

Серия «Математика» 2012. Т. 5, № 3. С. 73—93

Онлайн-доступ к журналу: http://isu.ru/izvestia ИЗВЕСТИЯ

Иркутского государственного университета

УДК 517.983.5

О разрешимости интегро-дифференциальных уравнений Вольтерра с фредгольмовым оператором в главной части *

С. С. Орлов

Иркутский государственный университет

Аннотация. В работе методами теории фундаментальных оператор-функций вырожденных интегро-дифференциальных операторов в банаховых пространствах исследована однозначная разрешимость одной начальной задачи в классах распределений и функций конечной гладкости.

Ключевые слова: банахово пространство; фредгольмов оператор; жорданов набор; распределение; фундаментальная оператор-функция.

Введение

Рассмотрим линейный интегро-дифференциальный оператор

$$\mathcal{L}_N(u(t)) = Bu^{(N)}(t) - Au(t) - \int_0^t g(t-s)Au(s)ds,$$

где $B,\ A$ — замкнутые линейные операторы, действующие из банахова пространства E_1 в банахово пространство E_2 , причем $\overline{D(B)} = \overline{D(A)} = E_1,\ D(B) \subseteq D(A)$, оператор B фредгольмов, т. е. $\overline{R(B)} = R(B)$ и $\dim N(B) = \dim N(B^*) < +\infty$, ядро $g(t) : \mathbb{R}_+ \to \mathbb{R}$ — числовая функция. В этих предположениях будем исследовать однозначную разрешимость задачи Коши

$$\mathcal{L}_N(u(t)) = f(t), \ u(0) = u_0, \ u'(0) = u_1, \ \dots, \ u^{(N-1)}(0) = u_{N-1}.$$
 (0.1)

^{*} Работа выполнена при финансовой поддержке Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» Минобрнауки, проект № 2012-1.2.2-12-000-1001-012, и гранта для поддержки НИР аспирантов и молодых сотрудников ИГУ, тема № 113-11-000 (приказ № 334 от 12.12.2011).

Интегральная часть рассматриваемого уравнения представляет собой сверточное вольтерровское интегральное возмущение последнего слагаемого Au(t) дифференциальной части. Именно такая ситуация возникает в задачах математической теории вязкоупругости при моделировании движения вязкоупругих сред наследственного типа, описании колебаний вязкоупругих тел [3, 6, 14] и т. д. Эти процессы описываются уравнениями в частных производных, которые являются конкретными реализациями абстрактной задачи (0.1). Некоторые из таких задач были рассмотрены в работах [10, 5, 11, 12]. Тем самым специальный вид исследуемого объекта выбран неслучайно и продиктован соответствующими приложениями.

Впервые класс абстрактных уравнений Вольтерра с фредгольмовым оператором в главной части был рассмотрен в пионерской работе профессора Н. А. Сидорова [7]. Методы последовательных приближений для нелинейных интегро-дифференциальных уравнений с вырождением в окрестностях точек ветвления были предложены в работах [8, 9], где также рассмотрены приложения из теории полупроводников.

С помощью конструкции фундаментальной оператор-функции ранее проводились исследования начальных задач типа (0.1) для линейных интегро-дифференциальных уравнений. Например, в работе [12] при N=2 была изучена такая задача и некоторые ее приложения. В [11] подробно исследован случай спектральной ограниченности операторного пучка. При N=1 в [10] и при $N\geq 1$ в условиях отсутствия A-присоединенных элементов фредгольмова оператора B [5] исследовалась начальная задача с ядром интегральной части более общего вида. В работе [13] рассмотрена задача с ядром g(t)B и некоторые ее конкретные реализации.

1. Обобщенные жордановы наборы фредгольмовых операторов

Пусть E_1 , E_2 — вещественные банаховы пространства, B — замкнутый линейный плотно определенный фредгольмов оператор, действующий из E_1 в E_2 .

Обозначим n — размерность N(B), $\{\varphi_i\}_{i=1}^n$ и $\{\psi_i\}_{i=1}^n$ — базисы в N(B) и $N(B^*)$ соответственно, $\{\gamma_i\}_{i=1}^n \subset E_1^*$ и $\{z_i\}_{i=1}^n \subset E_2$ — биортогональные им системы элементов, т. е.

$$\langle \varphi_i, \gamma_j \rangle = \langle z_i, \psi_j \rangle = \delta_{ij}, i, j = 1, \dots, n.$$

Введем проекторы $P: E_1 \to N(B), Q: E_2 \to \mathrm{span}\,\{z_i\}_{i=1}^n,$ действия которых задаются формулами

$$P = \sum_{i=1}^{n} P_i = \sum_{i=1}^{n} \langle \cdot, \gamma_i \rangle \varphi_i, \ Q = \sum_{i=1}^{n} Q_i = \sum_{i=1}^{n} \langle \cdot, \psi_i \rangle z_i,$$

и ограниченный оператор $\Gamma: E_2 \to D(B)$,

$$\Gamma = \tilde{B}^{-1} = \left(B + \sum_{i=1}^{n} \langle \cdot, \gamma_i \rangle z_i \right)^{-1},$$

называемый регуляризатором Треногина [1]. Справедливы равенства $\Gamma z_i = \varphi_i, \ \Gamma^* \gamma_i = \psi_i, \ \Gamma B = \mathbb{I}_1 - P, \ B\Gamma = \mathbb{I}_2 - Q.$ Здесь и далее в работе $\mathbb{I}_1, \ \mathbb{I}_2$ — тождественные операторы в пространствах E_1 и E_2 .

Пусть A — замкнутый линейный оператор из E_1 в E_2 , $\overline{D(A)} = E_1$. Будем называть A-эсордановой цепочкой длины $p_i \in \mathbb{N}$ базисного вектора $\varphi_i \in N(B)$ конечный набор элементов $\left\{ \varphi_i^{(1)}, \ \varphi_i^{(2)}, \ldots, \ \varphi_i^{(p_i)} \right\} \subset E_1$, удовлетворяющих уравнениям

$$B\varphi_i^{(1)} = 0, \ B\varphi_i^{(k+1)} = A\varphi_i^{(k)}, \ k = 1, \dots, p_i - 1,$$

которые, в соответствии с альтернативой Фредгольма [1], разрешимы, если $\left\langle A\varphi_i^{(k)},\ \psi_j\right\rangle=0,\ j=1,\ldots,n,\ k=1,\ldots,p_i-1.$ Вектор $\varphi_i^{(k+1)}$ принято называть A-присоединенным элементом k-го порядка к элементу φ_i , причем справедлива формула $\varphi_i^{(k+1)}=\Gamma A\varphi_i^{(k)}.$ Условие обрыва цепочки присоединенных элементов на p_i -м шаге состоит в том, что не все числа $\left\langle A\varphi_i^{(p_i)},\ \psi_j\right\rangle$ равны нулю. Построив по описанному правилу для каждого $\varphi_i\in N(B)$ свою A-жорданову цепочку, получим систему элементов

 $\left\{ \varphi_i^{(k)}, \ i=1,\ldots,n, \ k=1,\ldots,p_i \right\} \subset E_1,$

называемую A-жордановым набором фредгольмова оператора B и являющуюся полной, если $\det \left\|\left\langle A\varphi_i^{(p_i)},\ \psi_j\right\rangle\right\| \neq 0$. Базис в $N(B^*)$ можно выбрать таким, что условие полноты A-жорданова набора эквивалентно соотношению $\left\langle A\varphi_i^{(p_i)},\ \psi_j\right\rangle = \delta_{ij},\ i,j=1,\ldots,n,$ тогда $z_i = A\varphi_i^{(p_i)}.$

В цикле работ Б. В. Логинова (см., например, статью [4] и библиографию к ней) показано, что, если оператор B имеет полный A-жорданов набор, то существует полный A^* -жорданов набор оператора B^* , который строится по тем же правилам, причем базисы в N(B) и $N(B^*)$ можно выбрать так, что элементы φ_i и ψ_i с одинаковыми номерами имеют обобщенные жордановы цепочки одинаковой длины. В дальнейшем без ограничения общности будем предполагать, что все указанные перестройки базисов уже выполнены.

