
Серия «Математика»
Том 1 (2007), № 1, С. 188—204

Онлайн-доступ к журналу:
http://isu.ru/izvestia

И З В Е С Т И Я
Иркутского

государственного
университета

УДК 510.62: 004.82
Logic programing in knowledge domains

A. V. Mantsivoda, V. A. Lipovchenko, A. A. Malykh
({andrei, lip, malykh}@baikal.ru)
Irkutsk State University, Irkutsk

Abstract. We propose an approach to combining logic programming and knowledge
representation paradigms. This approach is based on the conception of description terms.
LP and KR are integrated in such a way that their underlying logics are carefully sepa-
rated. A core idea here is to push the KR techniques on the functional level. On the LP
level the knowledge base is considered as a constraint store, in which special propagation
methods are ruling. A NCC calculus that handles description terms is developed as an
underlying inference system for propagation. On the basis of this formalism, a constraint
logic programming language integrating both LP and KR approaches is designed.

Keywords: logic programing, description logics, description term, constraint logic
programing, naming constraints calculus.

Introduction

In this paper we propose an approach to integration of the logic program-
ming and knowledge representation paradigms. Knowledge representation
techniques are popular nowadays. Some large and ambitious projects incor-
porate KR as a significant component. For instance, in the Semantic Web
[2] KR is used for describing knowledge domains, information resources,
and developing metadata. KR formalisms are mostly based on description
logics (DL) [1], which offer flexible tools for knowledge representation. Many
efforts have been made to develop efficient inference systems and automated
solvers for DLs [9][7][6][1].

Though description logics are elegant and useful, logic programming
(LP) also has a number of strong means for knowledge management. In
particular, LP is very well tuned to explicit object handling, whereas DLs
are more focused on general knowledge manipulation (e.g., solving classi-
fication problems in knowledge bases). Hence the idea of incorporation of
LP tools in DLs looks quite attractive [5][3]. But here we have a serious

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 189

obstacle. Both DLs and LP are based on constructive logical systems. But
since they came from the different subsets of the first order logic, their
constructive properties have different origins. Therefore if we try to mix
up LP and DL within a generalized logical system we have to sacrifice a
lot [5]. Moreover, the fragile nature of DLs becomes unprotected against
a number of tough LP-methods, such as negation as failure, and this can
bring either additional restrictions, or additional logical problems (see the
discussion [8][10]).

In [11] we have introduced an approach to knowledge representation,
which is based on the notion of a description term. This approach develops
and refines the paradigm of semantic programming [4]. The main idea
behind description terms is to move knowledge representation techniques
from the logical level to the functional level of terms and objects. As for
integration of LP and DL styles, this idea allows us not to mix up the
two styles within a joined logical formalism, but keep them separated while
preserving tight interconnections between them.

1. The General Scheme

Let ∆ be a knowledge domain. We introduce a special kind of terms called
description terms. A description term t is interpreted as a description of
some element (object) d ∈ ∆. This description includes information about
classes (concepts) and properties (rôles), which characterize d. A description
can be incomplete, if it contains only partial data about d. Moreover, one
term can describe many objects (for instance, if a term says only that
the person’s name is John, this term describes all Johns in ∆). Thus, t
must be interpreted as the set of those objects d ∈ ∆, which t describes,
that is tI ⊆ ∆, or more precisely tI = {d | t

∧= d, d ∈ ∆}. Here I is an
interpretation, t

∧= d means that d is described by t. Since data in terms
is incomplete, it is useful to be able to compare them. We say that t1 is
approximated by t2 (t1 À t2) if all information in t2 is contained also in
t1. Note that if t1 À t2 then tI1 ⊆ tI2, that is, the more precise information
t1 has, the less number of objects it describes. Also it is natural to have
an operation, which merges data from a couple of terms t1 and t2 within
one term. We call this operation amalgamation and define it as the least
upper bound of t1 and t2 with respect to the partial order À: a term t is
the amalgam of t1 and t2 (t = t1 u t2) if t À t1, t À t2 and for any t0, such
that t0 À t1 and t0 À t2, we have t0 À t. Evidently, for soundness of the
whole idea, it is necessary to have (t1 u t2)I = tI1 ∩ tI2.

Note that standard logic programming terms (LP-terms) can be re-
garded as a particular case of description terms. First, LP-terms can contain
partial and incomplete information (if they are non-ground and have occur-
rences of unbound variables). Second, during computation the information

190 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

in terms becomes more and more precise due to substitutions of variables.
Third, given two LP-terms t1 and t2, we can compare information saved in
them, as well as amalgamate this information. Both the comparison and
amalgamation can be performed thanks to the most general unifier. We put
t1 À t2 if t1 = MGU(t1, t2) and t = t1ut2 if t = MGU(t1, t2). As the knowl-
edge domain ∆ we can take an Herbrand universe H. Then t describes any
t′ ∈ H such that t′ = MGU(t, t′), that is tI = {t′ | t′ ∈ H, t′ = MGU(t, t′)}.

