Серия «Математика»
2013. Т. 6, № 4. С. 85-106

Онлайн-доступ к журналу:
http://isu.ru/izvestia

УДК 518.517

Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov - Maxwell system

N.A. Sidorov
Irkutsk State University

Abstract

The review of existence theorems of bifurcation points of solutions for nonlinear operator equation in Banach spaces is presented. The sufficient conditions of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell system are considered. The analytical method of Lyapunov-Schmidt-Trenogin is employed.

Keywords: plasma; bifurcation points; Conley index; nonlinear analysis; Vlasov - Maxwell system; Lyapunov - Schmidt - Trenogin method.

In memory of Professor Vladilen A. Trenogin

Introduction

One of the current problems in natural sciences is study of kinetic VlasovMaxwell (VM) system [20] describing a behaviour of many-component plasma. A large literature on the existence of solutions for the VM system is available, for example, see under references $[1,3,11,21,35]$ and the references given there. Nevertheless, the problem of bifurcation analysis of VM system, which was first formulated by A. A. Vlasov [20], has appeared very complicated on the background of progress of bifurcation theory in other fields and it remains open up to the present time. There are only some isolated results. In $[9,10]$ the VM system is reduced to the system of semilinear elliptical equations for special classes of distribution functions introduced in [12]. The relativistic version of VM system for such distributions was considered in [1]. One simple existence theorem of a point of bifurcation is announced in [13], and another one is proved for this system in [14].

Vladilen A. Trenogin laid out the fundamentals of the modern analytical branching theory of nonlinear equations. Here readers may refer to his monograph [19], chapters 7-10. The bifurcation theory have been developed by various authors $[5,6,15,16,17,18,21,22,25,30]$, etc. The approximate methods of construction branching solutions were constructed in [21, 22, $24,25,26,27,28,30,31,32,33,34],[36,37]$. The readers may refer to the pioneering research contributions presented in original paper [13, 14, 23, 29], in the monograph [21] as well as in recently published monograph [35] in the field of bifurcation analysis of the Vlasov-Maxwell systems.

The objective of the present paper is to give the survey of a general existence theorems of bifurcation points of VM system with the given boundary conditions on potentials of an electromagnetic field both the densities of charge and current. Here we apply our results of bifurcation theory from $[15,17,21,22,23]$ and we use the index theory $[2,7,22]$ for the study of bifurcation points of the VM system.

We consider the many-component plasma consisting of electrons and positively charged ions of various species, which described by the manyparticle distribution function $f_{i}=f_{i}(r, v), i=\overline{1, N}$. The plasma is confined to a domain $D \subset \mathbb{R}^{3}$ with smooth boundary. The particles are to interact only by self-consistent force fields, collisions among particles being neglected.

The behaviour of plasma is governed by the following version of the stationary VM system [20]

$$
\begin{gather*}
v \cdot \partial_{r} f_{i}+q_{i} / m_{i}\left(E+\frac{1}{c} v \times B\right) \cdot \partial_{v} f_{i}=0 \tag{1}\\
r \in D \subset R^{3}, \quad i=1, \ldots, N \\
\operatorname{curl} E=0 \\
\operatorname{div} B=0 \\
\operatorname{div} E=4 \pi \sum_{k=1}^{N} q_{k} \int_{R^{3}} f_{k}(r, v) \mathrm{d} v \triangleq \rho \tag{2}\\
\operatorname{curl} B=\frac{4 \pi}{c} \sum_{k=1}^{N} q_{k} \int_{R^{3}} v f_{k}(r, v) \mathrm{d} v \triangleq j
\end{gather*}
$$

Here $\rho(r), j(r)$ are the densities of charge and current, and $E(r), B(r)$ are the electrical and the magnetic fields.

We seek the solution E, B, f of VM system (1)-(2) for $r \in D \subset \mathbb{R}^{3}$ with boundary conditions on the potentials and the densities

$$
\begin{gather*}
\left.U\right|_{\partial D}=u_{01},\left.\quad(A, d)\right|_{\partial D}=u_{02} \tag{3}\\
\left.\rho\right|_{\partial D=0},\left.\quad j\right|_{\partial D}=0 \tag{4}
\end{gather*}
$$

where $E=-\partial_{r} U, B=\operatorname{curl} A$, and U, A be scalar and vector potentials.
We call a solution E^{0}, B^{0}, f^{0} for which $\rho^{0}=0$ and $j^{0}=0$ in domain D, trivial.

In the present paper we investigate the case of distribution functions of the special form [9]

$$
\begin{gather*}
f_{i}(r, v)=\lambda \hat{f}_{i}\left(-\alpha_{i} v^{2}+\varphi_{i}(r), v \cdot d_{i}+\psi_{i}(r)\right) \triangleq \lambda \hat{f}_{i}(\mathbf{R}, \mathbf{G}) \tag{5}\\
\varphi_{i}: R^{3} \rightarrow R ; \quad \psi_{i}: R^{3} \rightarrow R ; \quad r \in D \subseteq R^{3} ; \quad v \in R^{3} ; \\
\lambda \in R^{+} ; \quad \alpha_{i} \in R^{+} \triangleq[0, \infty) ; \quad d_{i} \in R^{3}, \quad i=1, \ldots, N
\end{gather*}
$$

where functions φ_{i}, ψ_{i}, generating the appropriate electromagnetic field (E, B), has to be defined.

We are interested in the dependence of unknown functions φ_{i}, ψ_{i} upon parameter λ in distribution (5). Here we study the case, when λ in (5) does not depend on physical parameters α_{i} and d_{i}. The general case of a bifurcation problem with $\alpha_{i}=\alpha_{i}(\lambda), d_{i}=d_{i}(\lambda), \varphi_{i}=\varphi_{i}(\lambda, r), \psi_{i}=\psi_{i}(\lambda, r)$ will be considered in the following paper.

Definition 1. The point λ^{0} is called a bifurcation point of the solution of VM system with conditions (3), (4), if in any neighbourhood of vector $\left(\lambda^{0}, E^{0}, B^{0}, f^{0}\right)$, corresponding to the trivial solution with $\rho^{0}=0, j^{0}=0$ in domain D, there is a vector (λ, E, B, f) satisfying to the system (1)-(2) with (3), (4) and for which

$$
\left\|E-E^{0}\right\|+\left\|B-B^{0}\right\|+\left\|f-f^{0}\right\|>0
$$

Let $\varphi_{i}^{0}, \psi_{i}^{0}$ are such constants that the corresponding ρ^{0} and j^{0}, induced by distributions f_{i} in the medium for $\varphi_{i}^{0}, \psi_{i}^{0}$, are equal to zero in domain D. Then VM system has the trivial solution
$f_{i}^{0}=\lambda \hat{f}_{i}\left(-\alpha_{i} v^{2}+\varphi_{i}^{0}, v \cdot d_{i}+\psi_{i}^{0}\right), \quad E^{0}=0, \quad B^{0}=\beta d_{1}, \quad \beta$-const for $\forall \lambda$.
The organization of the present work is as follows. In Section 2 two theorems of existence of bifurcation points for the nonlinear operator equation in Banach space generalizing known results on a bifurcation point are proved. The method of proof of these theorems uses the index theory of vector fields $[2,7]$ and allows to investigate not only the point, but also the bifurcation surfaces with minimum restrictions on equation.

In Section 3 we reduce the problem on a bifurcation point of VM system to the problem on bifurcation point of semilinear elliptic system. Last one is treated as the operator equation in Banach space. We derive the branching equation (BEq) which allows to prove the principal theorem of existence of bifurcation points of VM system because of results of the Section 2. An essential moment here is that the semilinear system of elliptic equations is potential that reduces to potentiality of BEq.

It follows from our results that for the original problem (1) - (4) the bifurcation is possible only in the case, when number of species of particles $N \geq 3$.

1. Bifurcation of solutions of nonlinear equations in Banach spaces

Let E_{1}, E_{2} are real Banach spaces; Υ be normalized space. Consider the equation

$$
\begin{equation*}
B x=R(x, \varepsilon) \tag{6}
\end{equation*}
$$

Here $B: D \subset E_{1} \rightarrow E_{2}$ be closed linear operator with a dense range of definition in E_{1}. The operator $R(x, \varepsilon)$ with values in E_{2} is defined, is continuous and continuously differentiable by Frechet with respect to x in a neighbourhood

$$
\Omega=\left\{x \in E_{1}, \varepsilon \in \Upsilon:\|x\|<r,\|\varepsilon\|<\varrho\right\}
$$

Thus, $R(0, \varepsilon)=0, R_{x}(0,0)=0$. Let operator B be Fredholm. Let us introduce the basis $\left\{\varphi_{i}\right\}_{1}^{n}$ in a subspace $N(B)$, the basis $\left\{\psi_{i}\right\}_{1}^{n}$ in $N\left(B^{*}\right)$, and also the systems $\left\{\gamma_{i}\right\}_{1}^{n} \in E_{1}^{*},\left\{z_{i}\right\}_{1}^{n} \in E_{2}$ which are biorthogonal to these basises.

Definition 2. The point ε_{0} is called a bifurcation point of the equation (6), if in any neighbourhood of point $x=0, \varepsilon_{0}$ there is a pair (x, ε) with $x \neq 0$ satisfying to the equation (6).