Полным A^* -экордановым набором оператора B^* называется система элементов $\psi_i^{(k)} \in E_2^*, \ i=1,\ldots,n, \ k=1,\ldots,p_i,$ которые удовлетворяют уравнениям

$$B^*\psi_i^{(1)} = 0$$
, $B^*\psi_i^{(k+1)} = A^*\psi_i^{(k)}$, $i = 1, \dots, n$, $k = 1, \dots, p_i - 1$,

условиям разрешимости

$$\left\langle \varphi_i, \ A^* \psi_j^{(k)} \right\rangle = 0, \ i, j = 1, \dots, n, \ k = 1, \dots, p_j - 1,$$

и полноты

$$\left\langle \varphi_i, A^* \psi_j^{(p_j)} \right\rangle = \delta_{ij}, i, j = 1, \dots, n,$$

Для восстановления A^* -присоединенных элементов справедливы формулы

$$\psi_i^{(k+1)} = \Gamma^* A^* \psi_i^{(k)}, \ i = 1, \dots, n, \ k = 1, \dots, p_i - 1,$$

а из последнего соотношения следует, что $\gamma_i = A^* \psi_i^{(p_i)}, \ i = 1, \dots, n$.

Следует отметить, что условия разрешимости уравнений для определения A- и A^* -присоединенных элементов могут быть записаны в следующем эквивалентном виде:

$$\left\langle \varphi_i^{(k+1)}, \ \gamma_j \right\rangle = \left\langle z_j, \ \psi_i^{(k+1)} \right\rangle = 0, \ i, j = 1, \dots, n, \ k = 1, \dots, p_i - 1,$$

и справедливо свойство $и \kappa n u + A^*$ -жордановых наборов, выражаемое следующими равенствами

$$\varphi_i^{(k+1)} = (\Gamma A)^{qp_i + k} \varphi_i^{(1)}, \ \psi_i^{(k+1)} = (\Gamma^* A^*)^{qp_i + k} \psi_i^{(1)},$$
$$\forall \ q \in \{0\} \cup \mathbb{N}, \ k = 1, \dots, p_i - 1.$$

2. Обобщенные функции в банаховых пространствах

Пусть E — вещественное банахово пространство, E^* — сопряженное к нему банахово пространство. Отнесем к множеству $K(E^*)$ основных функций все финитные бесконечно дифференцируемые функции s(t) со значениями в E^* . Носителем $supp\ s(t)$ основной функции s(t) называется замыкание в $\mathbb R$ множества значений t, при которых $s(t) \neq 0$. Сходимость в $K(E^*)$, которая вводится следующим образом: говорят, что последовательность функций $\{s_n(t)\}$ сходится к s(t) в $K(E^*)$, если

- а) $\exists R > 0$ такое, что $\forall n \in \mathbb{N} \ supp \ s_n(t) \subset [-R, R];$
- б) $\forall \ \alpha \in \mathbb{N}$ выполняется $\sup_{t \in [-R, \ R]} \left\| s_n^{(\alpha)}(t) s^{(\alpha)}(t) \right\|_{E^*} \xrightarrow{n \to +\infty} 0;$

наделяет векторное пространство $K(E^*)$ топологической структурой. Обобщенной функцией (распределением) f(t) со значениями в банаховом пространстве E называется всякий линейный непрерывный функционал (f, s(t)), заданный на $K(E^*)$. Обозначим K'(E) множество всех обобщенных функций со значениями в E, которое относительно введенной в нем слабой сходимости: $\{f_n\} \subset K'(E)$ сходится к $f \in K'(E)$, если $(f_n, s(t)) \xrightarrow{n \to +\infty} (f, s(t)), \forall s(t) \in K(E^*);$ является полным векторным пространством и называется пространством обобщенных функций. Понятия нулевого множества и носителя распределения, равенства двух обобщенных функций, операции сложения, умножения на бесконечно дифференцируемую числовую функцию, дифференцирования (последние две непрерывны из K'(E) в K'(E)) определяются так же, как и для классических обобщенных функций Соболева — Шварца, множество которых, следуя монографии В. С. Владимирова [2], будем обозначать \mathcal{D}' . Всякая локально интегрируемая по Бохнеру функция f(t) со значениями в Е порождает распределение

$$(f(t), s(t)) = \int_{-\infty}^{+\infty} \langle f(t), s(t) \rangle dt, \ s(t) \in K(E^*).$$

Все обобщенные функции, которые можно задать по приведенному правилу, принято называть perулярными, остальные — cunsyлярными. Примеры регулярной и сингулярной обобщенных функций из K'(E) доставляют аналоги функции Хевисайда и дельта-функции Дирака

$$(a\theta(t-t_0),s(t)) = \int_{t_0}^{+\infty} \langle a,s(t)\rangle dt, \ (a\delta(t-t_0),s(t)) = \langle a,s(t_0)\rangle,$$

соответственно, где $a \in E$, $t_0 \in \mathbb{R}$, $s(t) \in K(E^*)$. При этом легко показать, что $(a\theta(t-t_0))' = a\delta(t-t_0)$. Через $K'_+(E)$, $K'_+(E) \subset K'(E)$, будем обозначать пространство распределений с ограниченным слева носителем.

Пусть $\mathcal{K}(t)$ — сильно непрерывная оператор-функция со значениями в $\mathcal{L}(E_1,E_2),\ h(t)\in\mathcal{D}',\$ тогда произведение $\mathcal{K}(t)h(t)$ (формальное выражение) назовем обобщенной оператор-функцией. Далее интегродифференциальному оператору вида

$$\mathcal{L}_N(u(t)) = Bu^{(N)}(t) - Au(t) - \int_0^t g(t-s)Au(s)ds$$

поставим в соответствие следующую обобщенную оператор-функцию:

$$\mathcal{L}_N(\delta(t)) = B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t).$$

Пусть $f(t) \in K'_+(E_1)$, $h(t) \in \mathcal{D}'_+$, тогда сверткой обобщенной оператор-функции $\mathcal{K}(t)h(t)$ и обобщенной функции f(t) называется распределение $\mathcal{K}(t)h(t)*f(t) \in K'_+(E_2)$ определяемое равенством

$$(\mathcal{K}(t)h(t) * f(t), s(t)) = (h(t), (f(\tau), \mathcal{K}^*(t)s(t+\tau))), \forall s(t) \in K(E_2^*).$$

Корректность этого определения гарантируется ограниченностью слева носителей функций $h(t) \in \mathcal{D}'_+$ и $f(t) \in K'_+(E_1)$ и доказывается по схеме, аналогичной применяемой в [2] при доказательстве существования свертки в алгебре \mathcal{D}'_+ . Отметим, что в классах распределений с ограниченным слева носителем операция свертки ассоциативна.