This consideration partially justifies the step of incorporation of de-
scription terms in logic programming: we substitute there LP-terms by
description terms. The main inference rule in this case remains almost the
same, but with slight generalization:

(LPd)
p(t1, . . . , tk), p2, . . . , pn p(t′1, . . . , t

′
k) : −r1, . . . , rm

(r1, . . . , rm, p2, . . . , pn)θ

if tiΘ À t′iΘ for i = 1, k. Here ti and t′i are description terms, the left
premise is the goal, the right premise is a rule, ri and pi are atoms. The
LPd-rule is applied if there exists a substitution Θ = {x1/t1, . . . , xk/tk},
where ti are description terms, such that all t′iΘ approximate corresponding
tiΘ.

The next thing we should do is to establish in our system the knowledge
base (KB), which keeps knowledge about the domain ∆. We organize KB
in the form of a constraint store, which consists of naming constraints. A
naming constraint is an expression of the form

id :: t

where id is the name (identifier) of an object in ∆, and t is its description.
This constraint means that an object d of ∆ named id is described by
t. id :: t is true in an interpretation I, if idI ∈ tI . It is convenient to
have two types of names in our system. The first type is unique names,
which uniquely define objects (that is, if id1 6= id2 then idI

1 6= idI
2). Unique

names correspond to the conception of names in description logics, which
are also unique. The other type is temporary names. For instance, in order
to manipulate information about ’someone who’s killed John’ we assign
this unknown person a new temporary name, which allows concentration
of data about this criminal using naming constraints. The core difference
between these two types of names is that temporary names do not preserve
uniqueness, that is, two different temporary names can identify the same
object. In the LPd-rule both the unique and temporary names play the rôle
of constants, but in checking ti À t′i naming constraints can be involved to
reflect the context, in which the rule is applied.

We also need to incorporate axioms, which describe the knowledge do-
main as a whole. In description logics axioms have the form of inclusions

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 191

or equivalences, which are satisfied by any element of ∆. For instance, the
axiom Man v Person, which is equivalent to ¬Man t Person, means
that any element of ∆ is either not-a-man or a person. The dual nature of
description terms helps us to introduce axioms in our scheme. On the one
hand, in naming constraints description terms describe single objects. On
the other hand, since description terms are interpreted as subsets of ∆, we
can use them to describe also the sets of objects. So, as axioms we use those
description terms, which describe all objects of ∆, that is, tI = ∆.

Application of axioms depends on the inference system and propaga-
tion strategies, which are ruling in the naming constraint store. In the
general scheme we do not specify this inference system, because different
entailments can play this role. For instance, in the sequel we develop an
implementation of the general scheme and suggest some new inference sys-
tem based on modification of the resolution principle [13]. But it is also
possible to exploit modifications of tableau algorithms [1].

2. Description Terms

In this section we introduce description terms, which are the basic notion
of this paper. Let < = 〈M1, . . . ,Mk; Ω〉 be a data type model, where Mi

are sorts (data types) and Ω is a signature. We assume that all elements of
< are distinguished. For any Mi we introduce the minimal set of constants
M̄i such that for any m̂ ∈ Mi two constants m and ∼m belong to M̄i. The
set of all constants corresponding to elements of M = M1 ∪ . . . ∪ Mk is
denoted by M̄ = M̄1 ∪ . . . ∪ M̄k.

The language of description terms has the following basic components:

1. The set of constants M̄ ;

2. The set of sort names S = {s1, . . . , sk,∼s1, . . . ,∼sk} of the model <.

3. The ’top’ and ’bottom’ constants >, ⊥;

4. The infinite set of unique names ID = {id1, id2, . . .};

5. The infinite set of temporary names DX = {dx1, dx2, . . .};

6. The set of attribute (rôle) names Attr = {p1, p2, . . . , pk};

7. The set of atomic concepts (class names) and negative concepts:
CN = {c1, c2, . . . , cp,∼c1,∼c2, . . . ,∼cp}.

We denote IX = ID ∪ DX, and use ix (possibly with indices) to denote
names from IX.

Now we can define the set T< of description terms.

192 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

Definition 1. 1. If t ∈ CN∪IX∪{⊥,>} then t is an atomic description
term.

2. If p ∈ Attr and r ∈ M̄ ∪ IX ∪ S ∪ T<, then p : r and p ∗ r are atomic
description terms.

3. If t1, t2, . . . , tn are atomic description terms then (t1; t2; . . . ; tn) is a
description term. If n = 0 then (t1; . . . ; tn) = ⊥.

4. If t1, t2, . . . , tn are description terms then (t1, t2, . . . , tn) is a descrip-
tion term. If n = 0 then (t1, . . . , tn) = >.

