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Abstract. We study generating sets of diagrams for generative classes. The gener-
ative classes appeared solving a series of model-theoretic problems. They are divided
into semantic and syntactic ones. The fists ones are witnessed by well-known Fraissé
constructions and Hrushovski constructions. Syntactic generative classes and syntactic
generic constructions were introduced by the author. They allow to consider any w-
homogeneous structure as a generic limit of diagrams over finite sets. Therefore any
elementary theory is represented by some their generic models. Moreover, an information
written by diagrams is realized in these models.

We consider generic constructions both in general case and with some natural restric-
tions, in particular, with the self-sufficiency property. We study the dominating relation
and domination-equivalence for generative classes. These relations allow to characterize
the finiteness of generic structure reducing the construction of generic structures to
maximal diagrams. We also have that a generic structure is finite if and only if given
generative class is finitely generated, i.e., all diagrams of this class are reduced to copying
of some finite set of diagrams.

It is shown that a generative class without maximal diagrams is countably generated,
i.e., reduced to some at most countable set of diagrams if and only if there is a countable
generic structure. And the uncountable generation is equivalent to the absence of generic
structures or to the existence only uncountable generative structures.
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1. Introduction

The notion of generative class was introduced in [9] and used in [10;11]
solving a series of complicated model-theoretic problems. This notion
produces syntactic generic constructions which naturally generalize seman-
tic ones including well-known Fraissé constructions [2-4] and Hrushovski
constructions [1;5-7].

In the present paper we continue to study structural properties of gen-
erative classes and related objects [8;12-14]. In Section 2, we consider
a series of notions and results on generative class including the notions of
domination and domination-equivalence for generative classes. In Section 3,
we introduce the notions of finite, countable, and uncountable generations
for generative classes and characterize these syntactic properties in terms
of generic structures being semantic objects.

2. Preliminaries

We consider collections of sentence and formulas in first order logic over
a language Y. Thus, as usual, - means proof from no hypotheses deducing
¢ for a formula ¢ of language ¥, which may contain function symbols and
constants. If deducing ¢, hypotheses in a set ® of formulas can be used,
we write ® + ¢. Usually ¥ will be fixed in context and not mentioned
explicitly.

Below we write X,Y, Z,... for finite sets of variables, and denote by
A, B,C,... finite sets of elements, as well as finite sets in structures, or else
the structures with finite universes themselves.

In diagrams, A, B, C, ... denote finite sets of constant symbols disjoint
from the constant symbols in ¥ and ¥(A) is the vocabulary with the
constants from A adjoined. ®(A),¥(B),X(C) stand for X-diagrams (of
sets A, B, C), that is, consistent sets of ¥(A)-, ¥(B)-, ¥(C)-sentences,
respectively.

Below we assume that for any considered diagram ®(A), if a1,as are
distinct elements in A then —(a; ~ ay) € ®(A). This means that if ¢ is a
constant symbol in ¥, then there is at most one element a € A such that
(a=~c) e D(A).

If ®(A) is a diagram and B is a set, we denote by ®(A)|p the set {¢(a) €
®(A) | a € B}. Similarly, for a language 3, we denote by ®(A)|y the
restriction of ®(A) to the set of formulas in the language X.

Definition 1. [8-14]. We denote by [®(A)]# the diagram ®(B) obtained
by replacing a subset A’ C A by a set B’ C B of constants disjoint from X
and with |A’| = |B’|, where A\ A’ = B\ B’. Similarly we call the consistent
set of formulas denoted by [®(A)]% the type ®(X) if it is the result of a
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bijective substitution into ®(A) of variables of X for the constants in A. In
this case, we say that ®(B) is a copy of ®(A) and a representative of ®(X).
We also denote the diagram ®(A) by [®(X)].

Remark 1. If the vocabulary contains functional symbols then diagrams
®(A) containing equalities and inequalities of terms can generate both finite
and infinite structures. The same effect is observed for purely predicate
vocabularies if it is written in ®(A) that the model for ®(A) should be
infinite. For instance, diagrams containing axioms for finitely axiomatizable
theories have this property.

By the definition, for any diagram ®(A), each constant symbol in ¥
appears in some formula of ®(A). Thus, ®(A) can be considered as ¢(AU
K), where K is the set of constant symbols in 3.