Далее введем ключевое понятие. Фундаментальной оператор-функцией интегро-дифференциального оператора $\mathcal{L}_N(\delta(t))$ назовем обобщенную оператор-функцию $\mathcal{E}(t)$, удовлетворяющую равенствам

$$\mathcal{E}(t) * \mathcal{L}_N(\delta(t)) * v(t) = v(t), \ \forall \ v(t) \in K'_+(E_1),$$

$$\mathcal{L}_N(\delta(t)) * \mathcal{E}(t) * w(t) = w(t), \ \forall \ w(t) \in K'_+(E_2).$$

Смысл этой конструкции состоит в следующем: если известна фундаментальная оператор-функция $\mathcal{E}(t)$ интегро-дифференциального оператора $\mathcal{L}_N(\delta(t))$, то, в силу второго равенства, сверточное уравнение вида $\mathcal{L}_N(\delta(t))*u(t)=f(t)$, где $f(t)\in K'_+(E_2)$, имеет своим решением обобщенную функцию $u(t)=\mathcal{E}(t)*f(t)\in K'_+(E_1)$, причем это решение единственно. Действительно, если существует $v(t)\in K'_+(E_1)$ такая, что $v(t)\neq u(t)$ и $\mathcal{L}_N(\delta(t))*v(t)=f(t)$, то, с учетом первого равенства из определения фундаментальной оператор-функции и свойства ассоциативности свертки, получим

$$v(t) = (\mathcal{E}(t) * \mathcal{L}_N(\delta(t))) * v(t) = \mathcal{E}(t) * (\mathcal{L}_N(\delta(t)) * v(t)) = \mathcal{E}(t) * f(t) = u(t),$$

противоречие, доказывающее единственность решения $u(t) = \mathcal{E}(t) * f(t)$ исходного сверточного уравнения в классе $K'_{+}(E_1)$.

3. Обобщенное и классическое решения: условия существования и единственности

Определение 1. Классическим решением начальной задачи (0.1) будем называть функцию u(t) класса $C(t \ge 0; E_1) \cap C^N(t > 0; E_1)$, обращающую в тождество уравнение и удовлетворяющую начальным условиям.

Задача Коши (0.1) в обобщенных функциях принимает вид следующего сверточного уравнения:

$$(B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * \tilde{u}(t) = \tilde{g}(t), \tag{3.1}$$

где $\tilde{g}(t) \in K_+'(E_2)$ имеет вид

$$\tilde{g}(t) = f(t)\theta(t) + Bu_{N-1}\delta(t) + Bu_{N-2}\delta^{(N-2)} + \dots + Bu_0\delta^{(N-1)}(t) \quad (3.2)$$

Определение 2. Решение уравнения (3.1) в классе $K'_{+}(E_1)$ называется обобщенным решением задачи Коши (0.1).

Далее приведем и докажем некоторые утверждения, необходимые в дальнейшем.

Лемма 1. Пусть B, A — замкнутые линейные операторы, действующие из E_1 в E_2 , $\overline{D(B)} = \overline{D(A)} = E_1$, оператор B фредгольмов и имеет полный A-жорданов набор, тогда справедливо равенство

$$Q_q(A\Gamma)^k Q_i = \begin{cases} \mathbb{O}_2, & k = \alpha p_i, \ i \neq q, \\ Q_q, & k = \alpha p_i, \ i = q, \\ \mathbb{O}_2, & k \neq \alpha p_i; \end{cases}$$

 $q, i = 1, \ldots, n, k, \alpha \in \mathbb{N}.$

Доказательство. Поскольку $Q_q = \langle \cdot, \; \psi_q \rangle \, z_q,$ то, согласно п. 1,

$$Q_{q}(A\Gamma)^{k}Q_{i} = \langle \cdot, \psi_{i} \rangle \left\langle (A\Gamma)^{k}z_{i}, \psi_{q} \right\rangle z_{q} =$$

$$= \langle \cdot, \psi_{i} \rangle \left\langle A(\Gamma A)^{k-1}\Gamma z_{i}, \psi_{q} \right\rangle z_{q} = \langle \cdot, \psi_{i} \rangle \left\langle A(\Gamma A)^{k-1}\varphi_{i}, \psi_{q} \right\rangle z_{q}.$$

Пусть $k=\alpha p_i$, где $\alpha\in\mathbb{N}$, тогда из свойства цикличности A-жорданова набора и $z_i=A\varphi_i^{(p_i)}$ получим

$$Q_{q}(A\Gamma)^{k}Q_{i} = Q_{q}(A\Gamma)^{\alpha p_{i}}Q_{i} = \langle \cdot, \psi_{i} \rangle \langle A(\Gamma A)^{\alpha p_{i}-1}\varphi_{i}, \psi_{q} \rangle z_{q} =$$

$$= \langle \cdot, \psi_{i} \rangle \langle A(\Gamma A)^{(\alpha-1)p_{i}+p_{i}-1}\varphi_{i}, \psi_{q} \rangle z_{q} = \langle \cdot, \psi_{i} \rangle \langle A\varphi_{i}^{(p_{i})}, \psi_{q} \rangle z_{q} =$$

$$= \langle \cdot, \psi_{i} \rangle \langle z_{i}, \psi_{q} \rangle z_{q} = \langle \cdot, \psi_{i} \rangle \delta_{iq}z_{q}.$$

Таким образом,

$$Q_q(A\Gamma)^k Q_i = \begin{cases} \mathbb{O}_2, & k = \alpha p_i, \ i \neq q, \\ Q_q, & k = \alpha p_i, \ i = q. \end{cases}$$

Пусть $k \neq \alpha p_i$, тогда $k = (\alpha - 1)p_i + \beta$, $\alpha \in \mathbb{N}$, $\beta = 1, \ldots, p_i - 1$. Принимая во внимание вновь свойство цикличности A-жорданова набора, а также условия $\left\langle A \varphi_i^{(\beta)}, \psi_q \right\rangle = 0, \ i, q = 1, \ldots, n, \ \beta = 1, \ldots, p_i - 1$, имеем

$$Q_{q}(A\Gamma)^{k}Q_{i} = Q_{q}(A\Gamma)^{(\alpha-1)p_{i}+\beta}Q_{i} =$$

$$= \langle \cdot, \psi_{i} \rangle \left\langle A(\Gamma A)^{(\alpha-1)p_{i}+\beta-1}\varphi_{i}, \psi_{q} \right\rangle z_{q} =$$

$$= \langle \cdot, \psi_{i} \rangle \left\langle A\varphi_{i}^{(\beta)}, \psi_{q} \right\rangle z_{q} = \mathbb{O}_{2}.$$

Тем самым доказательство леммы завершено.

