b_3 = 0$.

Из системы уравнений (2.3) следует, что

$$\lambda_1 \mu_2 - \lambda_2 \mu_1 = 0,$$

то есть, эти векторы линейно зависимы. Это противоречит нашему предположению, что эти векторы произвольны.

В) Рассмотрим случай, когда Q=R=0. Тогда рассмотренная в пункте A) система уравнений (2.3) примет следующий вид:

$$\begin{array}{lll} \lambda_3 &=& b_1\lambda_2 - b_2\lambda_1 + C\lambda_1b_2 - C\lambda_2b_1,\\ \mu_3 &=& b_2\mu_1 - b_1\mu_2 + C\mu_1b_2 - C\mu_2b_1,\\ b_3 &=& 0,\\ Q &=& 0,\\ R &=& 0. \end{array}$$

Таким образом получили, что матрицы вида

$$\begin{pmatrix} b & \lambda & 0 \\ 0 & Cb & 0 \\ 0 & \mu & -b \end{pmatrix},$$

где C = const, образуют алгебру Ли.

Лемма 2. Если размерность пространства U не равна единице, а константа Q ненулевая, то U — полупростая алгебра Πu .

Доказательство. Рассмотрим систему уравнений (2.2). Из данной системы однозначно определяются λ_3 , μ_3 и матрица B_3 . В частности, учитывая равенства

$$(x \otimes y^T)z = x\langle y, z \rangle, \ 2[[x, y], z] = Q(\langle x, z \rangle y - \langle y, z \rangle x),$$

где $x, y, z \in U$, получаем, что

$$B_3 = [B_1, \ B_2] + \frac{Q}{2} \left(3(\lambda_1 \otimes \mu_2^T) - 3(\lambda_2 \otimes \mu_1^T) - \langle \lambda_1, \ \mu_2 \rangle + \langle \lambda_2, \ \mu_1 \rangle \right),$$

и легко проверяется последнее соотношение этой системы.

В итоге, из системы (2.2) выводим следующие соотношения:

$$[x, B^{T}y] + B[x, y] + [B^{T}x, y] = 0,$$

$$2[[x, y], z] = Q (\langle x, z \rangle y - \langle y, z \rangle x),$$

$$2\langle [x, y], z \rangle = \langle x, [y, z] \rangle - \langle y, [x, z] \rangle,$$

$$Q = R \neq 0,$$

$$C TrB = 0,$$

$$(2.4)$$

где $x, y, z \in V^n$, $B \in \mathcal{B}$.

Рассмотрим "форму Киллинга": $\beta(x, y) = Tr(ad_x \ ad_y)$ на U. Так как $[[x, y], z] = [z, [y, x]] = ad_z \ ad_y \ x$, то воспользовавшись соотношением 2 системы уравнений (2.4), имеем

$$ad_z \ ad_y \ e_i = [[e_i, \ y], \ z] = \frac{Q}{2} \left(\langle e_i, \ z \rangle y - \langle y, \ z \rangle e_i \right).$$

Следовательно, если $y = \sum_{i=1}^{n} y_i e_i$, то

$$Tr(ad_z \ ad_y) = \frac{Q}{2} \left(\sum_{i=1}^n \langle e_i, \ z \rangle y_i - n \langle y, \ z \rangle \right) = \frac{Q}{2} (1-n) \langle y, \ z \rangle.$$

Таким образом, получили форму Киллинга:

$$\beta(x, y) = \frac{Q}{2}(1-n)\langle x, y \rangle.$$

Данная форма пропорциональна скалярному произведению. Она невырождена при $Q \neq 0$ и $n \neq 1$.

В дальнейшем будем предполагать, что n > 1.

Лемма 3. Множество \mathcal{B} является либо алгеброй $\mathcal{A}u\ gl(n)$, либо, если n=3 или Q=0, алгеброй $\mathcal{A}u\ sl(n)$.