As a rule we omit parentheses supposing ((t1, t2), t3) = (t1, (t2, t3)) =
t1, t2, t3 and ((t1; t2), t3) = t1; t2, t3, and (t1, (t2; t3)) = t1, t2; t3. Also we do
not distinguish the order: t1, t2 = t2, t1 and t1; t2 = t2; t1. Note that the
term (t1, t2); t3 is impossible.

Table I. The semantics of description terms

Terms Described objects

c cI ⊆ ∆

∼ c ∆ \ cI

t1, . . . , tn tI
1 ∩ . . . ∩ tI

n

t1; . . . ; tn tI
1 ∪ . . . ∪ tI

n

si sI
i = M̄i

p : t {x| x ∈ ∆,∃y ∈ tI : 〈x, y〉 ∈ pI}
p ∗ t {x| x ∈ ∆,∀y ∈ ∆ : 〈x, y〉 ∈ pI → y ∈ tI}
p : si {x| x ∈ ∆,∃y ∈ M̄i : 〈x, y〉 ∈ pI}
p ∗ si {x| x ∈ ∆,∀y : 〈x, y〉 ∈ pI → y ∈ M̄i}
p : m {x| x ∈ ∆, 〈x, m〉 ∈ pI}
p ∗ m {x| x ∈ ∆,∀y : 〈x, y〉 ∈ pI → y = m}

ix ixI ∈ ∆

> >I = ∆

⊥ ⊥I = ∅

The denotational semantics of description terms is summarized in table
I. This semantics is significantly the same as that in DLs. It is important,
because we want to be in touch with DLs all the time. We use the lightweight
syntax (the comma for conjunction and the semicolon for disjunction) to
follow LP traditions (though note that ’;’ has greater priority, i.e. t1; t2, t3
is understood as (t1; t2), t3). Besides, the lightweight syntax seems more
readable and attractive, but, of course, this is a matter of taste. And we
stress again that descriptions are understood as terms, which do not have
the logical values of true and false, but are interpreted as sets of objects.

Definition 2. A naming constraint is an expression of the form ix ::
t, where ix ∈ IX and t ∈ T<. The denotational semantics of naming
constraints is defined as follows: I |= ix :: t iff ixI ∈ tI.

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 193

Here are examples of description terms and naming constraints:

Example 1. Id-john :: gardener;mechanic, hasSpouse:Id-mary,
hasChild*~male Id-mary :: sex:"f" , studies-at:university

John is either a gardener or a mechanic, his spouse is Mary, and all his
children (if any) are not boys. Mary is female, she studies at some university.

The version of description terms we consider in this section correlates
with the description logic ALC [1]. The language of this DL includes atomic
concepts Ai, universal concept >, bottom concept ⊥, full negation over
arbitrary concepts ¬C, universal quantification ∀R.C. Traditionally, we
explicitly include in the language disjunction and full existential quantifi-
cation, because they are expressed in ALC : C t D ≡ ¬(¬C u ¬D) and
∃R.C ≡ ¬∀R.¬C.

To work with ALC and description terms simultaneously, we introduce
the notion of synonyms: every atomic concept A of ALC is the synonym
for an exactly one a ∈ CN, which is in its turn the synonym of A, and
this is denoted a = syn(A). An interpretation I preserves synonyms if
aI = {x | I |= A(x)} for a ny a = syn(A). Let I be an interpretation
preserving synonyms. An ALCC–concept F and a description term t are
equivalent in I, if {x | I |= F (x)} = tI. A concept and a description
term are equivalent if they are equivalent in any interpretation preserv-
ing synonyms. It is easy to show that for any ALCC–concept and axiom
F there exists an equivalent description term. For this we should trans-
form F into ’incomplete’ conjunctive normal form (negation is pushed to
atomic concepts, but disjunctions and conjunctions are not pushed through
quantifiers), using the standard transformation rules: C v D → ¬C t D,
C ≡ D → (¬CtD)u(¬DtC), ¬(AuB) → ¬At¬B, ¬(AtB) → ¬Au¬B,
¬∃R.A → ∀R.¬A, ¬∀R.A → ∃R.¬A, C t (A u B) → (C t A) u (C t B),
(A u B) t C → (A t C) u (B t C).

For concepts in conjunctive normal form transformation to description
terms is straightforward: trans(A) = a, trans(¬A) = ∼a, trans(A u B) =
trans(A), trans(B), trans(A t B) = trans(A); trans(B), trans(∃P.A) =
p : trans(A), trans(∀P.A) = p ∗ trans(A), where a = syn(A).

Proposition 1. For any ALCC–concept/axiom F there exists t ∈ T<,
such that F and t are equivalent.

Proof is straightforward and based on the properties of cnf and the
semantics of description terms.

