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Abstract. The review of existence theorems of bifurcation points of solutions for
nonlinear operator equation in Banach spaces is presented. The sufficient conditions
of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell system are
considered. The analytical method of Lyapunov-Schmidt-Trenogin is employed.
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Introduction

One of the current problems in natural sciences is study of kinetic Vlasov-
Maxwell (VM) system [20] describing a behaviour of many-component plas-
ma. A large literature on the existence of solutions for the VM system
is available, for example, see under references [1, 3, 11, 21, 35] and the
references given there. Nevertheless, the problem of bifurcation analysis of
VM system, which was first formulated by A. A. Vlasov [20], has appeared
very complicated on the background of progress of bifurcation theory in
other fields and it remains open up to the present time. There are only
some isolated results. In [9, 10] the VM system is reduced to the system
of semilinear elliptical equations for special classes of distribution functions
introduced in [12]. The relativistic version of VM system for such distri-
butions was considered in [1]. One simple existence theorem of a point of
bifurcation is announced in [13], and another one is proved for this system
in [14].
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Vladilen A. Trenogin laid out the fundamentals of the modern analytical
branching theory of nonlinear equations. Here readers may refer to his
monograph [19], chapters 7-10. The bifurcation theory have been developed
by various authors [5, 6, 15, 16, 17, 18, 21, 22, 25, 30|, etc. The approximate
methods of construction branching solutions were constructed in [21, 22,
24, 25, 26, 27, 28, 30, 31, 32, 33, 34], [36, 37]. The readers may refer to the
pioneering research contributions presented in original paper [13, 14, 23, 29],
in the monograph [21] as well as in recently published monograph [35] in
the field of bifurcation analysis of the Vlasov-Maxwell systems.

The objective of the present paper is to give the survey of a general
existence theorems of bifurcation points of VM system with the given boun-
dary conditions on potentials of an electromagnetic field both the densities
of charge and current. Here we apply our results of bifurcation theory from
[15, 17, 21, 22, 23] and we use the index theory [2, 7, 22] for the study of
bifurcation points of the VM system.

We consider the many-component plasma consisting of electrons and
positively charged ions of various species, which described by the many-
particle distribution function f; = f;(r,v), ¢ = 1, N. The plasma is confined
to a domain D C R? with smooth boundary. The particles are to interact
only by self-consistent force fields, collisions among particles being neglec-
ted.

The behaviour of plasma is governed by the following version of the
stationary VM system [20]

1
v O fit @i/ mi Bt —v x B) - 9y fi = 0, (1)
reDCR? i=1,...,N,
curlll =0,
divB =0
N A
divll = 4w Z qk/ Je(r,v)dv = p, (2)
k=1 B

N
4
curlB = — qu/ v fi(r,v)dv 2 J.
C 1 R3

Here p(r), j(r) are the densities of charge and current, and F(r), B(r) are
the electrical and the magnetic fields.

We seek the solution £, B, f of VM system (1)—~(2) for r € D C R?
with boundary conditions on the potentials and the densities

U lap=uo1, (A,d) |ap= uo2; (3)

p |(9D:07 .7 |(9D: 07 (4)
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where I/ = —0,U, B = curlA, and U, A be scalar and vector potentials.
We call a solution £°, BY, fY for which p° = 0 and j° = 0 in domain
D, trivial.
In the present paper we investigate the case of distribution functions of
the special form [9]

“ A o~
filr,v) = Mi(—av® + @i(r), v-di + i(r)) = Mi(R, G) (5)
wi:R®* = R; ¢;:R*—> R, reDCR? veR%
ANERT; oy GRJré [0,00); d; € R i=1,...,N,

where functions ;, 1;, generating the appropriate electromagnetic field
(E, B), has to be defined.

We are interested in the dependence of unknown functions ¢;, ¥; upon
parameter A in distribution (5). Here we study the case, when A in (5)
does not depend on physical parameters «; and d;. The general case of a
bifurcation problem with c; = a;(\), d; = di(N), wi = @i(A, 1), Wy = Yi(A, 1)
will be considered in the following paper.

Definition 1. The point \° is called o bifurcation point of the solution
of VM system with conditions (3), (4), if in any neighbourhood of vector
(A2, B9, BY f9), corresponding to the trivial solution with p® = 0, j° = 0
in domain D, there is a vector (A, E, B, f) satisfying to the system (1)-(2)
with (3), (4) and for which

1E—E" |+ B=B"|+]f-fI>o0.

Let ¢, 9 are such constants that the corresponding p° and j°, induced
by distributions f; in the medium for ¢?, ¥, are equal to zero in domain
D. Then VM system has the trivial solution

in _ )\fi(_aiv%rgpgy v~di+w?), B0 — 0, BY = pdy, [—const for VA

The organization of the present work is as follows. In Section 2 two
theorems of existence of bifurcation points for the nonlinear operator equa-
tion in Banach space generalizing known results on a bifurcation point are
proved. The method of proof of these theorems uses the index theory of
vector fields |2, 7] and allows to investigate not only the point, but also the
bifurcation surfaces with minimum restrictions on equation.

In Section 3 we reduce the problem on a bifurcation point of VM system
to the problem on bifurcation point of semilinear elliptic system. Last one is
treated as the operator equation in Banach space. We derive the branching
equation (BEq) which allows to prove the principal theorem of existence
of bifurcation points of VM system because of results of the Section 2. An
essential moment here is that the semilinear system of elliptic equations is
potential that reduces to potentiality of BEq.
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It follows from our results that for the original problem (1) — (4) the
bifurcation is possible only in the case, when number of species of particles
N > 3.