Доказательство. Согласно соотношению 5 системы (2.2),

$$B_3 u = [B_1, \ B_2] u + [\mu_2, \ [\lambda_1, \ u]] - [\mu_1, \ [\lambda_2, \ u]] + Q \ \langle \mu_2, \ u \rangle \lambda_1 - Q \ \langle \mu_1, \ u \rangle \lambda_2.$$

Рассмотрим компоненту, порожденную векторами λ_1 и μ_2 . Учитывая соотношение 2 системы уравнений (2.4), получаем, что

$$Q \langle \mu_2, u \rangle \lambda_1 + [\mu_2, [\lambda_1, u]] = \frac{3}{2} Q \langle \mu_2, u \rangle \lambda_1 - \frac{1}{2} Q \langle \lambda_1, \mu_2 \rangle u.$$

Введем оператор $\mathcal{G}(u) = \frac{3}{2}Q \langle \mu_2, u \rangle \lambda_1 - \frac{1}{2}Q \langle \lambda_1, \mu_2 \rangle u$.

Рассмотрим действие данного оператора на базисных векторах пространства U, то есть

$$\mathcal{G}(e_i) = \frac{3}{2} Q \langle \mu_2^{\alpha} e_{\alpha}, e_i \rangle \lambda_1^{\beta} e_{\beta} - \frac{1}{2} Q \langle \lambda_1^{\beta} e_{\beta}, \mu_2^{\alpha} e_{\alpha} \rangle e_i,$$

где $\lambda_1 = \lambda_1^{\beta} e_{\beta}$, $\mu_2 = \mu_2^{\alpha} e_{\alpha}$, $u = e_i$, i пробегает значения от 1 до n; α , $\beta = \overline{1,n}$. Предположим, что базис является ортогональным и $e_k^2 = \varepsilon^k$, где $\varepsilon^k = \pm 1$, $k = \overline{1,n}$. Вне диагонали этого оператора в столбце под номером i и в строке под номером β стоят элементы $\pm \frac{3}{2}Q\,\lambda_1^{\beta}\,\mu_2^i$, нули в остальных случаях. Следовательно, оператор $\mathcal{G}(u)$ принадлежит алгебре gl(n).

След матрицы оператора имеет вид:

$$Tr \mathcal{G} = \frac{1}{2}Q(3-n)\sum_{\alpha=1}^{n} \varepsilon^{\alpha} \lambda_{1}^{\alpha} \mu_{2}^{\alpha}.$$

Таким образом, $Tr \mathcal{G}(u) = 0$, если n = 3 или Q = 0.

Теперь очевидно, что оператор $\mathcal{G}(u)$ пробегает либо алгебру gl(n), либо sl(n).

Аналогичный результат получается для компоненты оператора B_3 , порожденной векторами λ_2 и μ_1 . Следовательно, $Tr\ B_3=0$, если n=3 или Q=0.

Следовательно, либо
$$\mathcal{B} = gl(n)$$
, либо $\mathcal{B} = sl(n)$.

Теорема 2. Пусть множество матриц вида (2.1), в котором векторы λ , μ принадлежат пространству U, а матрица B принадлежит некоторому подмножеству \mathcal{B} эндоморфизмов векторного пространства U, образуют некоторую алгебру $\mathcal{J}u$. Тогда

1) при n = 1 возможны следующие случаи алгебр Ли матриц вида а) присоединенное представление алгебры sl(2):

$$\left(\begin{array}{ccc}
b & \lambda & 0 \\
\mu & 0 & \lambda \\
0 & \mu & -b
\end{array}\right),$$

b) трехмерная разрешимая алгебра

$$\begin{pmatrix}
b & \lambda & 0 \\
0 & Cb & 0 \\
0 & \mu & -b
\end{pmatrix},$$

 $\epsilon \partial e \ C \ - \kappa$ онстанта.

2) если алгебра Ли U некоммутативная, а n=3, то имеем алгебру Ли матриц вида

$$\begin{pmatrix} B & \lambda & -ad\mu \\ \varepsilon & \mu^T & 0 & \varepsilon & \lambda^T \\ ad_\lambda & \mu & -B^T \end{pmatrix},$$

где $\varepsilon = \pm 2, \ B \in sl(3)$. При этом умножение [,] является векторным произведением евклидова или псевдоевклидова пространства, а умножение \langle , \rangle – скалярным произведением в этих пространствах

3) если алгебра U некоммутативная, то для любого n>1 матрицы вида

$$\begin{pmatrix} B & \lambda & -ad_{\mu} \\ 0 & 0 & 0 \\ ad_{\lambda} & \mu & -B^{T} \end{pmatrix},$$

образуют алгебру Πu , при условии, что в алгебре Πu U выполняются следующие условия:

$$[[x, y], z] = 0, [Bx, y] + [x, By] + B^T[x, y] = 0,$$

 $e \partial e \ x, y, z \in U$.