Введем в рассмотрение оператор вида

$$\tilde{Q} = \sum_{i=1}^{n} \sum_{j=1}^{p_i} \left\langle \cdot, \ \psi_i^{(j)} \right\rangle A \varphi_i^{(p_i+1-j)}. \tag{3.3}$$

Справедлива следующая

Лемма 2. Пусть выполнены условия леммы 1, тогда справедливо равенство

 $Q(A\Gamma)^k(\mathbb{I}_2 - \tilde{Q}) = \mathbb{O}_2, \ \forall \ k \in \mathbb{N}.$

Доказательство. Для доказательства требуемого достаточно показать, что $Q_q(A\Gamma)^k(\mathbb{I}_2-\tilde{Q})=\mathbb{O}_2,\ \forall\ k\in\mathbb{N}$ при каждом $q=1,\ldots,n$. Заметим, что

$$\tilde{Q} = \sum_{i=1}^{n} \sum_{j=1}^{p_i} \left\langle \cdot, \ \psi_i^{(j)} \right\rangle A \varphi_i^{(p_i+1-j)} = \sum_{i=1}^{n} \sum_{j=1}^{p_i} (A\Gamma)^{p_i-j+1} Q_i (A\Gamma)^{j-1}.$$

Тогда

$$Q_{q}(A\Gamma)^{k}(\mathbb{I}_{2} - \tilde{Q}) = Q_{q}(A\Gamma)^{k} - \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} Q_{q}(A\Gamma)^{p_{i}-j+1+k} Q_{i}(A\Gamma)^{j-1}.$$

Так как $k \in \mathbb{N}$, справедливо разложение $k = \alpha_i p_i + \beta_i, i = 1, \ldots, n$, где $\alpha_i \in \{0\} \cup \mathbb{N}, \ \beta_i = 0, \ldots, p_i - 1, \ \alpha_i^2 + \beta_i^2 \neq 0$ (поскольку $k \neq 0$), тогда

$$Q_{q}(A\Gamma)^{k}(\mathbb{I}_{2} - \tilde{Q}) =$$

$$= Q_{q}(A\Gamma)^{\alpha_{q}p_{q} + \beta_{q}} - \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} Q_{q}(A\Gamma)^{(\alpha_{i}+1)p_{i}-j+1+\beta_{i}} Q_{i}(A\Gamma)^{j-1}.$$

Далее рассмотрим операторы вида

$$Q_a(A\Gamma)^{\gamma_i}Q_i = Q_a(A\Gamma)^{(\alpha_i+1)p_i-j+1+\beta_i}Q_i.$$

При каждом $i=1,\ldots,n$ показатель γ_i пробегает значения подряд от $\alpha_i p_i+1$ до $(\alpha_i+2)p_i-1$. В силу леммы 1, $Q_q(A\Gamma)^{\gamma_i}Q_i=\mathbb{O}_2$ при всех этих значениях γ_i , за исключением случая $\gamma_i=(\alpha_i+1)p_i$ и i=q, при котором $Q_q(A\Gamma)^{\gamma_i}Q_i=Q_q$, что возможно, когда $j=\beta_i+1,\ i=q$. Значит, с учетом свойства цикличности A^* -жорданова набора, имеет место цепочка равенств

$$\begin{split} Q_q(A\Gamma)^k(\mathbb{I}_2 - \tilde{Q}) &= Q_q(A\Gamma)^{\alpha_q p_q + \beta_q} - Q_q(A\Gamma)^{\beta_q} = \\ &= \left\langle \cdot, \; (\Gamma^*A^*)^{\alpha_q p_q + \beta_q} \psi_q^{(1)} \right\rangle z_q - \left\langle \cdot, \; (\Gamma^*A^*)^{\beta_q} \psi_q^{(1)} \right\rangle z_q = \\ &= \left\langle \cdot, \; \psi_q^{(\beta_q + 1)} \right\rangle z_q - \left\langle \cdot, \; \psi_q^{(\beta_q + 1)} \right\rangle z_q = \mathbb{O}_2, \end{split}$$

которая и доказывает требуемое.

Замечание 1. Равенство из леммы 2 справедливо и при k=0. Т. е.

$$Q(\mathbb{I}_2 - \tilde{Q}) = \mathbb{O}_2.$$

Кроме того, отсюда следует еще одно полезное равенство

$$(\mathbb{I}_2 - Q)(\mathbb{I}_2 - \tilde{Q}) = \mathbb{I}_2 - \tilde{Q}. \tag{3.4}$$

Лемма 3. Пусть выполнены условия леммы 1, тогда справедливо равенство

$$P + \Gamma \tilde{Q}B = \sum_{i=1}^{n} \sum_{j=1}^{p_i} \left\langle \cdot, A^* \psi_i^{(j)} \right\rangle \varphi_i^{(p_i - j + 1)}.$$

$$P + \Gamma \tilde{Q}B = \sum_{i=1}^{n} \langle \cdot, \gamma_i \rangle \varphi_i + \sum_{i=1}^{n} \sum_{j=1}^{p_i} \langle \cdot, B^* \psi_i^{(j)} \rangle \Gamma A \varphi_i^{(p_i - j + 1)}.$$

Поскольку $B^*\psi_i^{(1)} = 0, \ i = 1, \dots, n,$ то

$$P + \Gamma \tilde{Q}B = \sum_{i=1}^{n} \langle \cdot, \gamma_i \rangle \varphi_i + \sum_{i=1}^{n} \sum_{j=2}^{p_i} \langle \cdot, B^* \psi_i^{(j)} \rangle \Gamma A \varphi_i^{(p_i - j + 1)} =$$

$$= \sum_{i=1}^{n} \langle \cdot, \gamma_i \rangle \varphi_i + \sum_{i=1}^{n} \sum_{j=1}^{p_i - 1} \langle \cdot, B^* \psi_i^{(j+1)} \rangle \Gamma A \varphi_i^{(p_i - j)}.$$

Далее, используя $B^*\psi_i^{(j+1)}=A^*\psi_i^{(j)}$ и $\varphi_i^{(j+1)}=\Gamma A\varphi_i^{(j)},\ j=1,\ldots,p_i-1,$ $i=1,\ldots,n,$ а также $\gamma_i=A^*\psi_i^{(p_i)},\ i=1,\ldots,n,$ получим

$$P + \Gamma \tilde{Q}B = \sum_{i=1}^{n} \left\langle \cdot, \ A^* \varphi_i^{(p_i)} \right\rangle \varphi_i^{(1)} + \sum_{i=1}^{n} \sum_{j=1}^{p_i - 1} \left\langle \cdot, \ A^* \psi_i^{(j)} \right\rangle \Gamma A \varphi_i^{(p_i - j + 1)} =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{p_i} \left\langle \cdot, \ A^* \psi_i^{(j)} \right\rangle \varphi_i^{(p_i - j + 1)}.$$

Тем самым лемма доказана.