We now give conditions on a partial ordering of a collection of diagrams
which suffice for it to determine a structure. We modify some of the con-
ditions for structures by d to signify they are conditions on diagrams not
structures.

Definition 2. [8-14]. Let ¥ be a vocabulary. We say that (Dg; <)
(or Dy) is generic, or generative, if Dy is a class of X-diagrams of finite
sets so that Dy is partially ordered by a binary relation < such that < is
preserved by bijective substitutions, i. e., if #(A) < ¥(B), and A’ C B’ such
that [®(A)]4 = ®(A") and [¥(B)]5, = U(B') are defined, then [®(A4)]4,,
[¥(B)]E, are in Dy and [®(A)]4, < [¥(B)]5,.! Furthermore:

(i) if ®(A) € Dy then for any quantifier free formula ¢(Z) and any tuple
a € A either p(a) € ®(A) or ~¢p(a) € ¢(A);

(ii) if ® < ¥ then ® C ¥;?
(iii) if ® < X, ¥ € Dy, and ® C ¥ C X, then ® < U;

(iv) some diagram ®(() is the least element of the system (Dy; <), and
Do \ {®0(0)} is nonempty;

(v) (the d-amalgamation property) for any diagrams ®(A), ¥(B),
X(C) € Dy, if there exist injections fop: A — B and go: A — C with
[CD(A)]?O(A) < ¥(B) and [(I)(A)]QJ(A) < X(C), then there are a diagram
©(D) € Dg and injections fi: B — D and g;: C — D for which
W(B)E 5 < O(D), [X(O)C ) < OD) and foo f = googn; the diagram
©(D) is called the amalgam of ¥(B) and X(C') over the diagram ®(A) and
witnessed by the four maps (fo, g0, f1,91);

! Note that Dy is closed under bijective substitutions since < is preserved by bijective
substitutions and < is reflexive.

2 Note that ®(A) < ¥(B) implies A C B, since if a € A then (a =~ a) € ®(A), so
®(A) < U(B) implies ®(A) C ¥(B) and we have (a =~ a) € U(B), whence a € B.
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(vi) (the local realizability property) if ®(A) € Dy and ®(A) F Jz ¢(x),
then there are a diagram ¥ (B) € Dy, ®(A4) < ¥(B), and an element b € B
for which U(B) F ¢(b);

(vii) (the d-uniqueness property) for any diagrams ®(A), ¥(B) € DO if
A C B and the set ®(A) U ¥(B) is consistent then ®(A) = {p(b) € ¥(B) |
be A}.

A diagram & is called a strong subdiagram of a diagram ¥ if & < V.

A diagram ®(A) is said to be (strongly) embeddable in a diagram ¥ (B) if
there is an injection f: A — B such that [@(A)]f(A) CU(B) ([@(A)]?(A) <
U(B)). The injection f, in this instance, is called a (strong) embedding of
diagram ®(A) in diagram V(B) and is denoted by f: ®(A) — ¥(B). A
diagram ®(A) is said to be (strongly) embeddable in a structure M if ®(A)
is (strongly) embeddable in some diagram W(B), where M |= ¥(B). The
corresponding embedding f: ®(A) — ¥(B), in this case, is called a (strong)
embedding of diagram ®(A) in structure M and is denoted by f: ®(A) —
M.

Let Do be a class of diagrams, Py be a class of structures of some
language, and M be a structure in Py. The class Dg is cofinal in the
structure M if for each finite set A C M, there are a finite set B, A C
B C M, and a diagram ®(B) € Dy such that M = ®(B). The class Dy is
cofinal in Py if Dy is cofinal in every structure of Py. We denote by K(Dy)
the class of all structures M with the condition that Dg is cofinal in M,
and by P a subclass of K(Dg) such that each diagram ® € Dy is true in
some structure in P.

Now we extend the relation < from the generative class (Dg; <) to a
class of subsets of structures in the class K(Dy).

Let M be a structure in K(Dg), A and B be finite sets in M with
A C B. We call A a strong subset of the set B (in the structure M),
and write A < B, if there exist diagrams ®(A), ¥(B) € Dy, for which
P(A) < ¥Y(B) and M = U(B).