4) если алгебра U коммутативная, то для любого n>1 алгебру $\mathcal{A}u$ образуют только матрицы вида

$$\begin{pmatrix} B & \lambda & 0 \\ 0 & C \cdot TrB & 0 \\ 0 & \mu & -B^T \end{pmatrix},$$

где $B \in gl(n), C = const.$

Доказательство. Первый пункт теоремы следует из леммы 1.

Перейдем к доказательству второго пункта с учетом леммы 2 и леммы 3. Рассмотрим векторное произведение на U:

$$[e_i, e_j] = c_{ij}^k e_k, \ i, j, k = \overline{1, n},$$

где $\{e_i\}$ — базис пространства U и $e_i^2=\pm 1$.

Первое соотношение системы (2.4) запишем в виде:

$$B[e_i, e_j] + [e_i, B^T e_j] + [B^T e_i, e_j] = 0.$$
 (2.5)

Оператор B связан с сопряженным оператором относительно скалярного произведения следующим тождеством:

$$\langle e_i, Be_j \rangle = \langle B^T e_i, e_j \rangle.$$
 (2.6)

Элементы матрицы B обозначим через b_{ij} , а матрицы B^T через f_{ij} . Согласно соотношению (2.6), получим равенство $b_{ji}\varepsilon_j = f_{ij}\varepsilon_i$ или $f_{ij} = b_{ii}\varepsilon_i\varepsilon_i$. Следовательно, выражение (2.5) эквивалентно соотношению

$$\sum_{k=1}^{n} c_{ij}^{k} b_{\gamma k} + \sum_{\alpha=1}^{n} c_{\alpha j}^{\gamma} b_{i\alpha} \varepsilon_{i} \varepsilon_{\alpha} + \sum_{\alpha=1}^{n} c_{i\alpha}^{\gamma} b_{j\alpha} \varepsilon_{\alpha} \varepsilon_{j} = 0,$$
 (2.7)

при каждом γ , $i, j, \gamma = \overline{1, n}$.

Так как элементы матрицы B вне главной диагонали произвольны, то можно выбрать $b_{pq}=1$, остальные $b_{ij}=0, p\neq q, i,j=\overline{1,n}$. Тогда соотношение (2.7) запишется следующим образом:

$$c_{ij}^{q}\delta_{\gamma p} + c_{qj}^{\gamma}\delta_{ip}\varepsilon_{i}\varepsilon_{q} + c_{iq}^{\gamma}\delta_{jp}\varepsilon_{j}\varepsilon_{q} = 0, \tag{2.8}$$

при каждом γ . Из этого соотношения следует, что $c_{ij}^k=0$ при $n\geq 4$. Таким образом, всего возможны 3 случая:

- 1) n = 2, алгебра U некоммутативная,
- 2) n=3, алгебра U некоммутативная,
- 3) $c_{ij}^{k} = 0$ для любого n.
- 1) Изучим случай, когда n=2 и алгебра U некоммутативна.

Выясним выполняется ли соотношение (2.5) в этом случае.

Для этого рассмотрим двумерную алгебру с таблицей умножения $[e_1,\ e_2]=c_{12}^1e_1+c_{12}^2e_2$. Матрица $B\in gl(2)$ или sl(2). Выберем матрицу $B=\begin{pmatrix} 0&0\\1&0 \end{pmatrix}$. В соотношении (2.5) положим i=j=1. Непосредственно проверяя данное соотношение, получаем $c_{12}^1=0$. Далее, положим i=j=2. В случае, если $B=\begin{pmatrix} 0&1\\0&0 \end{pmatrix}$, то $c_{12}^2=0$. Из этого следует противоречие с предположением о некоммутативности алгебры U.

2) Следующий случай, когда n=3 и алгебра некоммутативная. Предположим, что параметры Q, R не равны нулю.

Согласно лемме 3 в этом случае $TrB_3=0$. Из соотношения (2.8) следует, что $c_{ij}^k=0$, если i=k или j=k или i=j. Матрицу B выберем следующим образом: $b_{11}=1$, $b_{22}=-1$, остальные $b_{ij}=0$. В этом случае соотношение (2.7) является тождеством и таблица умножения следующая:

$$[e_1, e_2] = c_{12}^3 e_3,$$

$$[e_1, e_3] = c_{13}^2 e_2,$$

$$[e_2, e_3] = c_{23}^1 e_1.$$

Среди этих алгебр только две будут неизоморфными.