Thus, any DL–axiom F can be transformed into an equivalent descrip-
tion term t, and tI = >I for I such that I |= F . By definition, the general
form of description terms is

t = (t11; . . . ; t
1
n1

), . . . , (tm1 ; . . . ; tmnm
)

194 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

where tji are atomic. Evidently, if tI = >I then (tj1; . . . ; t
j
nj

)I = >I for any

j = 1,m. That is, every tj = tj1; . . . ; t
j
nj

is also an axiom. For some reasons
we prefer to use as axioms separate tj instead of heavyweight t1, . . . , tm.
Thus we transform any DL–axiom into the set of separate disjunctive
description terms of the form tj1; . . . ; t

j
nj

.
Note that an axiom t1; . . . ; tn stratifies the domain ∆ into n (not neces-

sarily disjoint) segments (that is, tI1 ∪ . . . ∪ tIn = >I = ∆), and any object
d ∈ ∆ must belong to at least one of them.

3. A Calculus for Naming Constraints

In this section we consider syntactic methods for handling naming con-
straints. We start with introduction of the two key operations acting on de-
scription terms — approximation and amalgamation. Approximation checks
whether a description term contains all data saved in another term. Since
we plan to use approximation in the core of our system (in particular, in
the rule LPd), then approximation must be (1) syntactically definable, and
(2) algorithmically lite (as much as possible).

Definition 3. Approximation is denoted by À and defined as follows:

1. f À f , for any f ∈ CN ∪ IX;

2. p : f À p : g and p ∗ f À p ∗ g, if one of the following holds:

a) f, g ∈ M̄ ∪ S and f = g;

b) g = si ∈ S and f ∈ M̄i;

c) g = ∼mi ∈ S and f = sj, j 6= i;

d) f, g ∈ T< and f À g;

3. t1, . . . , tn À t′1, . . . , t
′
m, if ∀i ∈ {1..m},∃j ∈ {1..n} : tj À t′i;

4. t1; . . . ; tn À t′1; . . . ; t
′
m, if ∀j ∈ {1..n},∃i ∈ {1..m} : tj À t′i;

5. ⊥ À t for any t ∈ T<;

6. t À > for any t ∈ T<.

This definition is simple and natural, though a little bit awkward due
to its syntactic nature. t1 À t2 can be informally characterized as ’t1 is
evidently more precise than t2’ or ’tI1 is evidently subsumed by tI2’.

Proposition 2. If t1 À t2 then tI1 ⊆ tI2 in any interpretation I. In
particular, if ix À t then |= ix :: t.

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 195

Proposition 3. (1) t À t. (2) If t1 À t2 and t2 À t3 then t1 À t3.

The last proposition shows that À is a partial order. Let us introduce
the operation of amalgamation t1 u t2, which is very simple for this kind of
description terms:

Definition 4. We define t1 u t2 = (t1, t2).

The following proposition shows that this definition of amalgamation is
correct w.r.t. approximation:

Definition 5. t1u t2 is the least upper bound of t1 and t2 w.r.t. the partial
order À. For any interpretation I, (t1 u t2)I = tI1 ∩ tI2.

Now let us introduce an inference system for naming constraints (for
brevity we denote it NCC – the naming constraints calculus). In this system
we again rely on duality of description terms. Being terms for the outside
world, inside they must have logical behaviour, which is described in the
inference system represented in table II.

Table II. Naming constraints calculus

(Res)
ix :: (c; t1), (∼c; t2), t

ix :: t1; t2
(Any)

ix1 :: (p : t; t1), (p ∗ t′; t2), t3
ix1 :: p : (t, t′); t1; t2

(Ax)
Axiom(t1; . . . ; tk)

ix :: t1; . . . ; tk
(Ama)

ix :: t1 ix :: t2
ix :: t1, t2

(Ex)
ix :: (p : t; t1), t2

ix :: (p : dx; t1), t2 dx :: t
(Subst)

ix1 :: ⊥ ix2 :: t[ix1]

ix2 :: t[⊥]

(False)
ix :: t

ix :: ⊥ , if t À ⊥ (Perm)
ix1 :: ix2, t

ix2 :: ix1, t

c,∼c ∈ CN, t, t1, . . . , tn ∈ T<, p ∈ Attr, dx ∈ DX, ix, ix1, ix2 ∈ IX,
dx in (Ex) is a new temporary name

NCC is based on the resolution principle, though the tableau algorithms
[1][9] are also definitely applicable to naming constraints. We believe that
resolution reasoning is quite appropriate for knowledge handling, though
there are serious obstacles like undecidability of the general resolution
scheme. In [14] it was shown encouragingly enough that Vampire (a well
known general purpose reasoning system based on the resolution principle)
[12] managed to successfully solve difficult classification problems in real-life
ontologies.

196 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

To escape additional boring transformations we do not distinguish in
NCC ⊥ and (p : ⊥), ⊥ and (⊥, t), t and (⊥; t).