It is well known [19] that the problem on a bifurcation point of (6) is equivalent to the problem on bifurcation point of finite-dimensional system

$$
\begin{equation*}
L(\xi, \varepsilon)=0 \tag{7}
\end{equation*}
$$

where $\xi \in R^{n}, L: R^{n} \times \Upsilon \rightarrow R^{n}$. We call equation (7) the branching equation (BEq). We wright (6) as the system

$$
\begin{gather*}
\tilde{B} x=R(x, \varepsilon)+\sum_{s=1}^{n} \xi_{s} z_{s} \tag{8}\\
\xi_{s}=<x, \gamma_{s}>, s=1, \ldots, n \tag{9}
\end{gather*}
$$

where $\tilde{B} \stackrel{\text { def }}{=} B+\sum_{s=1}^{n}<\cdot, \gamma_{s}>z_{s}$ has inverse bounded. The equation (8) has the unique small solution

$$
\begin{equation*}
x=\sum_{s=1}^{n} \xi_{s} \varphi_{s}+U(\xi, \varepsilon) \tag{10}
\end{equation*}
$$

at $\xi \rightarrow 0, \varepsilon \rightarrow 0$. Substitution (10) into (9) yields formulas for the coordinates of vector-function $L: R^{n} \times \Upsilon \rightarrow R^{n}$

$$
\begin{equation*}
L_{k}(\xi, \varepsilon)=<R\left(\sum_{s=1}^{n} \xi_{s} \varphi_{s}+U(\xi, \varepsilon), \varepsilon\right), \psi_{k}> \tag{11}
\end{equation*}
$$

Here derivatives

$$
\left.\frac{\partial L_{k}}{\partial \xi_{i}}\right|_{\xi=0}=<R_{x}(0, \varepsilon)\left(I-\Gamma R_{x}(0, \varepsilon)\right)^{-1} \varphi_{i}, \psi_{k}>\stackrel{\text { def }}{=} a_{i k}(\varepsilon)
$$

are continuous in a neighbourhood of point $\varepsilon=0,\left\|\Gamma R_{x}(0, \varepsilon)\right\|<1$.
Let us introduce a set $\Omega=\left\{\varepsilon \mid \operatorname{det}\left[a_{i k}(\varepsilon)\right]=0\right\}$, containing point $\varepsilon=0$ and the following condition:
A) Suppose that in a neighbourhood of point $\varepsilon_{0} \in \Omega$ there is a set S, being Jordan continuum, representable as $S=S_{+} \bigcup S_{-}, \varepsilon_{0} \in \partial S_{+} \cap \partial S_{-}$. Moreover, there is a continuous map $\varepsilon(t), t \in[-1,1]$ such that $\varepsilon:[-1,0) \rightarrow$ $S_{-}, \varepsilon:(0,1] \rightarrow S_{+}, \varepsilon(0)=\varepsilon_{0}, \operatorname{det}\left[a_{i k}(\varepsilon(t))\right]_{i, k=1}^{n}=\alpha(t)$, where $\alpha(t):$ $[-1,1] \rightarrow R^{1}$ be continuous function vanishes only at $t=0$.

Theorem 1. Assume condition \mathbf{A}, and $\alpha(t)$ is monotone increasing function. Then ε_{0} be a bifurcation point of (6).

Proof. We take arbitrarily small $r>0$ and $\delta>0$. Consider the continuous vector field

$$
H(\xi, \Theta) \stackrel{\text { def }}{=} L(\xi, \varepsilon((2 \Theta-1) \delta)): R^{n} \times R^{1} \rightarrow R^{n}
$$

defined at $\xi, \Theta \in M$, where $M\{\xi, \Theta \mid\|\xi\|=r, 0 \leq \Theta \leq 1\}$.
Case 1. If there is a pair $\left(\xi^{*}, \Theta^{*}\right) \in M$ for which $H\left(\xi^{*}, \Theta^{*}\right)=0$, then by definition $2, \varepsilon_{0}$ will be a bifurcation point.

Case 2. We assume that $H(\xi, \Theta) \neq 0$ at $\forall(\xi, \Theta) \in M$ and, hence, ε_{0} is not a bifurcation point. Then vector fields $H(\xi, 0)$ and $H(\xi, 1)$ are homotopic on the sphere $\|\xi\|=r$. Consequently, their rotations [6] are coincided

$$
\begin{equation*}
J(H(\xi, 0),\|\xi\|=r)=J(H(\xi, 1),(\|\xi\|=r) \tag{12}
\end{equation*}
$$

Since vector fields $H(\xi, 0), H(\xi, 1)$ and their linearizations

$$
\begin{aligned}
& \left.L_{1}^{-}(\xi) \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{i k}(\varepsilon(-\delta)) \xi_{k}\right|_{i=1} ^{n} \\
& \left.L_{1}^{+}(\xi) \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{i k}(\varepsilon(+\delta)) \xi_{k}\right|_{i=1} ^{n}
\end{aligned}
$$

are nondegenerated on the sphere $\|\xi\|=r$, then by smallness of $r>0$, fields $\left(H(\xi, 0), H(\xi, 1)\right.$ are homotopic to the linear parts $L_{1}^{-}(\xi)$ and $L_{1}^{+}(\xi)$.

Therefore

$$
\begin{align*}
& J(H(\xi, 0),\|\xi\|=r)=J\left(L_{1}^{-}(\xi),\|\xi\|=r\right) \tag{13}\\
& J(H(\xi, 1),\|\xi\|=r)=J\left(L_{1}^{+}(\xi),\|\xi\|=r\right) \tag{14}
\end{align*}
$$

Because of nondegeneracy of linear fields $L_{1}^{ \pm}(\xi)$, by the theorem about Kronecker index, the following equalities hold

$$
\begin{aligned}
& J\left(L_{1}^{-}(\xi),\|\xi\|=r\right)=\operatorname{sign} \alpha(-\delta) \\
& J\left(L_{1}^{+}(\xi),\|\xi\|=r\right)=\operatorname{sign} \alpha(+\delta)
\end{aligned}
$$

Since $\alpha(-\delta)<0, \alpha(+\delta)>0$, then the equality (12) is impossible by (13), (14). Hence, we find a pair $\left(\xi^{*}, \Theta^{*}\right) \in M$ for which $H\left(\xi^{*}, \Theta^{*}\right)=0$ and ε_{0} be a bifurcation point.

Remark 1. If the conditions of the theorem 1 are satisfied for $\forall \varepsilon \in \Omega_{0} \subset$ Ω, then Ω_{0} be a bifurcation set of (6). If moreover, Ω_{0} is connected set and its every point is contained in a neighbourhood, which is homeomorphic to some domain of R^{n}, then Ω_{0} is called n-dimensional manifold of bifurcation.

For example, it is true, if $\Upsilon=R^{n+1}, n \geq 1, \Omega_{0}$ be a bifurcation set of (6) containing point $\varepsilon=0$ and $\left.\nabla_{\varepsilon} \operatorname{det}\left[a_{i k}(\varepsilon)\right]\right|_{\varepsilon=0} \neq 0$. It follows from the theorem 1 at $\Upsilon=R^{1}$ the generalization [17], and also other known strengthenings of M.A. Krasnoselskii theorem on a bifurcation point of odd multiplicity [6]. An important results in the theory of bifurcation points were obtained for (6) with potential BEq to ξ, when

$$
\begin{equation*}
L(\xi, \varepsilon)=\operatorname{grad}_{\xi} U(\xi, \varepsilon) \tag{15}
\end{equation*}
$$

This condition is valid, if a matrix $\left[\frac{\partial L_{k}}{\partial \xi_{i}}\right]_{i, k=1}^{n}$ is symmetric. By differentiation of superposition, one finds from (11) that

$$
\begin{equation*}
\frac{\partial L_{k}}{\partial \xi_{i}}=<R_{x}\left(\sum_{s=1}^{n} \xi_{s} \varphi_{s}+U(\xi, \varepsilon), \varepsilon\right)\left(\varphi_{i}+\frac{\partial U}{\partial \xi_{i}}\right), \psi_{k}> \tag{16}
\end{equation*}
$$

where according to (8), (10)

$$
\begin{equation*}
\varphi_{i}+\frac{\partial U}{\partial \xi_{i}}=\left(I-\Gamma R_{x}\right)^{-1} \varphi_{i} \tag{17}
\end{equation*}
$$

The operator $I-\Gamma R_{x}$ is continuously invertible because $\left\|\Gamma R_{x}\right\|<1$ for sufficiently small by norm ξ and ε. Substituting (17) into (16) we obtain equalities

$$
\frac{\partial L_{k}}{\partial \xi_{i}}=<R_{x}\left(I-\Gamma R_{x}\right)^{-1} \varphi_{i}, \psi_{k}>, i, k=1, \ldots, n
$$

It follows the following claim:

Lemma 1. In order $B E q$ (7) to be potential it is sufficient that a matrix

$$
\Xi=\left[<R_{x}\left(\Gamma R_{x}\right)^{m} \varphi_{i}, \psi_{k}>\right]_{i, k=1}^{n}
$$

to be symmetric at $\forall(x, \varepsilon)$ in a neighbourhood of point $(0,0)$.
Corollary 1. Let all matrices

$$
\left[<R_{x}\left(\Gamma R_{x}\right)^{m} \varphi_{i}, \psi_{k}>\right]_{i, k=1}^{n}, \quad m=0,1,2, \ldots
$$

are symmetric in some neighbourhood of point (0,0). Then BEq (7) be potential.

Corollary 2. Let $E_{1}=E_{2}=H, H$ be Hilbert space. If operator B is symmetric in D, and operator $R_{x}(x, \varepsilon)$ is symmetric for $\forall(x, \varepsilon)$ in a neighbourhood of point $(0,0)$ in D, then $B E q$ be potential.

In the paper [16] more delicate sufficient conditions of BEq potentiality have been proposed.

Suppose that BEq (7) is potential. Then it follows from the proof of lemma 1 that the corresponding potential U in (15) has the form

$$
U(\xi, \varepsilon)=\frac{1}{2} \sum_{i, k=1}^{n} a_{i, k}(\varepsilon) \xi_{i} \xi_{k}+\omega(\xi, \varepsilon)
$$

where $\|\omega(\xi, \varepsilon)\|=0\left(|\xi|^{2}\right)$ at $\xi \rightarrow 0$.
Theorem 2. Let BEq (7) be potential. Assume condition A). Moreover, let the symmetrical matrix $\left[a_{i k}(\varepsilon(t))\right]$ possesses at least ν_{1} positive eigenvalues at $t>0$ and at least ν_{2} positive eigenvalues at $t<0, \nu_{1} \neq \nu_{2}$. Then ε_{0} will be a bifurcation point of (6).