A finite set A is called a strong subset of a set My C M (in the structure
M), where A C My, if A < B for any finite set B such that A C B C M,
and ®(A) C ¥(B) for some diagrams ®(A), ¥(B) € Dy with M = ¥(B).
If A is a strong subset of My then, as above, we write A < My. If A< M
in M then we refer to A as a self-sufficient set (in M).

Notice that, by the d-uniqueness property, the diagrams ®(A) and ¥(B)
specified in the definition of strong subsets are defined uniquely. A
diagram ®(A) € Dy, corresponding to a self-sufficient set A in M, is said
to be a self-sufficient diagram (in M).

Definition 3. [8-14]. A class (Dg; <) possesses the joint embedding
property (JEP) if for any diagrams ®(A), V(B) € Dy, there is a diagram
X(C) € Dy such that ®(A) and ¥(B) are strongly embeddable in X(C').
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Clearly, every generative class has JEP since JEP means the d-amalga-
mation property over the empty set.

Definition 4. [8-14]. A structure M € P has finite closures with respect
to the class (Dg; <), or is finitely generated over ¥, if any finite set A C M
is contained in some finite self-sufficient set in M, i. e., there is a finite set B
with A C B C M and ¥(B) € Dy such that M = ¥(B) and ¥(B) < X(C)
for any X(C) € Dy with M = X(C) and ¥(B) C X(C). A class P has
finite closures with respect to the class (Dg; <), or is finitely generated over
Y, if each structure in P has finite closures (with respect to (Dg; <)).

Clearly, an at most countable structure M has finite closures with re-

spect to (Dg; <) if and only if M = |J A; for some self-sufficient sets
1w
A; with A; < A/L'Jrl, 1€ wW. ©

Note that the finite closure property is defined modulo ¥ and does not
correlate with the cardinalities of algebraic closures. For instance, if X
contains infinitely many constant symbols then acl(A) is always infinite
whereas a finite set A can or can not be extended to a self-sufficient set.

Besides, for the finite closures of sets A we consider finite self-sufficient
extensions B in a given structure M with respect to (Dg; <) only and B
can be both a universe of a substructure of M or not. Moreover, it is
permitted that corresponding diagrams W(B) can have only finite, finite
and infinite, or only infinite models.

Thus, for instance, a finitely axiomatizable theory without finite models
and with a generative class (Dg; C), containing diagrams for all finite sets
and with axioms in diagrams, has identical finite closures whereas each
diagram in Dy has only infinite models.

Definition 5. [8-14]. A structure M € K(Dy) is (Dg; <)-generic, or a
generic limit for the class (Dg; <) and denoted by glim(Dy; <), if it satisfies
the following conditions:

(a) M has finite closures with respect to Dy;

(b) if A C M is a finite set, ®(A),¥(B) € Dy, M | ®(A) and ®(A) <
U(B), then there exists a set B’ < M such that A C B’ and M = U(B’).

Clearly, uncountable (Dy; <)-generic structures can be non-isomorphic.
Indeed, for instance, all infinite structures in the empty language are generic
for a given generative class although these structures are non-isomorphic
for distinct cardinalities. But, as the following theorem shows, they are
isomorphic for at most countable cases.

Theorem 1. [11]. For any generative class (Dg; <) with at most count-
ably many diagrams whose copies form Dy, there exists at most countable
(Do; <)-generic structure, unique up to isomorphism.

Useectuss MpKyTCKOTO TOCYJIapCTBEHHOTO YHUBEPCUTETA..
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Theorem 2. [8;12;14]. Every w-homogeneous structure M is (Dg;<)-
generic for some generative class (Do; <).

Thus any first-order theory has a generic model and therefore can be
represented by it.

Definition 6. [8-14]. A generative class (Dg; <) is self-sufficient if the
following axiom of self-sufficiency holds:

(viii) if ®, ¥, X € Dy, ® < ¥, and X C ¥, then ® N X < X.

Note that in the proof of Theorem 2 the required generative class (Dy; <)
is self-sufficient.

Theorem 3. [8-11;14]. Let (Dg;<) be a self-sufficient class, M be at
most countable (Dy; <)-generic structure, and K be the class of all models
of T'= Th(M) which has finite closures. Then the generic structure M is
homogeneous.

Thus, since any w-homogeneous structure can be considered as generic
with respect to a generic class with complete diagrams, a countable struc-
ture M is homogeneous if and only if it is generic for an appropriate
self-sufficient generative class (Dg; <).