The basic rules of NCC are (Res) and (Any), which handle concepts and
rôles (attributes), respectively. Both are based on the general resolution
scheme. (Res) introduces resolution on concepts. (Any) is an analogue of
resolution working with rôles. Unlike resolution, in (Any) all subformulas
survive. This is because the current version of NCC can not handle con-
tents of attributes and thus can not prepare necessary contrary pairs. So
let us consider a particular case of (Any) to demonstrate similarities with
resolution:

(Any1)
ix1 :: (p : c; t1), (p ∗ ∼c; t2)

ix1 :: t1; t2
First we convert the premise of (Any1) into an equivalent FOL formula:

(∃y.(p(ix1, y) ∧ c(y)) ∨ t1(ix1)) ∧ (∀z.(p(ix1, z) → ¬c(z)) ∨ t2(ix1))

in which the concepts c, t1 and t2 are represented by unary predicate
symbols (suppose for a moment that t1 and t2 are atomic), and the rôle
p is established by the binary predicate symbol. After Scolemization and
transformations we have three clauses

p(ix1, f(ix1))∨ t1(ix1) and c(f(ix1))∨ t1(ix1) and ¬p(x, z)∨¬c(z)∨ t2(ix1)

where the term f(ix1) represents scolemized y. We apply binary resolution
twice and then factoring to get desired t1(ix1)∨t2(ix1), which has the same
meaning as the conclusion of (Any1) ix1 :: t1; t2. Thus, (Any1) is a ’package’
of resolution applications oriented on handling attributes.

The resolution principle is specialized in NCC for two reasons. First,
NCC–rules are oriented to reflect specific features of concept and rôle rela-
tions. Second, we make entailments more compact and sensitive to specific
strategies in knowledge domains. We do not need the general resolution
scheme because we handle only a very restricted class of formulas. Also it
is forbidden to apply the resolution rules to axioms beyond constraints. We
are trying to carefully restrict and polish the wild and undirected nature of
the resolution principle in order to find a trade-off between completeness,
decidability and efficiency.

Now let us consider the other rules of NCC. (Ax) is intended for appli-
cation of axioms. In DLs axiom application has great impact, since careless
use of axioms is able to bring about a combinatorial blow-up. For instance,
the early versions of tableau algorithms applied all axioms to any newly
generated element, and that resulted in combinatorially hopeless situations.
The most efficient DL-solvers [7][6] use special techniques (such as from [9]),
which allow substantial improvements. We do not consider here strategies
of application of (Ax), though undoubtedly, this is the one of the most
interesting problems. The simplest heuristics we are ready to suggest here

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 197

is to apply (Ax) only to those axioms, which can be immediately involved
in application of one of the resolution rules, though sometimes it can bring
incompleteness.

(Ama) amalgamates two naming constraints of the same object. (Ex)
pushes attribute values on the outer level for further manipulations. It can
be informally described as ’suppose, there exists dx such that t’. (Subst)
handles the situation when some object does not exist. Then its occurrences
in other constraints can be substituted by ⊥. (Id) and (False) catch incon-
sistency. (Id) supports uniqueness of names from ID. (False) catches false
within description terms. (Perm) handles names describing the same object
(in cases when (Id) is not applicable).

A constraint store CS is a finite set of naming constraints and axioms.
In our system constraint stores play the role of knowledge bases.

Definition 6. I is an interpretation of a constraint store CS in a knowl-
edge domain ∆, if for any axiom a ∈ CS, aI = ∆ and for any nam-
ing constraint ix :: t ∈ CS, ixI ∈ tI . CS is consistent if there exist its
interpretation, and inconsistent otherwise.

A NCC–sequence is a sequence of constraint stores CS1, . . . , CSn, such
that CSi+1 = CSi ∪ {C}, where C is obtained from elements of CSi by
application of some NCC-rule. We say that a naming constraint C is en-
tailed from a constraint store CS (CS ` C), if there exists a NCC–sequence
CS, CS1, . . . , CSn, such that C ∈ CSn. The name ix ∈ IX is initial in a
NCC–sequence CS, CS1, . . . , CSn if ix :: t ∈ CS for some t. Then ix :: t is
called a premise.

Proposition 4. If CS ` ix :: ⊥ for some initial ix, then CS is inconsis-
tent.

Proposition 4 justifies the refutation procedure based on NCC.
In the end of this section we return to the definition of approximation and

augment it with extra rules concerning the context, in which approximation
is performed. For instance, if we check ix À person and ix :: person ∈ CS,
then we can use this naming constraint to prove approximation. But such
name unfolding must be done with care because if we have person À ix and
ix :: person ∈ CS then unfolding is dangerous. Later ix :: gardener may
appear in CS, and after (Ama) we have false person À person, gardener.
This problem arises due to incompleteness of information saved in naming
constraints. Entailment in NCC is monotone and information on an object
ix can be only augmented. Thus we can safely apply unfolding in the left
argument of approximation. But unfolding in the right argument is unsafe.
So, we have:

7. ix À t, if ix :: t1 ∈ CS and t1 À t.