Proof. We take the arbitrary small $\delta>0$ and we consider the function $U(\xi, \varepsilon((2 \Theta-1) \delta))$, defined at $\Theta \in[0,1]$ in a neighbourhood of the critical point $\xi=0$.
Case 1. If there is $\Theta^{*} \in[0,1]$ such that $\xi=0$ is the nonisolated critical point of the function $U\left(\xi, \varepsilon\left(\left(2 \Theta^{*}-1\right) \delta\right)\right.$, then by definition $2, \varepsilon_{0}$ will be a bifurcation point.
Case 2. Assume that point $\xi=0$ will be the isolated critical point of the function $U(\xi, \varepsilon((2 \Theta-1) \delta))$ at $\forall \Theta \in[0,1]$, where $\varepsilon(t)$ be continuous function from condition A). Then at $\forall \Theta \in[0,1]$, the Conley index $[2] K_{\Theta}$ of the critical point $\xi=0$ of this function is defined. Let us remind that

$$
\operatorname{det}\left\|\frac{\partial^{2} U(\xi, \varepsilon((2 \Theta-1) \delta))}{\partial \xi_{i} \partial \xi_{k}}\right\|_{\xi=0}=\alpha((2 \Theta-1) \delta) .
$$

Since $\alpha((2 \Theta-1) \delta) \neq 0$ at $\Theta \neq \frac{1}{2}$, then the critical point $\xi=0$ at $\Theta \neq$ $\frac{1}{2}$ is nonsingular. Therefore, index K_{Θ} for any $\Theta \neq \frac{1}{2}$ by the definition
(here readers may refer to p. 6 [2]), is necessary equal to number of positive eigenvalues of the corresponding Hessian. Thus, $K_{\Theta}=\nu_{1}, K_{1}=\nu_{2}$, where $\nu_{1} \neq \nu_{2}$ by the condition of theorem 2. Hence, $K_{\Theta} \neq K_{1}$. Suppose that ε_{0} is not a bifurcation point. Then $\nabla_{\xi} U(\xi, \varepsilon((2 \Theta-1) \sigma) \neq 0$ at $0<\|\xi\| \leq r$, where $r>0$ is small enough, $\Theta \in[0,1]$. Because of homotopic invariancy of Conley index (see theorem 4, p. 52 in [2]), K_{Θ} is constant at $\Theta \in[0,1]$ and $K_{0}=K_{1}$. Hence, in the second case we find a pair $\left(\xi^{*}, \Theta^{*}\right)$ for arbitrary small $r>0, \delta>0$, where $0<\left\|\xi^{*}\right\| \leq r, \Theta^{*} \in[0,1]$, satisfying to the equation $\nabla_{\xi} U\left(\xi, \varepsilon((2 \Theta-1) \delta)=0\right.$ and ε_{0} is a bifurcation point.
Remark 2. Other proof of the theorem 2 with application of the Roll theorem is given in [18] for the case $\Upsilon=R^{1}, \nu_{+}=n, \nu_{-}=0$.
Remark 3. The theorems 1,2 (see remark 1) allow to construct not only the bifurcation points, but also the bifurcation sets, surfaces and curves of bifurcation.

Corollary 3. Let $\Upsilon=R^{1}$ and BEq be potential. Moreover, let $\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}$ be positively definite matrix at $\varepsilon \in(0, r)$ and negatively defined at $\varepsilon \in$ $(-r, 0)$. Then $\varepsilon=0$ is a bifurcation point of (6).

Consider the connection of eigenvalues of matrix $\left[a_{i k}(\varepsilon)\right]$ with eigenvalues of operator $B-R_{x}(0, \varepsilon)$.
Lemma 2. Let $E_{1}=E_{2}=E, \varepsilon \in R^{1} ; \nu=0$ be isolated Fredholm point of operator-function $B-\nu I$. Then

$$
\operatorname{sign} \triangle(\varepsilon)=(-1)^{k} \operatorname{sign} \prod_{i}^{k} \nu_{i}(\varepsilon)=\operatorname{sign} \prod_{i}^{n} \mu_{i}(\varepsilon)
$$

where k be a root number of operator $B ;\{\mu\}_{1}^{n}$ are eigenvalues of matrix $\left[a_{i k}(\varepsilon)\right], \triangle(\varepsilon)=\operatorname{det}\left[a_{i k}(\varepsilon)\right]$.

Proof. Since $\left\{\mu_{i}\right\}_{1}^{n}$ are eigenvalues of matrix $\left[a_{i k}(\varepsilon)\right]$, then $\prod_{i}^{n} \mu_{i}(\varepsilon)=$ $\triangle(\varepsilon)$. Thus, it is sufficient to prove the equality $\triangle(\varepsilon)=(-1)^{k} \prod_{i}^{k} \nu_{i}(\varepsilon)$. Since zero is the isolated Fredholm point of operator-function $B-\nu I$, then operators B and B^{*} have the corresponding complete Jordan systems [19]

$$
\begin{equation*}
\varphi_{i}^{(s)}=(\Gamma)^{s-1} \varphi_{i}^{(1)}, \psi_{i}^{(s)}=\left(\Gamma^{*}\right)^{s-1} \psi_{i}^{(1)}, \quad i=1, \ldots, n ; \quad s=1, \ldots, P_{i} \tag{18}
\end{equation*}
$$

Here

$$
<\varphi_{i}^{\left(P_{i}\right)}, \psi_{j}>=\delta_{i j} ;<\varphi_{i}, \psi_{j}^{\left(P_{j}\right)}>=\delta_{i j}, \quad i, j=1, \ldots, n ; \sum_{i=1}^{n} P_{i}=k
$$

Let us remind that
$\varphi_{i}^{(1)} \triangleq \varphi_{i}=\Gamma \varphi_{i}^{\left(P_{i}\right)}, \psi_{i}^{(1)} \triangleq \psi_{i}=\Gamma^{*} \psi_{i}^{\left(P_{i}\right)}, \Gamma=\left(B+\sum_{1}^{n}<\cdot, \psi_{i}^{\left(P_{i}\right)}>\varphi_{i}^{\left(P_{i}\right)}\right)^{-1}$,
where $k=l_{1}+\ldots+l_{n}$ we call a root number of operator $B-R_{x}(0, \varepsilon)$. The small eigenvalues $\nu(\varepsilon)$ of operator $B-R_{x}(0, \varepsilon)$ satisfy to the following branching equation [19]

$$
\begin{equation*}
\left.L(\nu, \varepsilon) \triangleq \operatorname{det} \mid<R_{x}(0, \varepsilon)+\nu I\right)\left(I-\Gamma R_{x}(0, \varepsilon)-\nu \Gamma\right)^{-1} \varphi_{i}, \psi_{j}>\left.\right|_{i, j=1} ^{n}=0 \tag{20}
\end{equation*}
$$

Because of preliminary Weierstrass theorem [19], p. 66, by the equalities (18), (19), equation (20) in a neighbourhood of zero will be transformed to the form

$$
L(\nu, \varepsilon) \equiv\left(\nu^{k}+H_{k-1}(\varepsilon) \nu^{k-1}+\ldots+H_{0}(\varepsilon)\right) \Omega(\varepsilon, \nu)=0
$$

where $H_{k-1}(\varepsilon), \ldots, H_{0}(\varepsilon)=\triangle(\varepsilon)$ are continuous functions of $\varepsilon, \Omega(0,0) \neq 0$, $H_{0}(0)=0$. Consequently, operator $B-R_{x}(0, \varepsilon)$ has $k \geq n$ small eigenvalues $\nu_{i}(\varepsilon), i=1, \ldots, n$, which we may define from the equation

$$
\nu^{k}+H_{k-1}(\varepsilon) \nu^{k-1}+\ldots+\triangle(\varepsilon)=0
$$

Then $\prod_{i}^{k} \nu_{i}(\varepsilon)=\triangle(\varepsilon)(-1)^{k}$.
Assume now $\varepsilon \in R^{1}$. Consider the calculation of asymptotics of eigenvalues $\mu(\varepsilon)$ and $\nu(\varepsilon)$. Let us introduce the block representation of matrix $\left[a_{i k}\right]_{i, k=1}^{n}$, satisfying the following condition:
B) Let $\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}=\left[A_{i k}(\varepsilon)\right]_{i, k=1}^{l} \sim\left[\varepsilon^{r_{i k}} A_{i k}^{0} l_{i, k=1}^{l}\right.$ at $\varepsilon \rightarrow 0$, where $\left[A_{i k}\right]$ are blocks of dimensionality $\left[n_{i} \times n_{k}\right], n_{1}+\ldots+n_{l}=n, \min \left(r_{i 1}, \ldots, r_{i l}\right)=$ $r_{i i} \triangleq r_{i} \ddot{\mathrm{E}} r_{i k}>r_{i}$ at $k>i$ (or at $k<i$), $i=1, \ldots, l$. Let $\prod_{1}^{l} \operatorname{det}\left[A_{i i}^{0}\right] \neq 0$. The condition B) means that matrix $\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}$ admits the block representation being "asymptotically trianglar"at $\varepsilon \rightarrow 0$.