Definition 7. [9-11]. Let (D¢;<) and (Dj;<’) be generative classes
of languages ¥ and Y, respectively, with ¥ C Y’. We say that the class
(Dy; <') dominates the class (Do; <), and write Do <Dy, if for any diagram
®(A) € Dy there is a diagram ®’'(A’) € Dj, such that ®(A) C ®'(A’), and
the condition of there being some systems, which are extensions over A,
together with available information on interrelations of elements in these
extensions written in the diagram ®(A), implies that the same extensions
exist over A, and that similar information is available on interrelations of
elements in those extensions written in the diagram ®'(A’).

If Dy < Dj and D < Dy we say that generative classes (Dg; <) and
(Dy; <') are domination-equivalent and write Dy ~ Dy,.

Theorem 4. [9-11]. Let M and M’ be countable homogeneous structures
of languages ¥ and X', respectively. The following conditions are equivalent:

(1) the structure M is isomorphically embeddable in the structure M’ |
3

(2) there are generative classes (Do;<) and (Df; <) such that M is
(Do; <)-generic, M’ is (Dy; <')-generic, and Dy < Dj,.

Since mutually embeddable countable homogeneous structures are iso-
morphic, Theorem 4 implies the following corollary.

Corollary 1. Let M and M’ be countable homogeneous structures of a
language . The following conditions are equivalent:
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(1) the structures M and M’ are isomorphic;

(2) there are domination-equivalent generative classes (Dg;<) and
(Dy; <') such that M is (Dyg; <)-generic and M’ is (Dy; <')-generic;

(3) the structures M and M’ are (Dg; <)-generic for some generative

s

(Do; <).

Proof. (1) = (3) and (3) = (2) are obvious.

(2) = (1). Having the hypothesis we see by Theorem 4 that M and M’
are mutually embeddable. Since M and M’ are countable homogeneous,
they are isomorphic. O

3. Finite, countable and uncountable generations of generative
classes

Definition 8. [13]. Let (Dg;<) be a generative class in a language
Y, ®(A) € Dg. The diagram ®(A) is called structural if it satisfies the
following modification of the local realizability property: if ®(A) - 3z ¢(x)
then there is a constant term t(a), a € A, such that ®(A) F p(t(a)).

Note that there exist generative classes containing non-structural dia-
grams. Indeed, consider a finitely axiomatizable, by an axiom g, complete
theory T' of relational language and without finite models (for instance,
consider the theory of dense linear order without endpoints). Now, take a
generative class (Dg; <) for T such that all diagrams in Dg contain ¢g. Ob-
viously, Dy does not contain structural diagrams since for any ®(A) € Dy,
every model M |= ®(A) is infinite, being a model of T', whereas constant
terms t(a), a € A, can have values only in the finite set A.

Theorem 5. [13, Theorem 4.1]. For any diagram ®(A) € Dy, A # O,
the following conditions are equivalent:

(1) ®(A) is structural;

(2) there exists a structure M consisting of some constant terms in the
language ¥ U A and such that M |= ®(A).

Proof. (1) = (2). Let ®(A) be structural. Denote by N the set of all
constant terms t(a), a € A, in the language ¥ U A. For constant terms
t1 and to, we put t; ~ ty if and only if ®(A) F (t; = t3). Clearly, ~ is
an equivalence relation and there is a canonical structure '/~ having the
universe N/~ and satisfying the quantifier-free part of ®(A). By (vi’) and
induction on length of formulas in ®(A) we get N/~ | ®(A). Taking
representatives for each ~-class in N/~ we form a required structure M
isomorphic to A/ /~.

(2) = (1). If there exists a required structure M having the universe
M consisting of some constant terms (one representative for each ~-class)

MsBectusi IpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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in the language ¥ U A and such that M | ®(A), then, by completeness of
the first-order calculus, for any formula ¢(x) with ®(A) - 3z ¢(x), there is
a term t(a) € M such that ®(A) F p(t(a)). Thus, ®(A) is structural. O

The structure N/~ in the proof of Theorem 5 is called ®(A)-canonical,
or simply canonical and denoted by Mg(4). The structure M, in the proof,
is a representation of Mg a).