198 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

In particular, in an application of (LPd) during examination of ti À t′i, only
name occurrences in the actual parameter ti can be unfolded. And this is
natural because t′i plays the role of a pattern. To preserve soundness we
also have to impose some restrictions on the application of the substitution
Θ in (LPd).

Unfolding can bring problems with loops when, for instance, tom ::
hasSpouse : ann ∈ CS and ann :: hasSpouse : tom ∈ CS. To handle
loops we use:

8. If during examination of ix À t, ix À t appears again in some branch,
then the examination in this branch stops.

This means that if we find a loop, but there are no other obstacles, then
ix À t is proved. This rule corresponds to the greatest fixed point seman-
tics.

4. clp(K)

In this section we demonstrate how the approach based on description terms
can be integrated into logic programming. We do this in the form of a con-
straint logic programming language, and therefore denote this integration
as clp(K), where K stands for ’knowledge’. Starting with Prolog we

1. substitute ordinary terms by description terms, and to syntactically
distinguish description terms put them in curly brackets;

2. replace the standard inference LP-rule with LPd;

3. establish the constraint store containing axioms and naming constraints,
and introduce in it some propagation scheme based on NCC;

4. introduce two new built-ins: axiom/1 (posting an axiom in the con-
straint store) and ::/2 (posting a naming constraint in the constraint
store);

5. introduce special built-ins for retrieval and retraction of information
in the constraint store (not considered here).

To illustrate behaviour of clp(K) let us consider an example from Greek
mythology, which is popular in the DL community. This is the story about
Oedipus, who killed his father and married his mother Iocaste. Oedipus
and Iocaste had children, and Polyneikis was among them. Polyneikis also
had children, among them Thersandros. It is also known that Thersandros
was not a patricide.

The following clp(K) rule defines naming constraints, which describe
these ancient circumstances:

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 199

myth :-
iocaste :: {hasChild : oedipus, hasChild : polyneikes},
oedipus :: {patricide, hasChild : polyneikes},
polyneikes :: {hasChild : thersandros},
thersandros :: {~patricide}.

The question we want to answer is whether Iokaste has a child that is
a patricide and that himself has a child, which is not a patricide. Easy to
check that it is always true, but in different models this is not the same
child, because everything depends on whether Polyneikis is a patricide or
not. The person we are interested in can be described by the description
term {patricide, hasChild : ~patricide}. To prove existence of the
person, we will refute the negation of this term. In correspondence with
Proposition 4, this means that an inconsistent naming constraint ix :: ⊥,
where ix is initial, must be entailed from the constraint store. So, we have
the following quest:

?- myth,iocaste::{hasChild*(~patricide;hasChild*patricide)}.

Table III. Solving the Greek myth problem

A Iocaste :: hasChild : Oedipus, hasChild : Polyneikes (Premise)
B Oedipus :: patricide, hasChild : Polyneikes (Premise)
C Polyneikes :: hasChild : Thersandros (Premise)
D Thersandros :: ∼patricide (Premise)
Q Iocaste :: hasChild * (∼patricide; hasChild * patricide) (Quest)
1 Iocaste :: hasChild : Oedipus, hasChild : Polyneikes,

hasChild * (∼patricide; hasChild * patricide) (Ama, A, Q)
2a Iocaste :: hasChild : (Oedipus, (∼patricide; hasChild * patricide)),

hasChild : Polyneikes, hasChild * (∼patricide; hasChild * patricide) (Any, 1)
2b Oedipus :: ∼patricide; hasChild * patricide (Ex’, 2a)
3 Polyneikes :: ∼patricide; hasChild * patricide (Any+Ex’, 1)
4 Oedipus :: patricide, hasChild:Polyneikes, ∼patricide;

hasChild * patricide Ama,B,2b)
5 Oedipus :: patricide, hasChild : Polyneikes, hasChild * patricide (Res,4)
6 Polyneikes :: patricide (Any+Ex’,5)
7 Polyneikes :: hasChild : Thersandros, ∼patricide; hasChild * patricide,

patricide (Ama,C,3,6)
8 Polyneikes :: hasChild : Thersandros, hasChild * patricide, patricide (Res,7)
9 Thersandros :: patricide (Any+Ex’,8)

10 Thersandros :: patricide, ∼patricide (Ama,D,9)
11 Thersandros :: ⊥ (Res,10, Thersandros is initial)

The refutation sequence is established in table III. In order not to
overload the proof with temporary names, we use in it the following sim-

200 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

plification of (Ex):

(Ex’)
ix :: (p : (ix1, t); t1), t2

ix :: (p : ix1; t1), t2 ix1 :: t

The clp(K)–tasks like Oedipus’ correspond to DL–tasks about objects
(in A-box). But we can also solve in clp(K) the analogues of general termi-
nological problems with use of axioms (T-box problems). Let us consider
such a problem. We define in ALC the concept of grandparent, which is
someone, whose child is a parent.