Lemma 3. Assume B). Then

$$
\operatorname{det}\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}=\varepsilon^{n_{1} r_{1}+\ldots+n_{l} r_{l}}\left(\prod_{1}^{l} \operatorname{det}\left|A_{i i}^{0}\right|+0(1)\right)
$$

formulas

$$
\begin{equation*}
\mu_{i}=\varepsilon^{r_{i}}\left(\mathbf{C}_{i}+0(1)\right), \quad i=1, \ldots, l \tag{21}
\end{equation*}
$$

define the principal terms of all n eigenvalues of matrix $\left|a_{i k}(\varepsilon)\right|_{i, k=1}^{n}$, where $\mu_{i}, \mathbf{C}_{i} \in R^{n_{i}} ; \mathbf{C}_{i}$ be vector of eigenvalues of matrix $A_{i i}^{0}$.

Proof. By B) and the property of linearity of determinant, we have

$$
\operatorname{det}\left[a_{i k}(\varepsilon)\right]=\varepsilon^{n_{1} r_{1}+\ldots+n_{l} r_{l}} \operatorname{det}\left|\begin{array}{lll}
A_{11}^{0}+0(1), & 0(1) \ldots \ldots, \ldots \ldots 0(1) \\
A_{21}^{0}+0(1), & A_{22}^{0}+0(1), & 0(1) \ldots 0(1) \\
\ldots \ldots . & \ldots \ldots \ldots & \ldots \ldots . \\
A_{l 1}^{0}+0(1), & \ldots \ldots, & A_{l l}^{0}+0(1)
\end{array}\right|=
$$

$$
\varepsilon^{n_{1} r_{1}+\ldots+n_{l} r_{l}}\left(\prod_{i}^{l} \operatorname{det}\left|A_{i i}^{0}\right|+0(1)\right)
$$

Substituting $\mu=\varepsilon^{r_{i}} c(\varepsilon), i=1, \ldots, l$ into equation det $\left|a_{i k}(\varepsilon)-\mu \delta_{i k}\right|_{i, k=1}^{n}=$ 0 and using the property of linearity of determinant we obtain equation

$$
\begin{gather*}
\varepsilon^{n_{1} r_{1}+\ldots+n_{i-1} r_{i-1}+\left(n_{i}+\ldots+n_{l}\right) r_{i}}\left\{\prod_{j=1}^{i-1} \operatorname{det}\left|A_{j j}^{0}\right|\right. \\
\left.\operatorname{det}\left(A_{i i}^{0}-(\varepsilon) E\right)(\varepsilon)^{n_{i+1}+\ldots+n_{l}}+a_{i}(\varepsilon)\right\}=0, \quad i=1, \ldots, l, \tag{22}
\end{gather*}
$$

where $a_{i}(\varepsilon) \rightarrow 0$ at $\varepsilon \rightarrow 0$. Hence, the coordinates of unknown principal terms \mathbf{C}_{i} in asymptoticses (21) satisfy to the equations $\operatorname{det}\left|A_{i i}^{0}-E\right|=0$, $i=1, \ldots, l$.

If $k=n$, then operator $B-R_{x}(0, \varepsilon)$, as well as the matrix $\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}$ has n small eigenvalues. In this case we state a result:

Corollary 4. Let operator B has not I - joined elements and let the condition B) holds. Then the formula

$$
\begin{equation*}
\nu_{i}=-\varepsilon^{r_{i}}\left(\mathbf{C}_{i}+0(1)\right), \quad i=1, \ldots, l \tag{23}
\end{equation*}
$$

defines all n small eigenvalues of operator $B-R_{x}(0, \varepsilon)$, where $\mathrm{C}_{i} \in R^{n_{i}}$ be vector of eigenvalues of matrix $A_{i i}^{0}, i=1, \ldots, l, n_{1}+\ldots+n_{l}=n$.

Proof. By lemma 2 in this case $\sum_{1}^{n} P_{i}=n$ (root number $k=n$) and operator $B-R_{x}(0, \varepsilon)$ possesses at least n small eigenvalues. Since $\sum_{1}^{l} n_{i}=$ $n, A_{i i}^{0}$ is quadratic matrix, then formula (23) yields n eigenvalues, where the principal terms coincide to within a sign with principal terms in (21). For calculation of eigenvalues ν of operator $B-R_{x}(0, \varepsilon)$ we transform (20) to the form

$$
\begin{equation*}
L(\nu, \varepsilon) \equiv \operatorname{det}\left[a_{i k}(\varepsilon)+\sum_{j=1}^{\infty} b_{i k}^{(j)} \nu^{j}\right]_{i, k=1}^{n}=0 \tag{24}
\end{equation*}
$$

where

$$
b_{i k}^{(j)}=<\left[\left(I-\Gamma R_{x}(0, \varepsilon)\right)^{-1} \Gamma\right]^{j-1}\left(I-\Gamma R_{x}(0, \varepsilon)\right)^{-1} \varphi_{i}, \gamma_{k}>
$$

Substituting $\nu=-\varepsilon^{r_{i}} c(\varepsilon)$ into (24) and taking into account the property of linearity of determinant we shall receive the equation, which differs from (22) by error term $a_{i}(\varepsilon)$ only. Then in conditions of corollary 4 the principal terms of all small eigenvalues of operator $B-R_{x}(0, \varepsilon)$ and matrix $-\left[a_{i k}(\varepsilon)\right]$ are defined from the same equations and therefore, are equal.

Conclusions. 1) By lemma 3 we can replace condition A) in the theorem 1 with the following one:
$\left.\mathbf{A}^{*}\right)$. Let $E_{1}=E_{2}=E ; \nu=0$ be isolated Fredholm point of operatorfunction $B-\nu I$. Let in a neighbourhood of point $\varepsilon_{0} \in \Omega$ there is a set S, containing point ε_{0} and be continuum represented as $S=S_{+} \bigcup S_{-}$. Moreover, assume

$$
\varepsilon_{0} \in \partial S_{+} \bigcap \partial S_{-} ;\left.\left.\prod_{i} \nu_{i}(\varepsilon)\right|_{\varepsilon \in S_{+}} \cdot \prod_{i} \nu_{i}(\varepsilon)\right|_{\varepsilon \in S_{-}}<0
$$

where $\left\{\nu_{i}(\varepsilon)\right\}$ are small eigenvalues of operator $B-R_{x}(0, \varepsilon)$.
2) If the principal terms of asymptotics of small eigenvalues of operator $B-R_{x}(0, \varepsilon)$ and matrix $\left[a_{i k}(\varepsilon)\right]_{i, k=1}^{n}$ coincide, then we may use eigenvalues of such operator in the theorem 2. By corollary 4 it is possible, if $E_{1}=E_{2}=H$, operators B and $R_{x}(0, \varepsilon)$ are symmetric and condition B) is valid. Let us note that condition B) is valid in papers $[15,16,17,18]$ about bifurcation point with potential BEq , thus $r_{1}=\ldots=r_{n}=1$.

2. Statement of boundary-value problem and problem on a bifurcation point for the system (32) [9]

We begin with a one preliminary result on reduction of VM system (1)(2) with conditions (3) to the quasilinear system of elliptical equations for distribution (5), was first investigated in [10]. Assume the following condition:
C). $\hat{f}_{i}(\mathbf{R}, \mathbf{G})$ are fixed, differentiable functions in distribution (5); α_{i}, d_{i} are free parameters; $\left|d_{i}\right| \neq 0 ; \varphi_{i}=c_{1 i}+l_{i} \varphi(r), \psi_{i}=c_{2 i}+k_{i} \psi(r) ; c_{1 i}, c_{2 i^{-}}$ const; the parameters l_{i}, k_{i} are connected by relations

$$
\begin{equation*}
l_{i}=\frac{m_{1}}{\alpha_{1} q_{1}} \frac{\alpha_{i} q_{i}}{m_{i}}, \quad k_{i} \frac{q_{1}}{m_{1}} d_{1}=\frac{q_{i}}{m_{i}} d_{i}, \quad k_{1}=l_{1}=1 \tag{25}
\end{equation*}
$$

and the integrals $\int_{R^{3}} \hat{f}_{i} \mathrm{~d} v, \int_{R^{3}} \hat{f}_{i} v \mathrm{~d} v$ converge at $\forall \varphi_{i}, \psi_{i}$.
Let us introduce notations $m_{1} \triangleq m, \alpha_{1} \triangleq \alpha, q_{1} \triangleq q$.
Theorem 3. Let f_{i} are defined as well as in (5) and the condition \mathbf{C}) is valid. Let the vector-function (φ, ψ) is a solution of the system of equations

$$
\begin{gather*}
\triangle \varphi=\mu \sum_{k=1}^{N} q_{k} \int_{R^{3}} f_{k} \mathrm{~d} v, \mu=\frac{8 \pi \alpha q}{m} \\
\Delta \psi=\nu \sum_{k=1}^{N} q_{k} \int_{R^{3}}(v, d) f_{k} \mathrm{~d} v, \quad \nu=-\frac{4 \pi q}{m c^{2}} \tag{26}
\end{gather*}
$$

$$
\begin{equation*}
\left.\varphi\right|_{\partial D}=-\frac{2 \alpha q}{m} u_{01},\left.\quad \psi\right|_{\partial D}=\frac{q}{m c} u_{02} \tag{27}
\end{equation*}
$$

on a subspace

$$
\begin{equation*}
\left(\partial_{r} \varphi_{i}, d_{i}\right)=0, \quad\left(\partial_{r} \psi_{i}, d_{i}\right)=0, \quad i=1, \ldots, N \tag{28}
\end{equation*}
$$

Then the VM system (1), (2) with conditions (5) possesses a solution

$$
\begin{equation*}
E=\frac{m}{2 \alpha q} \partial_{r} \varphi, \quad B=\frac{d}{d^{2}}\left(\beta+\int_{0}^{1}(d \times J(t r), r) \mathrm{d} t\right)-\left[d \times \partial_{r} \psi\right] \frac{m c}{q d^{2}} \tag{29}
\end{equation*}
$$

where

$$
J \triangleq \frac{4 \pi}{c} \sum_{k=1}^{N} q_{k} \int_{R^{3}} v f_{k} \mathrm{~d} v, \quad \beta-\text { const }
$$

The potentials

$$
\begin{equation*}
U=-\frac{m}{2 \alpha q} \varphi, \quad A=\frac{m c}{q d^{2}} \psi d+A_{1}(r), \quad\left(A_{1}, d\right)=0 \tag{30}
\end{equation*}
$$

satisfying to condition (3) are defined through this solution.
The proof of theorem 3 follows from theorem 1 of paper [14].
Introduce notations

$$
j_{i}=\int_{R^{3}} v f_{i} \mathrm{~d} v, \quad \rho_{i}=\int_{R^{3}} f_{i} \mathrm{~d} v, \quad i=1, \ldots, N
$$

and the following condition:
D). There are vectors $\beta_{i} \in R^{3}$ such that $j_{i}=\beta_{i} \rho_{i}, i=1, \ldots, N$.