Замечание 2. На основе доказанного в лемме 3 нетрудно заметить, что справедливо равенство

$$\tilde{Q}A - A\Gamma\tilde{Q}B = AP. \tag{3.5}$$

Теорема 1. $\underline{\Pi}$ усть B, A — замкнутые линейные операторы из E_1 в E_2 , причем $\overline{D(B)} = \overline{D(A)} = E_1$, $D(B) \subseteq D(A)$, ядро $g(t) : \mathbb{R}_+ \to \mathbb{R}$ — непрерывная функция, оператор B фредгольмов и имеет полный A-экорданов набор, тогда интегро-дифференциальный оператор $B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)$ имеет на классе $K'_+(E_2)$ фундаментальную оператор-функцию вида

$$\mathcal{E}_{N}(t) = \Gamma \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k-1} * \frac{t^{kN-1}}{(kN-1)!} \theta(t) (A\Gamma)^{k-1} (\mathbb{I}_{2} - \tilde{Q}) - \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{((k-1)N)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right],$$

где Γ — регуляризатор Треногина, $\tilde{Q} = \sum_{i=1}^n \sum_{j=1}^{p_i} \left\langle \cdot, \ \psi_i^{(j)} \right\rangle A \varphi_i^{(p_i+1-j)},$ $\left\{ \varphi_i^{(j)}, \ i=1,\ldots,n, \ j=1,\ldots,p_i \right\}$ — полный A-экорданов набор оператора $B, \ \left\{ \psi_i^{(j)}, \ i=1,\ldots,n, \ j=1,\ldots,p_i \right\}$ — полный A^* -экорданов набор оператора $B^*, \ r(t)$ — резольвента ядра $-g(t), \ nod \ k$ -ой степенью обобщенной функции $(\delta(t)+g(t)\theta(t))\in \mathcal{D}'_+$ понимается ее повторная k-кратная свертка, m. e.

$$(\delta(t) + g(t)\theta(t))^k = \underbrace{(\delta(t) + g(t)\theta(t)) * \cdots * (\delta(t) + g(t)\theta(t))}_{k \ pas},$$

причем
$$(\delta(t) + g(t)\theta(t))^0 = \delta(t)$$
.

Доказательство. Согласно определению фундаментальной операторфункции, требуется проверить два сверточных равенства

$$(B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * \mathcal{E}_N(t) = \mathbb{I}_2\delta(t),$$

$$\mathcal{E}_N(t) * (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) = \mathbb{I}_1\delta(t).$$

Поскольку $B\Gamma = \mathbb{I}_2 - Q, \ B\varphi_i^{(1)} = 0, \ i = 1, \dots, n,$ и

$$(\delta(t) + g(t)\theta(t)) * (\delta(t) + r(t)\theta(t))^k = (\delta(t) + r(t)\theta(t))^{k-1},$$

в первом равенстве имеем

$$(B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * \mathcal{E}_{N}(t) =$$

$$= (\mathbb{I}_{2} - Q)(\mathbb{I}_{2} - \tilde{Q})\delta(t) +$$

$$+ \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!} \theta(t)(\mathbb{I}_{2} - Q)(A\Gamma)^{k}(\mathbb{I}_{2} - \tilde{Q}) -$$

$$- \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!} \theta(t)(A\Gamma)^{k}(\mathbb{I}_{2} - \tilde{Q}) -$$

$$- \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle B\varphi_{i}^{(p_{i}-k+2-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] +$$

$$+ \sum_{i=1}^{n} \sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle A\varphi_{i}^{(p_{i}-k+2-j)} \delta^{((k-1)N)}(t) * (\delta(t) + r(t)\theta(t))^{k-1} \right].$$

Далее учтем равенство (3.4), результат леммы 2, вид оператора \tilde{Q} и $B\varphi_i^{(j+1)}=A\varphi_i^{(j)},\ j=1,\ldots,p_i-1,\ i=1,\ldots,n$ (см. п. 1).

$$(B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * \mathcal{E}_{N}(t) = (\mathbb{I}_{2} - \tilde{Q})\delta(t) - \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!} \theta(t) Q(A\Gamma)^{k} (\mathbb{I}_{2} - \tilde{Q}) + \tilde{Q}\delta(t) - \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle B\varphi_{i}^{(p_{i}-k+2-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] + \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle A\varphi_{i}^{(p_{i}-k+1-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] = \mathbb{I}_{2}\delta(t).$$

Теперь докажем второе равенство. Так как $B^*\psi_i^{(1)}=0,\ i=1,\dots,n,$ то

$$\mathcal{E}_{N}(t) * (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) = \\ = \Gamma(\mathbb{I}_{2} - \tilde{Q})B\delta(t) + \\ + \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!} \theta(t) * \delta^{(N)}(t)\Gamma(A\Gamma)^{k}(\mathbb{I}_{2} - \tilde{Q})B - \\ - \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!} \theta(t)\Gamma(A\Gamma)^{k-1}(\mathbb{I}_{2} - \tilde{Q})A - \\ - \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=2}^{p_{i}-k+1} \left\langle \cdot, B^{*}\psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] + \\ + \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} \left\langle \cdot, A^{*}\psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{((k-1)N)}(t) * (\delta(t) + r(t)\theta(t))^{k-1} \right].$$

Используя равенства $\Gamma B=\mathbb{I}_1-P$ и (3.5), результат леммы 3 и уравнения $B^*\psi_i^{(j+1)}=A^*\psi_i^{(j)},\ j=1,\dots,p_i-1,\ i=1,\dots,n,$ получим

$$\mathcal{E}_{N}(t) * (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) = (\mathbb{I}_{1} - P - \Gamma\tilde{Q}B)\delta(t) + \\ + \sum_{k=1}^{+\infty} (\delta(t) + g(t)\theta(t))^{k} * \frac{t^{kN-1}}{(kN-1)!}\theta(t) * \delta^{(N)}(t)\Gamma(A\Gamma)^{k-1} \times \\ \times (A - AP - A\Gamma\tilde{Q}B - A - \tilde{Q}A) - \\ - \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle \cdot, B^{*}\psi_{i}^{(j+1)} \right\rangle \varphi_{i}^{(p_{i}-k+1-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] + \\ + \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle \cdot, A^{*}\psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+1-j)} \delta^{(kN)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right] + \\ + \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} \left\langle \cdot, A^{*}\psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-j+1)} \delta(t) = \mathbb{I}_{1}\delta(t),$$

что и завершает доказательство теоремы.

Замечание 3. Фундаментальная оператор-функция может быть записана в следующем виде:

$$\mathcal{E}_{N}(t) = \Gamma \frac{t^{N-1}}{(N-1)!} \theta(t) * (\mathbb{I}_{2}\delta(t) + M_{N}(t)\theta(t))(\mathbb{I}_{2} - \tilde{Q}) - \sum_{i=1}^{n} \left[\sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{((k-1)N)}(t) * (\delta(t) + r(t)\theta(t))^{k} \right],$$

где $M_N(t)$ — резольвента ядра $A\Gamma\left(\frac{t^{N-1}}{(N-1)!}+\int\limits_0^t\frac{(t-s)^{N-1}}{(N-1)!}g(s)ds\right)$, которая представляет собой операторно-функциональный ряд, сходящийся в топологии $\mathcal{L}(E_2)$ равномерно на любом компакте [0,T], причем имеет место оценка

$$||M_N(t)||_{\mathcal{L}(E_2)} \le C \exp CT,$$

здесь $C=\|A\Gamma\|_{\mathcal{L}(E_2)}\cdot\max_{t\in[0,T]}\left|\frac{t^{N-1}}{(N-1)!}+\int\limits_0^t\frac{(t-s)^{N-1}}{(N-1)!}g(s)ds\right|$. Отметим также, что справедливы равенства

$$M_{N}(t) = \frac{t^{N-1}}{(N-1)!} A\Gamma + \int_{0}^{t} \frac{(t-\tau_{1})^{N-1}}{(N-1)!} g(\tau_{1}) d\tau_{1} A\Gamma + \int_{0}^{t} \frac{(t-\tau_{1})^{N-1}}{(N-1)!} A\Gamma M_{N}(\tau_{1}) d\tau_{1} + \int_{0}^{t} \int_{0}^{t-\tau_{1}} \frac{(t-\tau_{1}-\tau_{2})^{N-1}}{(N-1)!} g(\tau_{2}) A\Gamma M_{N}(\tau_{1}) d\tau_{2} d\tau_{1}$$
 (3.6)

И

$$QM_N(t)(\mathbb{I}_2 - \tilde{Q}) = \mathbb{O}_2, \tag{3.7}$$

первое из которых следует из определения резольвенты ядра, второе — из леммы 2.