Grandparent ≡ ∃hasChild.Parent

We also define the DL-axiom of an ancient:

Ancient ≡ Parent t ∃hasChild.Ancient

The task is to prove Grandparent v Ancient, which is a typical example of
inclusion problems in DLs. It is well known that this problem is equivalent
to refutation of Grandparent u ¬Ancient.

To solve this task in clp(K), we transform axioms into the set of descrip-
tion terms. There are five:

relatives :-
axiom({~grandparent ; hasChild:parent}),
axiom({grandparent ; hasChild*~parent}),
axiom({~ancient ; parent ; hasChild:ancient}),
axiom({~parent ; ancient}),
axiom({ancient ; hasChild*~ancient}).

Then we formulate the quest:

?- relatives, c :: grandparent, ~ancient.

The refutation procedure for this quest is shown in table IV.
In the tasks about Oedipus and ancients we use logic programming

means only for organization of the constraint store. But there are a lot of
various types of interplay between the logic programming and knowledge
representation layers. For instance, we can use the LP layer as a supervisor
for the knowledge base. In the following definition the apply_axiom relation
applies alternatives of an axiom to an element ID. Applies bit by bit, until
it finds an alternative, which is consistent with the constraint store:

apply_axiom(ID, {D1; D2}) :- ID :: D1.
apply_axiom(ID, {D1; D2}) :- apply_axiom(ID, D2).

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 201

Table IV. Solving the inclusion problem

A ∼ grandparent ; hasChild:parent (Axiom)
C grandparent ; hasChild*∼ parent (Axiom)
D ∼ ancient ; parent ; hasChild:ancient (Axiom)
F ∼ parent ; ancient (Axiom)
G ancient ; hasChild*∼ ancient (Axiom)

Q c :: grandparent, ∼ ancient (Quest)
1 c :: ∼ grandparent ; hasChild:parent (Ax A)
2 c :: grandparent, ∼ ancient, hasChild:parent (Ama, Res Q, 1)

3a c :: ancient ; hasChild*∼ ancient (Ax G)
3b c :: grandparent, ∼ ancient, hasChild:parent,

hasChild*∼ ancient (Ama, Res 2, 3a)
4a c :: grandparent, ∼ ancient, hasChild: d, hasChild*∼ ancient (Ex 3b)
4b d :: parent (Ex 3b)
5a d :: ∼ancient (Any,Ex’ 4a)
5b d :: parent, ∼ ancient (Ama 4b, 5a)
6 d :: parent, ∼ ancient, ∼ parent (Ax, Ama, Res F, 5b)
7 d :: ⊥ (Res, False 6)
8 c :: ⊥ (Subst, False 7, 4a, c is initial)

This definition implements the exhausted search over alternatives. In par-
ticular, this simple example shows that logic programs can be used to
formulate strategies for the knowledge base.

Another possibility is to use description terms solely on the LP level.
The following program defines again grandparent and ancient relations,
but this time with LP means:

grandparent({hasChild:hasChild : Z}, Z).

ancient({hasChild : Z}, Z).
ancient({hasChild : Y}, Z) :- ancient(Y, Z).

Here we use description terms to represent data, but do not use the con-
straint store. The standard LP-definition of the same relations is

grandparent(X, Y) :- haschild(X, Z), haschild(Z, Y).

ancient(X, Y) :- haschild(X, Y).
ancient(X, Y) :- haschild(X, Z), ancient(Y, Z).

Let us consider an example:

?- john :: {hasChild:peter, hasChild:mary}.
?- mary :: {hasChild:ann}.
?- ancient(john, ann).
..yes

202 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

This example shows that since description terms can have multiple oc-
currences of attributes, so approximation can set choice points. But this
is just an analogue of the alternative facts haschild(john, peter) and
haschild(john, mary) in standard logic programs.

In the same way we can describe abstract data types, for instance, stack:

top({head: Top}, Top).
push(Stack, El, {head:El, tail:Stack}).
pop({tail:Stack}, Stack).
isempty({emptystack}).

Moreover, we can give the general description of the type stack, which in
ALC looks as follows:

Stack ≡ Emptystack t (∃Head.> u ∃Tail.Stack)

Its analogue in clp(K) is:

dtype_stack :-
axiom({~stack; emptystack; head:object}),
axiom({~stack; emptystack; tail:stack}),
axiom({stack; ~emptystack}),
axiom({stack; head*null, tail*~stack}).

Here concepts object and null are the equivalents of > and ⊥, respectively.
Note that head*null describes exactly those objects, which do not have the
attribute head. Basing on these axioms we can check, for instance, whether
an object X is a stack:

isStack(X) :- dtype_stack, c :: {~stack, X}, !, fail.
isStack(_).