For example, the condition \mathbf{D} holds for distribution

$$
\begin{equation*}
f_{i}=f_{i}\left(a\left(-\alpha_{i} v^{2}+\varphi_{i}\right)+b\left(\left(d_{i}, v\right)+\psi_{i}\right)\right) \tag{31}
\end{equation*}
$$

for $\beta_{i}=\frac{b}{2 \alpha_{i} a} d_{i}, a, b$-const.
Suppose that condition \mathbf{D} is valid. Then the system (26) will be transformed to the following

$$
\begin{equation*}
\triangle \varphi=\lambda \mu \sum_{i=1}^{N} q_{i} A_{i}, \quad \Delta \psi=\lambda \nu \sum_{i=1}^{N} q_{i}\left(\beta_{i}, d\right) A_{i} \tag{32}
\end{equation*}
$$

where

$$
A_{i}\left(l_{i} \varphi, k_{i} \psi, \alpha_{i}, d_{i}\right) \triangleq \int_{R^{3}} \hat{f}_{i} \mathrm{~d} v
$$

Further, we shall suppose that the auxiliary vector d in (5) is directed along axes Z. Because of conditions (28) we put in system (32) $\varphi=\varphi(x, y)$, $\psi=\psi(x, y), x, y \in D \subset R^{2}$. Moreover, let $N \geq 3$ and $\frac{k_{i}}{l_{i}} \neq$ const.

Let D be bounded domain in R^{2} with the boundary ∂D of class $C^{2, \alpha}$, $\alpha \in(0,1]$. The boundary conditions (4) on the densities of local charge and current induce the equalities:
I.

$$
\begin{equation*}
\sum_{k=1}^{N} q_{k} A_{k}\left(l_{k} \varphi^{0}, k_{k} \psi^{0}, \alpha_{i}, d_{i}\right)=0 ; \quad \sum_{k=1}^{N} q_{k}\left(\beta_{k}, d\right) A_{k}\left(l_{k} \varphi^{0}, k_{k} \psi^{0}, \alpha_{i}, d_{i}\right)=0 \tag{33}
\end{equation*}
$$

for $\forall \varepsilon \in \iota$, where ι is a neighbourhood of point $\varepsilon=0$ and

$$
\begin{equation*}
\varphi^{0}=-\frac{2 \alpha q}{m} u_{01}, \quad \psi^{0}=\frac{q}{m c} u_{02} \tag{34}
\end{equation*}
$$

Remark 4. If $N=2$ and $\beta_{i}=\frac{d_{i}}{2 \alpha_{i}}$, then by condition I and equalities $\left(\beta_{i}, d\right)=\frac{d^{2}}{2 \alpha} \frac{k_{i}}{l_{i}}$ we have alternative: or in condition $\mathbf{I}: A_{1}=A_{2}=0$ or $k_{i}=l_{i}$, $i=1,2$. In this case, and also at $\frac{k_{i}}{l_{i}}=$ const the system (32) is reduced to one equation and bifurcation of solutions in such approach, as it is considered in this paper is impossible.

By (33), (34) system (32) with boundary conditions

$$
\begin{equation*}
\left.\varphi\right|_{\partial D}=\varphi^{0},\left.\psi\right|_{\partial D}=\psi^{0} \tag{35}
\end{equation*}
$$

has a trivial solution $\varphi=\varphi^{0}, \psi=\psi^{0}$ at $\forall \lambda \in R^{+}$.
Then because of theorem 3 the VM system with boundary conditions (3), (4) has a trivial solution at $\forall \lambda$

$$
\begin{gathered}
E^{0}=\frac{m}{2 \alpha q} \partial_{r} \varphi^{0}=0, \quad B^{0}=\beta d_{1}, \quad r \in D \subset R^{2} \\
f^{0}=\lambda \hat{f}_{i}\left(-\alpha_{i} v^{2}+c_{1 i}+l_{i} \rho^{0},\left(v, d_{i}\right)+c_{2 i}+k_{i} \psi^{0}\right) .
\end{gathered}
$$

Thus, the densities ρ and j vanish at domain D.
Now our purpose is to find λ_{0} in neighbourhood of which system (32), (35) has a nontrivial solution. Then the corresponding densities ρ and j will be identically vanish at domain D, and the point λ_{0} is a bifurcation point of the VM system with conditions (4), (5).

Let functions f_{i} are analytical in (5). Using the expansion in Taylor series

$$
A(x, y)=\sum_{i \geq 0}^{\infty} \frac{1}{i!}\left(\left(x-x^{0}\right) \frac{\partial}{\partial x}+\left(y-y^{0}\right) \frac{\partial}{\partial y}\right)^{i} A\left(x^{0}, y^{0}\right)
$$

and selecting linear terms, we transform (32) to operator form

$$
\begin{equation*}
\left(L_{0}-\lambda L_{1}\right) u-\lambda r(u)=0 \tag{36}
\end{equation*}
$$

Here

$$
\begin{gather*}
L_{0}=\left[\begin{array}{cc}
\triangle & 0 \\
0 & \triangle
\end{array}\right], u=\left(\varphi-\varphi^{0}, \psi-\psi^{0}\right)^{\prime} \tag{37}\\
L_{1}=\sum_{s=1}^{N} q_{s}\left[\begin{array}{cc}
\mu l_{s} \frac{\partial A_{s}}{\partial x} & \mu k_{s} \frac{\partial A_{s}}{\partial y} \\
\nu l_{s}\left(\beta_{s}, d\right) \frac{\partial A_{s}}{\partial x} & \nu k_{s}\left(\beta_{s}, d\right) \frac{\partial A_{s}}{\partial y}
\end{array}\right]_{x=l_{s} \varphi^{0}, y=k_{s} \psi^{0}} \\
{\left[\begin{array}{cc}
\mu T_{1} & \mu T_{2} \\
\nu T_{3} & \nu T_{4}
\end{array}\right]} \tag{38}\\
r(u)=\sum_{i \geq l}^{\infty} \sum_{s=1}^{n} \varrho_{i s}(u) b_{s} \tag{39}
\end{gather*}
$$

where

$$
\varrho_{i s}(u) \triangleq \frac{q_{s}}{i!}\left(L_{s} u_{1} \frac{\partial}{\partial x}+k_{s} u_{2} \frac{\partial}{\partial y}\right)^{i} A_{s}\left(l_{s} \varphi^{0}, k_{s} \psi^{0}\right)
$$

are i homogeneous forms by u;

$$
\begin{gathered}
\left.\frac{\partial^{i_{1}+i_{2}}}{\partial x^{i_{1}} \partial y^{i_{2}}} A_{s}(x, y)\right|_{x=l_{s} \varphi^{0}, y=k_{s} \psi^{0}}=0 \text { at } \\
2 \leq i_{1}+i_{2} \leq l-1, \quad s=1, \ldots, N ; \quad l \geq 2 ; \quad b_{s} \triangleq\left(\mu, \nu\left(\beta_{s}, d\right)\right)^{\prime} .
\end{gathered}
$$

We study the problem of existence of a bifurcation point λ^{0} for (32), (34) as the problem on bifurcation point for operator equation (36). Let us introduce Banach spaces $C^{2, \alpha}(\bar{D})$ and $C^{0, \alpha}(\bar{D})$ with norms $\|\cdot\|_{2, \alpha},\|\cdot\|_{0, \alpha}$ and $W^{2,2}(D)$, which is usual L^{2} Sobolev space in D. Let us introduce Banach space E of vectors $u \triangleq\left(u_{1}, u_{2}\right)^{\prime}$, where $u_{i} \in L_{2}(D), L_{2}$ be real Hilbert space with internal product (,) and the corresponding norm $\|\cdot\|_{L_{2}}(D)$. As a range of definition $D\left(L_{0}\right)$ we take set of vectors $u \triangleq\left(u_{1}, u_{2}\right)$ with $u_{i} \in \stackrel{\circ}{W}^{2,2}(D)$. Here $\stackrel{\circ}{W}^{2,2}(D)$ denotes $W^{2,2}$ functions with trace 0 on ∂D. Hence, $L_{0}: D \subset E \rightarrow E$ is linear self-adjoint operator. By virtue of embedding

$$
\begin{equation*}
W^{2,2}(D) \subset C^{0, \alpha}(\bar{D}), \quad 0<\alpha<1 \tag{40}
\end{equation*}
$$

the operator $r: W^{2,2} \subset E \rightarrow E$ be analytical in neighbourhood of zero. The operator $L_{1} \in L(E \rightarrow E)$ is linear bounded. For matrix corresponding to operator L_{1} we shall keep same notations. By embedding (40) any solution of the equation (36) will be Hölder in $D\left(L_{0}\right)$. Moreover, because the coefficients of (36) are constant, then vector $r(u)$ will be analytical, $\partial D \in C^{2, \alpha}$ and thanks to well-known results of the regularity theory of weak solutions [8], the being searching generalized solutions of (36) in $\stackrel{\circ}{W}^{2,2}(D)$ belong to $C^{2, \alpha}$.