Замечание 4. В соответствии с п. 2 единственным обобщенным решением задачи Коши (0.1) является распределение $\tilde{u}(t) = \mathcal{E}_N(t) * \tilde{g}(t)$, где $\tilde{g}(t) \in K'_+(E_2)$ имеет вид (3.2). Введем обозначения

$$p(t) = u_0 + u_1 t + \dots + u_{N-1} \frac{t^{N-1}}{(N-1)!}, h_0(t) = f(t) + Ap(t) + \int_0^t g(t-s)Ap(s)ds,$$

тогда справедливо равенство

$$\tilde{g}(t) = f(t)\theta(t) + (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * p(t)\theta(t) - \left[Bp^{(N)}(t) - Ap(t) - \int_{0}^{t} g(t-s)Ap(s)ds\right]\theta(t),$$

или, поскольку $p^{(N)}(t) \equiv 0$,

$$\tilde{g}(t) = (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * p(t)\theta(t) + h_0(t)\theta(t).$$
(3.8)

Рассмотрим последовательность регулярных обобщенных функций из $K'_{+}(E_2)$ вида

$$h_k(t)\theta(t) = (\delta(t) + r(t)\theta(t))^k * h_0(t)\theta(t), \ k \in \mathbb{N},$$

где r(t) — резольвента ядра (-g(t)). Поскольку

$$h_0(t)\theta(t) = f(t)\theta(t) + (\delta(t) + g(t)\theta(t)) * Ap(t)\theta(t),$$

для $h_k(t)$ справедливо иное представление

$$h_k(t)\theta(t) = (\delta(t) + r(t)\theta(t))^k * f(t)\theta(t) + (\delta(t) + r(t)\theta(t))^{k-1} * Ap(t)\theta(t),$$

и соотношение

$$(\delta(t) + g(t)\theta(t)) * h_k(t)\theta(t) = h_{k-1}(t)\theta(t), \ k \in \mathbb{N}.$$

Последнее имеет место в классическом смысле, а именно:

$$h_k(t) + \int_0^t g(t-s)h_k(s)ds = h_{k-1}(t).$$
 (3.9)

Заметим также, что в случае $f(t) \in C^{\alpha}(t \ge 0; E_2)$ и $g(t) \in C^{\alpha}(t \ge 0),$ $\alpha \in \mathbb{N}$ справедливо еще одно соотношение

$$h_k^{(\alpha)}(t) + \int_0^t g(t-s)h_k^{(\alpha)}(s)ds = h_{k-1}^{(\alpha)}(t) - \sum_{q=1}^\alpha h_k^{(q-1)}(0)g^{(\alpha-q)}(t), \quad (3.10)$$

которое получается из (3.9) путем замены в интеграле и дифференцирования.

Справедлива следующая

Теорема 2. Пусть выполнены условия теоремы 1, тогда задача Коши (0.1) имеет единственное обобщенное решение, u, если

$$g(t) \in C^{(p-1)N}(t \ge 0), \ f(t) \in C^{(p-1)N}(t \ge 0; \ E_2), \ p = \max_{i=1,\dots,n} p_i,$$

то оно имеет вид

$$\tilde{u}(t) = \left[p(t) + \int_{0}^{t} \frac{(t-s)^{N-1}}{(N-1)!} \Gamma(\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) ds + \right]$$

$$+ \int_{0}^{t} \int_{0}^{t-s} \frac{(t-s-\tau)^{N-1}}{(N-1)!} \Gamma M_{N}(\tau) (\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) d\tau ds -$$

$$- \sum_{i=1}^{n} \sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle h_{k}^{((k-1)N)}(t), \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \right] \theta(t) -$$

$$- \sum_{i=1}^{n} \sum_{k=2}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \sum_{q=1}^{(k-1)N} \left\langle h_{k}^{((k-1)N-q)}(0), \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{(q-1)}(t),$$

где используются обозначения последнего замечания.

Доказательство. Если выполняются условия теоремы 1, то известен вид фундаментальной оператор-функции, указанный в этой теореме, поэтому задача Коши (0.1) имеет единственное обобщенное решение вида $\tilde{u}(t) = \mathcal{E}_N(t) * \tilde{g}(t)$. Теперь восстановим его вид. Сначала подставим (3.8), с учетом второго равенства из определения фундаментальной оператор-функции

$$\tilde{u}(t) = \mathcal{E}_N(t) * \tilde{g}(t) =$$

$$= \mathcal{E}_N(t) * (B\delta^{(N)}(t) - A\delta(t) - Ag(t)\theta(t)) * p(t)\theta(t) + h_0(t)\theta(t) =$$

$$= \mathbb{I}_1\delta(t) * p(t)\theta(t) + \mathcal{E}_N(t) * h_0(t)\theta(t) =$$

$$= p(t)\theta(t) + \mathcal{E}_N(t) * h_0(t)\theta(t).$$

Далее, используя обозначения замечания 4, получим

$$\mathcal{E}_{N}(t) * h_{0}(t)\theta(t) = \left[\int_{0}^{t} \frac{(t-s)^{N-1}}{(N-1)!} \Gamma(\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) ds + \right. \\ + \int_{0}^{t} \int_{0}^{t-s} \frac{(t-s-\tau)^{N-1}}{(N-1)!} \Gamma M_{N}(\tau) (\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) d\tau ds \right] \theta(t) - \\ - \sum_{i=1}^{n} \sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle \cdot, \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)} \delta^{((k-1)N)}(t) * h_{k}(t)\theta(t).$$

Поскольку выполняются условия гладкости

$$g(t) \in C^{(p-1)N}(t \ge 0), \ f(t) \in C^{(p-1)N}(t \ge 0; \ E_2), \ p = \max_{i=1,\dots,n} p_i,$$

имеет место равенство

$$\delta^{((k-1)N)}(t) * h_k(t)\theta(t) = \begin{cases} h_1(t)\theta(t), & k = 1, \\ h_k^{((k-1)N)}(t)\theta(t) + \sum_{q=1}^{(k-1)N} h_k^{((k-1)N-q)}(0)\delta^{(q-1)}(t), & k = 2, \dots, p_i. \end{cases}$$