By Theorem 5, any structural diagram ®(A), for A # &, defines the al-
gebra with the universe N/~ being the restriction of A/~ to the functional
sublanguage and finitely generated by A (relative constant symbols in X).
At the same time, for quantifier-free diagrams, this condition is sufficient:

Corollary 2. [13, Corollary 4.2]. Any quantifier-free diagram ®(A) € Dy
is structural.

Definition 9. [13]. A diagram ®(A) € Dy is called self-structural if
A # & and P(A) satisfies the following: if ®(A) F Iz p(z) then there is an
element a € A such that ®(A) - ¢(a).

Theorem 6. [13, Theorem 25| For a generative class (Do;<) with a
language having a finite set C' of pairwise distinct constants, the following
conditions are equivalent:

(1) the (Dyg; <)-generic structure is finite;

(2) (Do; <) has mazimal diagrams;

(3) (Dg; <) is domination-equivalent to a minimal generative class con-
sisting of a diagram ®o(2) and of copies of a self-structural diagram ®(A);

(4) the (Dg; <)-generic structure is isomorphic, for a quantifier-free dia-
gram ®(A), to a representation, with the universe AUC, of ®(A)-canonical
structure.

Remark 2. In Theorem 6 the existence of finite C' is implied by each of
the conditions (1), (2), (3).

Definition 10. A generative class (Dg; <) is called \-generated, where A
is a cardinality, if Do contains a set Z of diagrams such that each diagram
in Dy is a copy of some diagram in Z. The generative class (Dg; <) is called
finitely generated if it is n-generated for some n € w. The generative class
(Dy; <) is called countably generated if it is w-generated. If (Dg; <) is not
countably generated it is called uncountably generated.

The following theorem extends the list of criteria for the existence of
finite generic structures in Theorem 6:

Theorem 7. For a generative class (Dy; <) the following conditions are
equivalent:

(1) (Dg; <) is finitely generated;

(2) each diagram in (Dg; <) is extensible till a mazximal one;

(3) (Do; <) has a mazimal diagram.
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Proof. (1) = (2). If (Dg; <) is finitely generated by diagrams ®4,..., 9,
then their amalgam is a copy of some ®; and it is maximal. Thus any
diagram ® being in the list ®4,..., P, is extensible till a maximal one.

(2) = (3) is obvious.

(3) = (1). If (Dp; <) has a maximal diagram ®(A) then, since Dy is
closed under amalgams, ®(A) is a copy of amalgam of ®(A) with arbitrary
diagram W(A) € Dy. Therefore, each diagram in Dy is a copy of a restric-
tion W(A)|p of ®(A) to some B C A. As A is finite there are finitely many
these restrictions. Thus, (Dg; <) is finitely generated. O

Theorem 8. For any generative class (Dg; <) the following conditions are
equivalent:

(1) there is a countable (Dg; <)-generic structure (and the language has
at most countable set C' of pairwise distinct constants);

(2) (Do; <) is countably generated and does not have mazximal diagrams.

Proof. (1) = (2) holds by the definition of countable generic structure
and Theorem 6 with Remark 2. In particular, the language has at most
countable set of pairwise distinct constants.

(2) = (1). If (Dy; <) is countably generated and does not have maximal
diagrams then we construct step-by-step a countable generic structure M
as in the proof of Theorem 1 producing at most countably many pairwise
distinct constants. O

Theorem 8 immediately implies the following characterization for the
uncountably generated generative classes (Dg; <).

Corollary 3. For any generative class (Dg; <) the following conditions
are equivalent:

(1) (Dg; <) is uncountably generated;

(2) the set C of pairwise distinct constants in the language is uncountable
and/or all (Dy; <)-generic structures are uncountable or they do not exist.

Corollary 3 with the following theorem allows to divide (in terms of meet-
ing of contradictions for the cardinalities of definable sets) the uncountable
generation of (Dy; <) into two cases: with or without generic structures.

Theorem 9. [8]. For any generative class (Dg; <) the following condi-
tions are equivalent:

(1) there exists a (Dg; <)-generic structure;

(2) there are no type-definable sets X constructed with respect to (Dg; <)
such that these X meet contradictions for their cardinality;

(3) there are no definable sets X constructed with respect to (Dg; <) such
that these X meet contradictions for their cardinality.