By theorem 3 on reduction of VM system, the bifurcation points of problem (32), (34) are the bifurcation points of solutions of VM system (1), (2) with boundary conditions (3), (4). Thanks to given conditions on L_{0} and L_{1}, all singular points of operator- function $L(\lambda) \triangleq L_{0}-\lambda L_{1}$ be Fredholm. The bifurcation points of nonlinear equation (36) we can found only among points of a spectrum for linearized system

$$
\begin{equation*}
\left(L_{0}-\lambda L_{1}\right) u=0 \tag{41}
\end{equation*}
$$

For study of spectrum problem (41) we preliminary find the eigenvalues and the eigenfunctions of matrix L_{1} in (41) for physically admissible parameters. With this purpose, we introduce the following condition:

II: $\left(T_{1} T_{4}-T_{2} T_{3}\right)>0, T_{1}<0$.
Lemma 4. Let $\frac{\partial A_{i}}{\partial x}=\frac{\partial A_{i}}{\partial y}>0, i=1, \ldots, N$ at $x=l_{i} \varphi^{0}, y=k_{i} \psi^{0}$. Assume

$$
\sum_{i=2}^{N} \sum_{j=1}^{i-1} a_{i} a_{j}\left(l_{j} k_{i}-k_{j} l_{i}\right)\left(\beta_{i}-\beta_{j}, d\right)>0
$$

where $a_{i} \triangleq q_{i} \frac{\partial A_{i}}{\partial x}$, then condition II is valid.
Proof. Without loss of generality we put $q \triangleq q_{1}<0, q_{i}>0, i=$ $2, \ldots, N$. Then via (25) signq $l_{i}=$ signq. Further, because of definition of T_{1} (see.(38)), we verify that $T_{1}<0$. The positiveness of $T_{1} T_{4}-T_{2} T_{3}$ follows from equality

$$
\begin{aligned}
T_{1} T_{4}-T_{2} T_{3}= & \sum l_{i} a_{i} \sum k_{i}\left(\beta_{i}, d\right) a_{i}-\sum k_{i} a_{i} \sum l_{i}\left(\beta_{i}, d\right) a_{i}= \\
& \sum_{i=2}^{N} \sum_{j=1}^{i-1} a_{i} a_{j}\left(l_{j} k_{i}-k_{j} l_{i}\right)\left(\beta_{i}-\beta_{j}, d\right)
\end{aligned}
$$

Example. If $\beta_{i}=\frac{d_{i}}{2 \alpha_{i}}$, then $\left(\beta_{i}, d\right)=\frac{d^{2}}{2 \alpha} \frac{k_{i}}{l_{i}}$ and

$$
\sum_{i=2}^{N} \sum_{j=1}^{i-1}=a_{i} a_{j}\left(l_{j} k_{i}-l_{i} k_{j}\right)^{2} \cdot \frac{d^{2}}{2 \alpha l_{i} l_{j}}>0
$$

Lemma 5. Let distribution function has a form (31) and $f_{i}^{\prime}>0$. Then conditions \mathbf{D} and II hold for $\beta_{i}=\frac{b}{a} \frac{d_{i}}{2 \alpha_{i}}$, and the system (32) will be transformed to the potential form

$$
\triangle\left[\begin{array}{l}
\varphi \tag{42}\\
\psi
\end{array}\right]=\lambda\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial V}{\partial \varphi} \\
\frac{\partial V}{\partial \psi}
\end{array}\right]
$$

where

$$
\begin{equation*}
V=\sum_{k=1}^{N} \frac{q_{k}}{l_{k}} \int_{0}^{a l_{k} \varphi+b k_{k} \psi} A_{k}(s) d s, \quad a_{1}=\mu / a, \quad a_{2}=\frac{\nu d^{2}}{2 a b} \tag{43}
\end{equation*}
$$

The proof is conducted by direct substitution (43) into the system (42).
Lemma 6. Let $r \triangleq x \in R^{1}, v \in R^{2}, d \triangleq d_{2}$. Then the system (32) with potential (43) can be written as Hamiltonian system

$$
\begin{array}{ll}
\dot{p}_{\varphi}=-\partial_{\varphi} H, & \dot{\varphi}=\partial_{p_{\varphi}} H \\
\dot{p}_{\psi}=-\partial_{\psi} H, & \dot{\psi}=\partial_{p_{\psi}} H
\end{array}
$$

with Hamiltonian function of the form

$$
H=-\frac{p_{\varphi}^{2}}{2}-\frac{p_{\psi}^{2}}{2}+V(\varphi(x), \psi(x))
$$

Here
$V(\varphi, \psi)=\lambda a_{1} \sum_{k=1}^{N} \frac{q_{k}}{l_{k}} \int_{0}^{a l_{k} \varphi} \int_{R^{2}} A(s, \psi) d s+\lambda a_{2} \sum_{k=1}^{N} \frac{q_{k}}{l_{k}} \int_{0}^{b k_{k} \psi} \int_{R^{2}} A(\varphi, s) d s$.
The proof follows from lemma 2.2 (p.1152) of work [4].
Lemma 7. Assume II. Then matrix L_{1} in (38) has one positive eigenvalue

$$
\chi_{+}=\mu T_{1}+0(1)
$$

and one negative

$$
\begin{equation*}
\chi_{-}=\eta \frac{T_{1} T_{4}-T_{2} T_{3}}{T_{1}} \epsilon+O(\epsilon), \quad \eta=\frac{4 \pi|q|}{m}>0 \tag{44}
\end{equation*}
$$

at $\epsilon \triangleq \frac{1}{c^{2}} \rightarrow 0$.
Eigenvalue χ_{-}induces the eigenvactors of matrices L_{1} and L_{1}^{\prime} respectively

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{T_{2}}{T_{1}} \\
0
\end{array}\right]+O(\epsilon),\left[\begin{array}{l}
c_{1}^{*} \\
c_{2}^{*}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+O(\epsilon)
$$

The readers may refer to [14] for the proof.
Let us now consider the calculation of bifurcation points λ_{0} of equation (36). Setting in (36) $\lambda=\lambda_{0}+\epsilon$, we consider the equation

$$
\begin{equation*}
\left(L_{0}-\left(\lambda_{0}+\epsilon\right) L_{1} u-\left(\lambda_{0}+\epsilon\right) r(u)=0\right. \tag{45}
\end{equation*}
$$

in neighbourhood of point λ_{0}. Let $T_{2} \frac{1}{T} 0$ and $T_{3} \frac{1}{T} 0$, or $T_{2}=T_{3}=0$. With the purpose of symmetrization of system at $T_{2} \frac{1}{\tau} 0$ and $T_{3} \frac{1}{\tau} 0$ having multiplicated both parts of (45) on matrix

$$
M=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{a}
\end{array}\right), \quad \text { where } \tilde{a} \triangleq \frac{\mu T_{2}}{\nu T_{3}} \neq 0
$$

we write (45) as

$$
\begin{equation*}
B u=\epsilon B_{1} u+\left(\lambda_{0}+\epsilon\right) \Re(u) . \tag{46}
\end{equation*}
$$

Here $B=M\left(L_{0}-\lambda_{0} L_{1}\right) ; \Re(u) \triangleq M r(u) \triangleq\left(r_{1}(u), r_{2}(u)\right) ; B_{1} \in L(E \rightarrow E)$ be Fredholm self- adjoint operator. If $A_{s}=A_{s}\left(a l_{s} \varphi+b k_{k} \psi\right)$, then

$$
\frac{\partial A_{s}}{\partial y}=A_{s}^{\prime} b, \quad \frac{\partial A_{s}}{\partial x}=A_{s}^{\prime} a, \quad \tilde{a}=\mu b /\left(\nu \frac{d^{2}}{2 \alpha a}\right), \quad \beta_{s}=\frac{b}{a} \frac{d_{s}}{2 \alpha_{s}}
$$

In expansion (39)

$$
\varrho_{i s}=\frac{q_{s}}{i!} A_{s}^{(i)}\left(a l_{s} \varphi^{0}+b k_{s} \psi^{0}\right)\left(a l_{s} u_{1}+b k_{s} u_{2}\right)^{i}
$$

Thus, in this case $\frac{\partial r_{1}}{\partial u_{2}}=\frac{\partial r_{2}}{u_{1}}$ matrix $\Re_{u}(u)$ will be symmetric for $\forall u$ and operator $\Re_{u}: E \rightarrow E$ is self-adjoint for $\forall u$.

Remark 5. If $T_{2}=T_{3}=0$, then we put $\tilde{a}=1$. If $T_{2}=0, T_{3} \neq 0$ or $T_{3}=0$, $T_{2} \frac{1}{\top} 0$, then the problem (36) has not the property of symmetrization and we should work with (45). In this case for study of the problem on bifurcation point we may use our results from [13].

Let μ be eigenvalue of the Dirichlet problem

$$
\begin{equation*}
-\triangle e=\left.\mu e e\right|_{\partial D}=0 \tag{47}
\end{equation*}
$$

and $\left\{e_{1}, \ldots, e_{n}\right\}$ be orthonormalized basis in a subspace of eigenfunctions. Denote by $c_{-}=\left(c_{1}, c_{2}\right)^{\prime}$ the eigenvector of matrix L_{1}, which corresponds to eigenvalue $\chi_{-}<0$.

Lemma 8. Let $\lambda_{0}=-\mu / \chi_{-}$. Then $\lambda_{0}>0, \operatorname{dim} N(B)=n$ and the system $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$, where $\mathbf{e}_{i}=c_{-} e_{i}$ forms basis in a subspace $N(B)$.