В одном случае получаем базис евклидова пространства и

$$[e_1, e_2] = e_3,$$

 $[e_1, e_3] = -e_2,$
 $[e_2, e_3] = e_1.$

Следовательно, Q=2 и соотношение 2 системы (2.4) для базисных векторов имеет вид:

$$\langle x,\; z\rangle y - \langle y,\; z\rangle x = [[x,\; y],\; z],\; x,y,z \in V^3.$$

Во втором случае получаем базис **псевдоевклидова пространства** и

$$[e_1, e_2] = -e_3,$$

 $[e_1, e_3] = e_2,$
 $[e_2, e_3] = e_1.$

Следовательно, Q=-2 и соотношение 2 системы (2.4) для базисных векторов имеет вид:

$$\langle y, z \rangle x - \langle x, z \rangle y = [[x, y], z], x, y, z \in V^3.$$

Таким образом, получили, что при n=3 след $TrB_3=0$ и выполняются соотношения $C\,TrB_1=0,\,\,C\,TrB_2=0.$ Из этого следует, что либо $TrB_1=0,\,\,TrB_2=0,\,$ либо C=0.

Если предположим, что $\mathcal{B} = gl(3)$ и выберем матрицы дифференцирования, согласно общему виду (2.1):

$$\mathcal{D}_1 = \begin{pmatrix} E & 0 & 0 \\ 0 & 3C & 0 \\ 0 & 0 & -E \end{pmatrix},$$

где Е — единичная матрица, и

$$\mathcal{D}_2 = \begin{pmatrix} B_2 & \lambda_2 & -ad\mu_2 \\ Q \mu_2^T & C & TrB_2 & R & \lambda_2^T \\ ad_{\lambda_2} & \mu_2 & -B_2^T \end{pmatrix},$$

то получим, что система уравнений (2.2) несовместна. Следовательно, $TrB_1=0,\ TrB_2=0.$ Таким образом доказали, что $\mathcal{B}=sl(3).$

Итак, матрицы вида

$$\begin{pmatrix} B & \lambda & -ad\mu \\ \varepsilon & \mu^T & 0 & \varepsilon & \lambda^T \\ ad_\lambda & \mu & -B^T \end{pmatrix},$$

где $\varepsilon = \pm 2$, $B \in sl(3)$, образуют полупростую алгебру Ли.

3) Последний случай, когда алгебра коммутативная, то есть $[e_i, e_j] = 0, i, j = \overline{1,n}$. Из системы уравнений (2.2) получим, что Q = R = 0, C произвольная константа и \mathcal{B} — произвольная алгебра.

Итак, матрицы вида

$$\begin{pmatrix} B & \lambda & 0 \\ 0 & C \cdot TrB & 0 \\ 0 & \mu & -B^T \end{pmatrix}$$

образуют алгебру Ли.

Осталось рассмотреть случай, когда параметры $Q=R=0,\, n>1$ и алгебра U некоммутативная.

Из системы уравнений (2.2) следует, что матрицы вида

$$\begin{pmatrix}
B & \lambda & -ad_{\mu} \\
0 & 0 & 0 \\
ad_{\lambda} & \mu & -B^{T}
\end{pmatrix}$$

образуют алгебру Ли, если выполняются условия

$$[[x, y], z] = 0, [Bx, y] + [x, By] + B^{T}[x, y] = 0, CTrB = 0,$$

где $x, y, z \in U, B \in \mathcal{B}$.

Список литературы

- 1. Fernandez M., Gray A. Riemannian manifolds with structure group G_2 // Ann. di Math. Pura ed Appl. 1982. № 32. P. 19–45.
- 2. Желваков К.А., Слинько А.М., Шестаков И.П., Ширшов А.И. Кольца близкие к ассоциативным. М: Наука, 1978. 431 с.
- 3. *Постников М.М.* Лекции по геометрии. Группы и алгебры Ли. М: Наука, 1982.-447 с.

N. M. Kouzoub

On the class of the linear groop related to a specific groop G_2^n

Abstract. The matrix model of simple noncompact Lie algebra of type g_2 in isotropic basis is considered, a generalization of this construction is introduced. All Lie algebras of this class are listed.