This definition is most likely impractical but illustrates the idea. Its first
rule uses negation as failure, but it does not affect the knowledge manage-
ment engine because the logic programming and knowledge representation
layers are separated.

Note that the last examples show also that description terms can suggest
yet another approach to integration of object oriented and logic program-
ming styles, in which objects are inhabitants of the naming constraint store.
But this is just a preliminary idea which requires careful considerations.

5. Conclusion and Future Work

In this paper we consider an approach to amalgamation of the logic pro-
gramming and knowledge representation paradigms. This amalgamation is

LOGIC PROGRAMING IN KNOWLEDGE DOMAINS 203

based on handling knowledge in the form of description terms and naming
constraints. A special calculus NCC is proposed that works with naming
constraints. NCC includes inference rules, which are modifications and spe-
cializations of the resolution principle. Description terms allow integration
of LP and KR in such a way that each style has its own layer. The underling
logics of LP and KR do not affect each other, and that results in more
logical freedom on each level. The amalgamation of LP and KR schemes is
established in the form of clp(K), in which the knowledge base plays the
role of a constraint store.

The paper gives only basic definitions and results. A lot of interesting
questions are left aside. In particular, there are many questions concerning
the calculus NCC. This calculus is still under development, and a trade-off
between completeness, decidability and efficiency is looked for. The other
interesting problem is adaptation of the standard tableau algorithm as a
clp(K) propagation formalism, and analysis of NCC behaviour in compari-
son with tableau algorithms. There are a lot of problems with the language
design including interaction between logic variables and description terms.
And, of course, implementation issues are also very exciting.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press, 2003.

2. T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American,
May, 2001.

3. Boley, H., Tabet, S., Wagner, G. Design Rationale of RuleML: A Markup Language
for Semantic Web Rules. In Proc. Semantic Web Working Symposium (SWWS’01),
381–401. Stanford University, July/August 2001.

4. S.S. Goncharov, Yu.L.Ershov, D.I.Sviridenko. Semantic programming, Information
processing, Proc. IFIP 10-th World Comput. Congress, Dublin, v.10, 1986, 1093-
1100.

5. Grosof, B.N., Horrocks, I., Volz, R. Description Logic Programs: Combining Logic
Programs with Description Logic. Proc. of the Twelfth International World Wide
Web, May 2003, ACM, 48–57.

6. V. Haarslev and R. Moeller. RACER System Description. In Proc. of IJCAR’2001,
Lecture Notes in AI, 2083, 701–705, Springer, 2001

7. I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. G. Cohn, L.
Schubert, and S. C. Shapiro, eds, Proceedings of KR’98, 636–647. Morgan Kaufmann
Publishers, 1998.

8. I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic web archi-
tecture: Stack or two towers? Principles and Practice of Semantic Web Reasoning
(PPSWR 2005), Lecture Notes in Computer Science, 3703, 37-41, Springer, 2005.

9. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, eds., Proc. of the 6th
International Conference on Logic for Programming and Automated Reasoning

204 ANDREI MANTSIVODA, VLADIMIR LIPOVCHENKO and ANTON MALYKH

(LPAR’99), 1705, Lecture Notes in Artificial Intelligence, 161–180. Springer-Verlag,
1999.

10. M. Kifer, J. de Bruijn, H. Boley, D. Fensel. A Realistic Architecture for the Semantic
Web. Rules and Rule Markup Languages for the Semantic Web, First Interna-
tional Conference, RuleML 2005, Lecture Notes in Computer Science, 3791, 17–29,
Springer, 2005.

11. A.V. Mantsivoda. Semantic programming for semantic web. Invited Talk. Proc. 9th
Asian Logic Conference, August 2005, 17-21.

12. A Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

13. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier, 2001.

14. D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks. Using Vampire to reason
with OWL. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proc.
of the 2004 International Semantic Web Conference (ISWC 2004), 3298, Lecture
Notes in Computer Science, 471–485. Springer, 2004.

В. А. Липовченко, А. В. Манцивода, А. А. Малых
Логическое программирование в областях знаний

Аннотация. В работе предлагается подход, интегрирующий парадигмы логи-
ческого программирования и представления знаний. Этот подход базируется на
концепции дескриптивных термов. Логическое программирование и представление
знаний объединены таким образом, что лежащие в их основе логики аккуратно
разделены. Ключевая идея здесь — сдвинуть формализм представления знаний на
функциональный уровень. На уровне логического программирования база знаний
рассматривается как совокупность ограничений, в котором специальные работа-
ют методы распространения ограничений. Создано исчисление NCC, работающее
с дескриптивными термами, которое является базовой системой вывода для распро-
странения ограничений. На основе данного формализма формируется язык логи-
ческого программирования в ограничениях, интегрирующий подходы логического
программирования и систем обработки знаний.