Proof. Let us introduce matrix of columns Λ, which are the eigenvectors of matrix L_{1} corresponding to eigenvalues χ_{-}, χ_{+}. Moreover,

$$
\Lambda^{-1} L_{1} \Lambda=\left(\begin{array}{cc}
\chi_{-} & 0 \\
0 & \chi_{+}
\end{array}\right), \quad L_{0} \Lambda=\Lambda L_{0}
$$

and equation $B u=0$ by change $u=\Lambda U$ will be transformed to the form

$$
M\left[L_{0} \Lambda U-\lambda_{0} L_{1} \Lambda U\right]=M\left[\Lambda\left(L_{0} U-\lambda_{0} \Lambda^{-1} L_{1} \Lambda U\right)\right]=0
$$

Hence, from here follows that the linear system (41) is decomposed onto two linear elliptical equations

$$
\begin{equation*}
\triangle U_{1}-\lambda_{0} \chi_{-} U_{1}=0,\left.\quad U_{1}\right|_{\partial D}=0, \quad \triangle U_{2}-\lambda_{0} \chi_{+} U_{2}=0,\left.\quad U_{2}\right|_{\partial D}=0 \tag{48}
\end{equation*}
$$

where $\lambda_{0} \chi_{-}=-\mu, \lambda_{0} \chi_{+}>0$. From (47) follows that $\mu \in \sigma(-\triangle)$. Hence, $U_{1}=\sum_{i=1}^{n} \alpha_{i} e_{i}, \alpha_{i}-$ const, $U_{2}=0$ and

$$
\left|\begin{array}{c}
u_{1} \\
u_{2}
\end{array}\right|=\Lambda U=\left|\begin{array}{cc}
c_{1-} & c_{1+} \\
c_{2-} & c_{2+}
\end{array}\right|=\left|\begin{array}{c}
U_{1} \\
0
\end{array}\right|=\left|\begin{array}{c}
c_{1-} \\
c_{2-}
\end{array}\right| \sum_{i=1}^{n} \alpha_{i} e_{i}
$$

Let us construct Lyapunov-Schmidt BEq for equation (46).
Without loss of generality we assume that the eigenvector c_{1-} of matrix L_{1} is chosen such that $\chi_{-}\left(c_{1-}^{2}+F c_{2-}^{2}\right)=1$, where $F=\frac{\mu T_{2}}{\nu T_{3}}$. Then the system of vectors $\left\{B_{1} \mathbf{e}_{i}\right\}_{i=1}^{n}$ is biorthogonal to $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$. Thus, operator

$$
\breve{B}=B+\sum_{1}^{n}<\cdot, \gamma_{i}>\gamma_{i}
$$

with $\gamma_{i} \triangleq B_{1} \mathbf{e}_{i}$ has inverse bounded $\Gamma \in L(E \rightarrow E), \Gamma=\Gamma^{*}, \Gamma \gamma_{i}=\mathbf{e}_{i}$.
Rewrite (46) as the system

$$
\begin{gather*}
\left(\breve{B}-\epsilon B_{1}\right) u=\left(\lambda_{0}+\epsilon\right) \Re(u)+\sum_{i} \xi_{i} \gamma_{i} \tag{49}\\
\xi_{i}=<u, \gamma_{i}>, \quad i=1, \ldots, n . \tag{50}
\end{gather*}
$$

By the theorem on inverse operator we have from (49)

$$
\begin{equation*}
u=\left(\lambda_{0}+\epsilon\right)\left(I-\epsilon \Gamma B_{1}\right)^{-1} \Gamma \Re(u)+\frac{1}{1-\epsilon} \sum_{i=1}^{n} \xi_{i} \mathrm{e}_{i} . \tag{51}
\end{equation*}
$$

From (50) we have

$$
\begin{equation*}
\frac{\epsilon}{1-\epsilon} \xi_{i}+\frac{\lambda_{0}+\epsilon}{1-\epsilon}<\Re(u), \mathbf{e}_{i}>=0 \tag{52}
\end{equation*}
$$

where $\Re(u)=\Re_{l}(u)+\Re_{l+1}(u)+\ldots$. Because of the theorem on implicit operator, equation (51) has unique solution for sufficiently small $\epsilon,|\xi|$.

$$
\begin{equation*}
u=u_{1}(\xi \mathbf{e}, \epsilon)+\left(\lambda_{0}+\epsilon\right)\left(I-\epsilon \Gamma B_{1}\right)^{-1} \Gamma\left\{u_{l}(\xi \mathbf{e}, \epsilon)+u_{l+1}(\xi \mathbf{e}, \epsilon)+\ldots\right\} \tag{53}
\end{equation*}
$$

Here

$$
u_{1}(\xi \mathbf{e}, \epsilon)=\frac{1}{1-\epsilon} \sum_{i=1}^{n} \xi_{i} \mathbf{e}_{i}
$$

$$
\begin{gathered}
u_{l}(\xi \mathrm{e}, \epsilon)=\Re_{l}\left(u_{1}(\xi \mathrm{e}, \epsilon)\right), \\
u_{l+1}(\xi \mathrm{e}, \epsilon)=\Re_{l+1}\left(u_{1}(\xi \mathrm{e}, \epsilon)\right)+ \\
+ \begin{cases}0, & l \geq 2 \\
\Gamma \Re_{2}^{\prime}\left(u_{1}(\xi \mathrm{e}, \epsilon)\right)\left(\lambda_{0}+\epsilon\right)\left(I-\epsilon \Gamma B_{1}\right)^{-1} \Gamma u_{2}(\xi \mathrm{e}, \epsilon), & l=2\end{cases}
\end{gathered}
$$

and etc. Substituting the solution (53) into (52) we obtain desired BEq

$$
\begin{equation*}
\mathbf{L}(\xi, \epsilon)=0 \tag{BEq}
\end{equation*}
$$

with $\mathbf{L}=\left(L^{1}, \ldots, L^{n}\right)$,

$$
\begin{gathered}
\mathbf{L}^{i}=\frac{\epsilon}{1-\epsilon} \xi_{i}+\frac{\lambda_{0}+\epsilon}{(1-\epsilon)^{l+1}}\left[<\Re_{l}\left(\xi \mathbf{e}, \mathbf{e}_{i}\right)>+\frac{1}{1-\epsilon}<\Re_{l+1}\left(\xi \mathbf{e}, \mathbf{e}_{i}\right)>\right]+ \\
\left\{\begin{array}{l}
0, \quad l>2 \\
\frac{\lambda_{0}+c}{(1-\varepsilon)^{4}}<\Re_{2}^{\prime}\left(\xi \mathrm{e}\left(I-\varepsilon \Gamma B_{1}\right)^{-1} \Gamma \Re_{2}(\xi \mathrm{e}), \mathbf{e}_{i}>, \quad l=2\right.
\end{array}+r_{i}(\xi, \varepsilon),\right.
\end{gathered}
$$

$r_{i}=o\left(|\xi|^{l+1}\right), i=1, \ldots, n$. If $\mathbf{L}(\xi, \varepsilon)=\operatorname{grad} U(\xi, \varepsilon)$, then we call BEq potential. In potential case matrix $\mathbf{L}_{\xi}(\xi, \varepsilon)$ is symmetric.

Let in (46) $f_{i}=f_{i}\left(a l_{i} \varphi+b k_{i} \psi\right), i=1, \ldots, N$. Then from explained above matrix $\Re_{u}(u)$ will be symmetric at $\forall u$ and we have the following statement:

Lemma 8. Let conditions $\mathbf{C}), \mathbf{D}), \mathbf{I - I I}$ and $\lambda_{0}=-\mu / \chi_{-}$hold. Then equation (46) possesses so much small solutions $u \rightarrow 0$ at $\lambda \rightarrow \lambda_{0}$, as small solutions $\xi \rightarrow 0$ possesses $B E q$ at $\varepsilon \rightarrow 0$. If in system (32) $A_{i}=$ $A_{i}\left(a l_{i} \varphi+b k_{i} \psi\right), i=1, \ldots, N ; a, b-$-const, then $B E q$ will be potential.

Theorem 4 (Principal theorem). Let $N \geq 3$. Let conditions C, D, I-II and $\lambda_{0}=-\mu / \chi$ are valid, where μ is n multiple eigenvalue of Dirichlet problem (47). Number χ_{-}see in (44). If n is odd, or distribution function has the form $f_{i}=f_{i}\left(a\left(-\alpha_{i} v^{2}+\varphi_{i}\right)+b\left(\left(d_{i}, v\right)+\psi_{i}\right)\right), i=1, \ldots, N$, then λ_{0} be a bifurcation point of VM system, IB (1)-(2) with conditions (3)-(4).

Proof. Case 1. Let n is odd. Then in BEq

$$
\triangle(\varepsilon) \equiv \operatorname{det}\left|\frac{\partial L_{k}}{\partial \xi_{i}}(0, \varepsilon)\right|_{i, k=1}^{n}=\left(\frac{\varepsilon}{1-\varepsilon}\right)^{n}
$$

Since n is odd, then $\triangle(\varepsilon)>0$ for $\varepsilon \in(0,1)$, and $\triangle(\varepsilon)<0$ for $\varepsilon \in(-1,0)$ and the statement of theorem follows from theorem 1.

Case 2. Let $f_{i}=f_{i}\left(a\left(-\alpha_{i} v^{2}+\varphi_{i}\right)+b\left(\left(d_{i}, v\right)+\psi_{i}\right)\right)$. Then BEq is potential, moreover

$$
\frac{\partial L_{k}(0, \varepsilon)}{\partial \xi_{i}}=\frac{\varepsilon}{1-\varepsilon} \delta_{i k}, \quad i, k=1, \ldots, n .
$$

Hence, all eigenvalues of matrix $\left\|\frac{\partial L_{k}(0, \varepsilon)}{\partial \xi_{i}}\right\|$ are positive at $\varepsilon>0$ and are negative at $\varepsilon<0$. Thus, the validity of the theorem in case 2 follows from theorem 2.