Nseectusa MpKyTCKOro ToCyJJapCTBEHHOTO YHUBEPCUTETA.
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In conclusion we note that by Theorems above generative classes can, on

syntactic level, control existence of finite, countable, or uncountable generic
structures, and their absence as well.
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C. B. CynomiaToB
ITopoxkgeHusi B TEHEPUPYIOIINX KJaccax

Awnnoranusi. B pabore ucciaemayrorcss MOpOXKIAOIINe MHOXKECTBA, JUATDAMM JIJIsI
regepupyonmx kiaccoB. CaMu reHepupylolye KJAcChl BO3HUKIIU IPHU PEIIEHUN Psiia
TEOPETUKO-MOJIEBHBIX TpobaeM. OHU MOApa3IesiOTCsT Ha CEMAHTHYECKNE U CUHTAKCH-
geckue. K IEpBBIM OTHOCATCS MIMPOKO M3BeCTHbIE KOHCTpyKIuu Ppamcce nm XpyImos-
ckoro. CHHTaKCHYeCKUe TeHEPUPYIOINe KJIACChl M CUHTAKCHIECKNE Te€HepUIEeCKe KOH-
cTpykuuu 6bUIH BBesleHbI B paborax aBropa. OHM MO3BOJISIIOT pacCMaTpPUBAThL JIIOOYIO
W-OJIHOPOJHYIO CTPYKTYPY B BHJI€ T€HEPUYECKOrO IPEJesia JUArPpaMM HaJi KOHEYHBIMUI
MHOX)KecTBaMu. TeM caMbiM, JTF06ast 9JIEMEHTapHAsT TEOPUST TIPEICTABIISIETCS] HEKOTOPBIMU
CBOMMH IeHepUYecKuMu Mojeismu. [Ipu srom umHbOpManus, 3a1anHas quarpaMMaMu,
peanu3yercs B 9TUX MOJIEJISIX.

Mp1 paccMaTpuBaeM reHepUYecKre KOHCTPYKIIMY KakK B OOIIEM BUJIE, TAK U IIPU HEKO-
TOPBIX €CTECTBEHHBIX OTPAHUYEHUSIX, B YACTHOCTH IIPU BBITIOJHEHUM CBONCTBA CAMOIO-
crarouHoctu. Vccsemyercs: OTHOIIIEHNE JIOMUHUPOBAHUS M S9KBUBAJIEHTHOCTH 10 JIOMUHU-
PpOBaHUIO JjIsi TEHEPUPYIOMUX KJ1accoB. C MOMOIIBIO 9TOrO0 OTHOIIEHUST XapaKTepU3yeT-
Csl yCJIOBUE KOHEYHOCTH M€HEPUYECKON CTPYKTYPBI, CBOJISAIIEE TOCTPOEHUE TeHEPUUIECKOi
CTPYKTYPBI K HWCIOJIb30BAHUIO JIUIIb MAaKCHUMAJBHBIX JAarpaMM. YCJIOBHE KOHEYHOCTH
PEHEPUYECKON CTPYKTYPhl TaAKKe SKBUBAJEHTHO KOHEYHON MOPOXKIEHHOCTU IeHEPUpYIO-
LIEro KJIacca, T. €. CBEJICHUIO BCEX JUArPaMM JIAHHOIO KJIacca K KOIMUPOBAHUIO HEKOTOPOTO
KOHEYHOI'O MHOYKECTBa, JTUATPAMM.

JlokazaHo, 9TO CYeTHAsl MOPOXKJIEHHOCTH (CBEJEHHME K HEKOTOpPOMY, He GoJiee dem
CYETHOMY MHOXKECTBY JJMAIDAMM) MeHEPHUPYIOIIEro Kiacca 663 MaKCUMAJIBHBIX JUAIPAMM
PaBHOCUJIbHA CYIIECTBOBAHUIO CYETHOW MEHEPUYECKON CTPYKTYPbI, a HECUeTHAs IIOPOXK-
JIEHHOCTh — OTCYTCTBUIO M€HEPUYECKUX CTPYKTYP WUJIM HAJUYUIO JIUIb HECUETHBIX TeHe-
PUYECKUX CTPYKTYD.

KuroueBbie ciioBa: reHepUpPYIONU KJIacC, NTeHEPUYECKasl CTPYKTYpPa, TOPOXK IEHNE
TEHEPUPYIONIETO KJIACCA.
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