Подставляя его, в предыдущее выражение, получим требуемую формулу. $\hfill \Box$

Замечание 5. Условие сильной гладкости порядка ((p-1)N) функции f(t) в теореме 2 можно ослабить, заменив следующим:

$$\left\langle f(t), \, \psi_i^{(j)} \right\rangle \in C^{(p_i - j)N}(t \ge 0),$$

$$j = 1, \dots, p_i, \ i = 1, \dots, n.$$

Замечание 6. Обобщенное решение представляет собой следующее распределение $\tilde{u}(t) = u(t)\theta(t) + \omega(t)$, в котором $\omega(t) \in K'_+(E_1)$ — сингулярная обобщенная функция, являющаяся линейной комбинацией дельта-функции Дирака и ее производных, $u(t)\theta(t)$ — регулярная составляющая обобщенного решения. Если $\omega(t) \equiv 0$, что возможно, в силу линейной независимости системы элементов $\left\{\varphi_i^{(j)},\ j=1,\ldots,p_i,\ i=1,\ldots,n\right\}$, тогда и только тогда, когда выполняется условие

$$\left\langle h_k^{(q-1)}(0), \, \psi_i^{(j)} \right\rangle = 0,$$
 (3.11)

 $q=1,\ldots,(k-1)N,\;k=2,\ldots,p_i,\;j=1,\ldots,p_i-k+1,\;i=1,\ldots,n,$ то $\tilde{u}(t)=u(t) heta(t)$. Здесь

$$u(t) = p(t) + \int_{0}^{t} \frac{(t-s)^{N-1}}{(N-1)!} \Gamma(\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) ds +$$

$$+ \int_{0}^{t} \int_{0}^{t-s} \frac{(t-s-\tau)^{N-1}}{(N-1)!} \Gamma M_{N}(\tau) (\mathbb{I}_{2} - \tilde{Q}) h_{0}(s) d\tau ds -$$

$$- \sum_{i=1}^{n} \sum_{k=1}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle h_{k}^{((k-1)N)}(t), \ \psi_{i}^{(j)} \right\rangle \varphi_{i}^{(p_{i}-k+2-j)}$$
(3.12)

принадлежит классу функций $C^N(t\geq 0;E_1)$, когда $g(t)\in C^{pN}(t\geq 0)$, $f(t)\in C^{pN}(t\geq 0;E_2)$, $p=\max_{i=1,\dots,n}p_i$.

Кроме того, функция u(t) обращает в тождество уравнение (0.1). Последовательно используя (3.6), (3.7), (3.9) и (3.10), с учетом обозначений, введенных в замечании 4, получим

$$Bu^{(N)}(t) - Au(t) - \int_{0}^{t} g(t-s)Au(s)ds =$$

$$= f(t) - \tilde{Q}h_{0}(t) - \sum_{i=1}^{n} \sum_{k=1}^{p_{i}-1} \sum_{j=1}^{p_{i}-k} \left\langle h_{k}^{(kN)}(t), \psi_{i}^{(j)} \right\rangle B\varphi_{i}^{(p_{i}-k+2-j)} +$$

$$+ \sum_{i=1}^{n} \sum_{j=1}^{p_{i}} \left\langle h_{0}(t), \psi_{i}^{(j)} \right\rangle A\varphi_{i}^{(p_{i}+1-j)} +$$

$$+ \sum_{i=1}^{n} \sum_{k=2}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \left\langle h_{k-1}^{((k-1)N)}(t), \psi_{i}^{(j)} \right\rangle A\varphi_{i}^{(p_{i}-k+2-j)} -$$

$$- \sum_{i=1}^{n} \sum_{k=2}^{p_{i}} \sum_{j=1}^{p_{i}-k+1} \sum_{q=1}^{(k-1)N} \left\langle h_{k}^{(q-1)}(0), \psi_{i}^{(j)} \right\rangle g^{((k-1)N-q)}(t) A\varphi_{i}^{(p_{i}-k+2-j)}.$$

А так как $B\varphi_i^{(j+1)}=A\varphi_i^{(j)},\ j=1,\ldots,p_i-1,\ i=1,\ldots,n$ и выполнено (3.11), действительно, имеем результатом тождество.

Продолжая анализ, заметим, что

$$u(0) = u_0 - \sum_{i=1}^n \sum_{k=1}^{p_i} \sum_{j=1}^{p_i-k+1} \left\langle h_k^{((k-1)N)}(0), \ \psi_i^{(j)} \right\rangle \varphi_i^{(p_i-k+2-j)},$$

$$u'(0) = u_1 - \sum_{i=1}^n \sum_{k=1}^{p_i} \sum_{j=1}^{p_i-k+1} \left\langle h_k^{((k-1)N+1)}(0), \ \psi_i^{(j)} \right\rangle \varphi_i^{(p_i-k+2-j)},$$

. . . ,

$$u^{(N-1)}(0) = u_{N-1} - \sum_{i=1}^{n} \sum_{k=1}^{p_i} \sum_{j=1}^{p_i-k+1} \left\langle h_k^{((k-1)N+N-1)}(0), \ \psi_i^{(j)} \right\rangle \varphi_i^{(p_i-k+2-j)}.$$

Следовательно, (3.11) удовлетворяет начальным условиям задачи (0.1) тогда и только тогда, когда выполнены условия

$$\left\langle h_k^{(q-1)}(0), \, \psi_i^{(j)} \right\rangle = 0,$$

$$q = (k-1)N+1, \dots, kN, \ k = 1, \dots, p_i, \ j = 1, \dots, p_i-k+1, \ i = 1, \dots, n.$$

Таким образом, доказана следующая

Теорема 3. Пусть выполнены условия теоремы 1 и

$$g(t) \in C^{pN}(t \ge 0), \ f(t) \in C^{pN}(t \ge 0; \ E_2), \ p = \max_{i=1}^{n} p_i,$$

тогда, если

$$\left\langle h_k^{(q-1)}(0), \, \psi_i^{(j)} \right\rangle = 0,$$

$$q = 1, ..., kN, k = 1, ..., p_i, j = 1, ..., p_i - k + 1, i = 1, ..., n,$$

то задача Коши (0.1) имеет единственное классическое решение вида (3.11).

Замечание 7. Условие сильной гладкости порядка pN функции f(t) можно заменить следующим

$$\left\langle f(t), \psi_i^{(j)} \right\rangle \in C^{(p_i+1-j)N}(t \ge 0),$$

 $j = 1, \dots, p_i, \ i = 1, \dots, n.$

Замечание 8. Представленные здесь результаты согласуются со случаем $g(t) \equiv 0$, исследованным ранее в [15]

Пример 1. Рассмотрим систему интегро-дифференциальных уравнений вида

$$\begin{cases} \ddot{x}_1(t) = x_1(t) + x_2(t) - \int_0^t \sin(t-s)(x_1(s) + x_2(s))ds + f_1(t), \\ 0 = x_2(t) - \int_0^t \sin(t-s)x_2(s)ds + f_2(t); \end{cases}$$

с начальными условиями

$$\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix}, \quad \begin{pmatrix} \dot{x}_1(0) \\ \dot{x}_2(0) \end{pmatrix} = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}.$$

Здесь $E_1=E_2=\mathbb{R}^2,\ B=\begin{pmatrix}1&0\\0&0\end{pmatrix},\ A=\begin{pmatrix}1&1\\0&1\end{pmatrix},\ g(t)=-\sin t.$ Очевидно, что

$$\dim N(B) = \dim N(B^*) = 1 \quad \text{if} \quad \varphi = \psi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Заметим также, что $(A\varphi, \psi)=1$, а, значит, φ не имеет A-присоединенных векторов или p=1. Нетрудно найти

$$z = A \varphi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 и $\gamma = A^* \psi = {}^t A \psi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