3. Conclusion

The distributions functions f_{i} in VM system depend not only upon λ, but also on parameters $\alpha_{i}, d_{i}, k_{i}, l_{i}$. It seems interest to investigate a behaviour of solutions of (1)-(2) with conditions (3), (4) depending from these parameters. Applying theorems 1, 2 and their corollaries in the present paper, we can prove the existence theorems of points and surfaces of bifurcation for this more complicated case.

References

1. Braasch P. Semilineare elliptische Differentialgleichungen und das Vlasov-Maxwell-System / P. Braasch // Dissertation, Herbert Utz Verlag Wissenschaft. Munchen, 1997.
2. Conley C. C. Isolated invariant sets and the Morse index / C.C. Conley // CBMS. Regional Conf. Ser. Math., 38, AMS, Providence, R. I. - 1978. - Vol. 38.
3. Guo Y. Global weak solutions of the Vlasov-Maxwell system of plasma physics / Y. Guo // Commun. Math. Phys. - 1993. - Vol. 154. - P. 245-263.
4. Guo Y. On steady states in a collisionless plasma / Y. Guo, C. G. Ragazzo // Comm. Pure Appl. Math. - 1996. - Vol. 11. - P. 1145-1174.
5. Kielhöfer H. A bifurcation theorem for potential operators / H. Kielhöfer // J. Funct. Anal. - 1988. - Vol. 77. - P. 1-8.
6. Krasnoselskii M. A. Topological Methods in the Theory of Nonlinear Integral Equations / M. A. Krasnoselskii. - Oxford : Pergamon Press., 1964.
7. Kronecker L. It Uber systeme von functionen mehrerer variables / L. Kronecker // Monats berichte de l'Academic ed Berlin. -1869. - P. 159-198.
8. Ladyzhenskaya O. A. Linear and Nonlinear Equations of Elliptic Type / O. V. Ladyzhenskaya, N. N. Uralzeva. - M. : Nauka, 1964.
9. Steady-state solutions of the Vlasov - Maxwell system and their stability / Y. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, D. A. Tolstonogov // Acta. Appl. Math. -1992. - Vol. 28. - P. 253-293.
10. Existence of stationary solutions of the Vlasov-Maxwell system Exact solutions / Y. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn // Mathematical Modelling. - 1989. - Vol. 1. - P. 95-107.
11. Rein G. Generic global solutions of the relativistic Vlasov- Maxwell system with nearly neutral innitial data / G. Rein // Commun. Math. Phys. - 1990. - Vol. 135. - P. 41-78.
12. Rudykh G. A. Stationary solutions of the system of Vlasov-Maxwell system / G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn // Doklady AN USSR. - 1988. - Vol. 33. - P.673-674.
13. Sidorov N. A. On nontrivial solutions and points of bifurcation of the VlasovMaxwell system / N. A. Sidorov, A. V. Sinitsyn // Doklady RAN. - 1996. - Vol. 349. - P. 26-28.
14. Sidorov N. A. On branching of solutions of the Vlasov-Maxwell system. / N. A. Sidorov, A. V. Sinitsyn // Sibirsk. Matem. Zhyrnal. - 1996. - Vol. 37. - P. 13671379.
15. Sidorov N. A. On bifurcating solutions of the nonlinear equations with potential branching equation / N. A. Sidorov // Doklady RAN. - 1981. -Vol. 23. - P. 193-197.
16. Sidorov N. A. Points and surfaces of bifurcation of nonlinear operators with potential branching systems / N. A. Sidorov, V. A. Trenogin : Preprint. - Irkutsk : Irkutsk Computing Center SB RAN, 1991.
17. Sidorov N. A. Investigation of points of bifurcation and continuous branches of solutions of the nonlinear equations, // N. A. Sidorov, V. A. Trenogin // In Differential and Integral Equations. - Irkutsk : Irkutsk University, 1972. - P. 216-248.
18. Trenogin V. A. Potentiality, group symmetry and bifurcation in the theory of branching equations, / V. A. Trenogin, N. A. Sidorov, B. V. Loginov // Different. and Integral Equat. - 1990. - Vol. 3. - P. 145-154.
19. Vainberg M. M. Branching Theory of Solutions of Nonlinear Equations / M. M. Vainberg, V. A. Trenogin // Monographs and Textbooks on Pure and Applied Mathematics. - Leyden : Noordhoff International Publishing, 1974.
20. Vlasov A. A. Theory of Many-particles / A. A. Vlasov. - U.S. Atomic Energy Commission, Technical Information Service Extension, 1950.
21. Lyapunov - Schmidt Methods in Nonlinear Analysis and Applications / N. A. Sidorov, B. V. Loginov, A. V. Sinitsyn, M. V. Falaleev. - Springer Publ., 2003. (Mathematics and Its Applications ; vol. 550).
22. Sidorov N. A. Bifurcation Points of Nolinear Equations / N. A. Sidorov, V. A. Trenogin // Nonlinear Analysis and Nonlinear Differential Equations / eds. by V. A. Trenogin and A. T. Fillippov. - M. : Fizmatlit, 2003. - P. 5-49.
23. Sidorov N. A. Stationary Vlasov-Maxwell System in the Bounded Domain / N. A. Sidorov, A. V. Sinitsyn // Nonlinear Analysis and Nonlinear Differential Equations / eds. by V. A. Trenogin and A. T. Fillippov. - M. : Fizmatlit, 2003. - P. 50-84.
24. Loginov B. V. Group Symmetry of the Lyapunov-Schmidt Branching Equation and Iterative Methods in the Problem of Bifurcation Points / B. V. Loginov, N. A. Sidorov // Matematicheskii Sbornik. - 1991. - Vol. 182 (5). - P. 681-690.
25. Sidorov N. A. Explicite and Implicite Parametrization in the Construction of Branching Solutions / N. A. Sidorov // Matematicheskii Sbornik. - 1995. - Vol. 186 (2). - P. 129-140.
26. Sidorov N. A. Interlaced branching equations in the theory of non-linear equations / N. A. Sidorov, V. R. Abdullin // Mat. Sb. - 2001. - Vol. 192(7). - P. 107-124.
27. Sidorov N. A. Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov -- Maxwell system / N. A. Sidorov, A. V. Sinitsyn // Mat. Zametki. - 1997. - Vol. 62(2). - P. 268--292.
28. Sidorov N. A. Index theory in the bifurcation problem of solutions of the Vlasov-Maxwell system / N. A. Sidorov, A. V. Sinitsyn // Matem. Mod. - 1999. - Vol. 11(9). - P. 83--100.
29. Sidorov N. A. On bifurcation points of stationary Vlasov-Maxwell system with bifurcation directon / N. A. Sidorov, A. V. Sinitsyn // European consortium for mathematics in industry. Progress in industrial mathematics at ECMI-1998 Conference. - Teubner, Stuttgart, 1999. - P. 292-230.
30. Trenogin V. A. Bifurcation, Potentiality, Group-Theoretical and Iterative Methods / V. A. Trenogin, N. A. Sidorov, B. V. Loginov // Zeitschrift fur angewandte Mathematik und Mechanik. - 1996. - Vol. 76. - P. 245-248.
31. Rudykh G. A. On Bifurcation Stationary Solutions of 2-Particle Vlasov - Maxwell System / G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn // Doklady Akademii Nauk SSSR. - 1989. - Vol. 304 (5). - P. 1109-1112.
32. Sidorov N. A. Successive Approximations to Solutions of Nonlinear Equations with Vector Parameter in the Irregular Case / N. A. Sidorov, D. N. Sidorov, R. Yu. Leontiev // Sibirskii Zhurnal Industrial'noi Matematiki. - 2012. - Vol. 15(1). - P. 132-137.
33. Sidorov N. A. Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind / N. A. Sidorov, D. N. Sidorov // Differ. Equ. - 2006. - Vol. 42. - P. 1312-1316.
34. Sidorov N. A. Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method / N. A. Sidorov, D. N. Sidorov, A. V. Krasnik // Differ. Equ. - 2010. - Vol. 46. - P. 882-891.
35. Vedenyapin V. V. Kinetic Boltzmann, Vlasov and Related Equations / V. V. Vedenyapin, A. V. Sinitsyn, E. Dulov. - Elsevier Publ., 2011.
36. Sidorov N. A. On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhood / N. A. Sidorov, R. Yu. Leont'iev, A. I. Dreglea // Mathematical Notes. - 2012. - Vol. 91(1). - P. 90-104.
37. Sidorov N. A. Small solutions of nonlinear differential equations near branching points / N. A. Sidorov, D. N. Sidorov // Russ. Math. - 2011. - Vol. 55 (5). P. 43-50.

Н. А. Сидоров
 Точки бифуркации нелинейных операторов: теоремы существования и приложения к исследованию систем ВласоваМаксвелла

Аннотация. Дан обзор теорем существования точек бифуркации решений нелинейных операторных уравнений в банаховых пространствах. Получены достаточные условия ветвления решений граничных задач для систем Власова-Максвелла. При построении асимптотики репений граничной задачи используется аналитический метод Ляпунова-Шмидта-Треногина.

Ключевые слова: точка бифуркации, нелинейный анализ, система ВласоваМаксвелла, плазма, индекс Конли, метод Ляпунова-Шмидта-Треногина.

Сидоров Николай Александрович, доктор физико-математических наук, профессор, Институт математики, экономики и информатики, Иркутский государственный университет, 664033, Иркутск, ул. K.Маркса, 1 (sidorovisu@gmail.com)

Sidorov Nikolay, Irkutsk State University, 1, K. Marks St., Irkutsk, 664003, professor, Phone: (3952)242210 (sidorovisu@gmail.com)