А затем и

$$\Gamma = (\tilde{B})^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \ \mathbb{I}_2 - \tilde{Q} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix},$$
$$A\Gamma(t + \int_0^t (t - s)g(s)ds) = \begin{pmatrix} \sin t & 0 \\ 0 & \sin t \end{pmatrix}.$$

Резольвентами ядер $A\Gammaig(t+\int\limits_0^t(t-s)g(s)dsig)$ и (-g(t)) являются

$$M_2(t) = \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix}$$
 и $r(t) = t$

соответственно. Таким образом, фундаментальная оператор-функция интегро-дифференциального оператора имеет вид:

$$\mathcal{E}_2(t) = \left(\begin{array}{cc} (t + \frac{t^3}{3!})\theta(t) & -(t + \frac{t^3}{3!})\theta(t) \\ 0 & \delta(t) + t\theta(t) \end{array} \right).$$

Поскольку

$$\tilde{g}(t) = \begin{pmatrix} \tilde{g}_1(t) \\ \tilde{g}_2(t) \end{pmatrix} = \begin{pmatrix} f_1(t) \\ f_2(t) \end{pmatrix} \theta(t) + \begin{pmatrix} x_{11} \\ 0 \end{pmatrix} \delta(t) + \begin{pmatrix} x_{10} \\ 0 \end{pmatrix} \delta'(t),$$

обобщенное решение имеет вид

$$\begin{split} \tilde{x}(t) &= \mathcal{E}_{2}(t) * \tilde{g}(t) = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \end{pmatrix} \theta(t) = \\ &= \left[\begin{pmatrix} x_{10} \\ 0 \end{pmatrix} + \begin{pmatrix} x_{11} \\ 0 \end{pmatrix} t + \begin{pmatrix} x_{10} \\ 0 \end{pmatrix} \frac{t^{2}}{2!} + \begin{pmatrix} x_{11} \\ 0 \end{pmatrix} \frac{t^{3}}{3!} + \right. \\ &\left. + \begin{pmatrix} \int_{0}^{t} \left((t-s) + \frac{(t-s)^{3}}{3!} \right) \right) (f_{1}(s) - f_{2}(s)) ds \\ f_{2}(t) + \int_{0}^{t} (t-s) f_{2}(s) ds \end{pmatrix} \right] \theta(t). \end{split}$$

И оно станет классическим, если $f_2(t) \in C^2(t \ge 0)$ и будут выполнены условия

$$f_2(0) = x_{20}, \ \dot{f}_2(0) = x_{21},$$

которые можно получить из второго уравнения исходной системы, не выполняя данного исследования, что позволяет сделать вывод о согласованности представленного подхода с классическими методами решения подобных задач.

Список литературы

- 1. Вайнберг М. М. Теория ветвления решений нелинейных уравнений / М. М. Вайнберг, В. А. Треногин. М. : Наука, 1969. 528 с.
- 2. Владимиров В. С. Обобщенные функции в математической физике / В. С. Владимиров. М.: Наука, 1979.-320 с.
- 3. Ильюшин А. А. Основы математической теории термовязкоупругости / А. А. Ильюшин, Б. Е. Победря. М. : Наука, 1970. 280 с.
- 4. Логинов Б. В. Обобщенная жорданова структура в теории ветвления / Б. В. Логинов, Ю. Б. Русак // Прямые и обратные задачи для дифференциальных уравнений в частных производных и их приложения. Ташкент : ФАН, 1978. С. 133–148.
- 5. Орлов С. С. Вырожденное интегро-дифференциальное уравнение в банаховых пространствах и его приложения / С. С. Орлов // Изв. Иркут. гос. ун-та. Сер. Математика. 2010. Т. $3,\$ М1. С. 54–60.
- 6. Осколков А. П. Начально-краевые задачи для уравнений движений жидкостей Кельвина—Фойгта и Олдройта / А. П. Осколков // Тр.МИАН СССР. 1988. Т. 179. С. 126–164.
- 7. Сидоров Н. А. Об одном классе уравнений Вольтерра с вырождением в банаховых пространствах / Н. А. Сидоров // Сиб. мат. журн. 1983. Т. 21, N 2. С. 202–203.
- 8. Сидоров Н. А. Последовательные приближения решений вырожденной задачи Коши / Н. А. Сидоров, Д. Н. Сидоров // Тр. Ин-та математики и механики УрО РАН. 2012. Т. 18, № 2. С. 238–244.
- 9. Сидоров Н. А. О решении операторно-интегральных уравнений Вольтерра в нерегулярном случае методом последовательных приближений / Н. А. Сидоров, Д. Н. Сидоров, А. В. Красник // Дифференциальные уравнения. 2010. Т. 46, № 6. С. 874–878.
- Фалалеев М. В. О приложениях теории фундаментальных оператор-функций вырожденных интегро-дифференциальных операторов в банаховых пространствах / М. В. Фалалеев // Неклассические уравнения математической физики. – Новосибирск : Изд-во ИМ им. С. Л. Соболева СО РАН. – С. 283–297.
- Фалалеев М. В. Вырожденные интегро-дифференциальные уравнения специального вида в банаховых пространствах и их приложения /М. В. Фалалеев, С. С. Орлов // Вестн. ЮУрГУ. Математическое моделирование и программирование. – 2011. – Вып. 7, № 4. – С. 100–110.
- Фалалеев М. В. Начально-краевые задачи для интегро-дифференциальных уравнений вязкоупругости / М. В. Фалалеев, С. С. Орлов // Обозрение прикладной и промышленной математики. – 2010. – Т. 17, Вып. 4. – С. 597–600.
- 13. Фалалеев М. В. Интегро-дифференциальные уравнения с фредгольмовым оператором при старшей производной в банаховых пространствах и их приложения /М. В. Фалалеев // Изв. Иркут. гос. ун-та. Сер. Математика. 2012. Т. 5, № 2. С. 90–102.
- 14. Cavalcanti M. M. Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping / M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira // Math. Meth. Appl. Sci. 2001. Vol. 24. P. 1043–1053.
- Lyapunov Schmidt Methods in Nonlinear Analysis and Applications / N. Sidorov,
 B. Loginov, A. Sinitsyn and M. Falaleev. Dordrecht : Kluwer Acad. Publ., 2002.
 548 p.

S. S. Orlov

The solvability of Volterra integro-differential equations with Fredholm operator in main part

Abstract. An initial value problem unique solvability in the classes of distributions and functions of finite smoothness is studied in this paper by the methods of the theory of fundamental operator-functions of integro-differential operators in Banach spaces.

 $\textbf{Keywords:} \ \text{Banach space, Fredholm operator, Jordan set, distribution, fundamental operator-function}$

Орлов Сергей Сергеевич, старший преподаватель, Институт математики, экономики и информатики, Иркутский государственный университет, 664003, Иркутск, ул. К. Маркса, 1 тел.: (3952)242210 (orlov_sergey@inbox.ru)

Orlov Sergey, Irkutsk State University, 1, K. Marks St., Irkutsk, 664003 senior lecturer, Phone: (3952)242210 (orlov_sergey@inbox.ru)