1. Bifurcation of solutions of nonlinear equations in Banach
spaces

Let E;, FE5 are real Banach spaces; T be normalized space. Consider the
equation

Bx = R(x,¢). (6)

Here B : D C Ey — FE5 be closed linear operator with a dense range

of definition in Fy. The operator R(x,¢) with values in Fj is defined, is

continuous and continuously differentiable by Frechet with respect to = in
a neighbourhood

Q={xe bk, zceX:al|<r |c]|<o}

Thus, R(0,2) = 0, R,(0,0) = 0. Let operator B be Fredholm. Let us
introduce the basis {¢;}} in a subspace N(B), the basis {¢;}} in N(B*),
and also the systems {v;}? € EY, {2} € F2 which are biorthogonal to
these bhasises.

Definition 2. The point o is called a bifurcation point of the equation
(6), if in any neighbourhood of point x = 0, £¢ there is a pair (x,) with
x # 0 satisfying to the equation (6).

It is well known [19] that the problem on a bifurcation point of (6) is
equivalent to the problem on bifurcation point of finite-dimensional system

L(£7€) =0, (7)

where £ € R, L : R* x T — R" We call equation (7) the branching
equation (BEq). We wright (6) as the system

By = R(z,2) + ) &z (®)
s=1
fs:<$7%>y 811,...,71, (9)

where B B ¢ Sv ;< -,7s > zs has inverse bounded. The equation (8)
has the unique small solution

r = nggps + U(£,€) (10)
s=1
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at & — 0, £ — 0. Substitution (10) into (9) yields formulas for the coordi-
nates of vector-function L : R* x T — R"

Iu(ere) —< B3 g + U202 ) > (1)
s=1

Here derivatives
Ol
i

are continuous in a neighbourhood of point £ = 0, || I'R.(0,¢) ||< 1.

Let us introduce a set @ = {e | det|a;(€)] = 0}, containing point £ = 0
and the following condition:

A) Suppose that in a neighbourhood of point £y € € there is a set S,
being Jordan continuum, representable as S = S;|JS_, g0 € 9S4 (IS—.
Moreover, there is a continuous map £(t), t € [—1, 1] such that ¢ : [-1,0) —
S_, e (0,1 = Sy, &(0) = eo, detlaw(e(®))]ff=; = a(t), where a(t) :
[~1,1] — R! be continuous function vanishes only at ¢ = 0.

_ de
le—o—< Ra(0,8)(I — TR.(0,)) " 05, g > aiple)

Theorem 1. Assume condition A, and a(t) is monotone increasing fun-
ction. Then &g be a bifurcation point of (6).

Proof. We take arbitrarily small » > 0 and ¢ > 0. Consider the continuous
vector field

H(E,0) “ Lig, (20 — 1)) : B" x R' — R™,

defined at £,© € M, where M{£, 0 ||| {||=r, 0 <O <1}

Case 1. If there is a pair (£*,©*) € M for which H(£*,©*) = 0, then by
definition 2, g will be a bifurcation point.

Case 2. We assume that H(£,0) # 0 at V(£,©) € M and, hence, &g is not
a bifurcation point. Then vector fields H(&,0) and H (£, 1) are homotopic
on the sphere || ¢ ||= r. Consequently, their rotations [6] are coincided

JOH(E,0), 1€ ll=r) = JCH(E D), ([ £ [I=7) (12)
Since vector fields H(£,0), H(&, 1) and their linearizations

LT S anle(=6)& 121,
k=1

LHO S anl(1a)& 1y
k=1

are nondegenerated on the sphere || £ ||= r, then by smallness of » > 0,
fields (H(&,0), H(&,1) are homotopic to the linear parts L7 (€) and L (€).
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Therefore
JH(E0), | E[|=7r) = J(Ly ), 1€ [I=7) (13)
JH (&), 1€ =) = T 1 € 1= 7). (14)

Because of nondegeneracy of linear fields Lf(ﬁ), by the theorem about
Kronecker index, the following equalities hold

JLL (&), 1 € l=r) = signa(=9),

(
J(L{ (), || € ||= ) = signa(+5)
Since a(—0) < 0, a(+4) > 0, then the equality (12) is impossible by (13),
(14). Hence, we find a pair (£*,©*) € M for which H(¢*,0*) = 0 and ¢ be
a bifurcation point.

Remark 1. If the conditions of the theorem 1 are satisfied for Ve € Qg C
2, then Qg be a bifurcation set of (6). If moreover, g is connected set and
its every point is contained in a neighbourhood, which is homeomorphic to
some domain of R™, then (g is called n-dimensional manifold of bifurcation.

For example, it is true, if T = R™"', n > 1, Qg be a bifurcation set
of (6) containing point ¢ = 0 and V.det[ar(2)] |.=0# 0. It follows from
the theorem 1 at Y = R! the generalization [17], and also other known
strengthenings of M.A. Krasnoselskii theorem on a bifurcation point of odd
multiplicity [6]. An important results in the theory of bifurcation points
were obtained for (6) with potential BEq to &, when

L(¢, ) = grad:U(€, ¢). (15)

This condition is valid, if a matrix [%Lf]?kzl is symmetric. By differentiation
of superposition, one finds from (11) that

OLy =< R, (Z 53908 + U(£7 8)7 8) (901 + a_U> ) 1/% >, (16)
s=1

9 i
where according to (8), (10)

ou
i + = = (I —=TR,) ;. 1
vit e ( R.)" (17)

The operator I — I'R, is continuously invertible because || 'R, ||< 1 for
sufficiently small by norm ¢ and . Substituting (17) into (16) we obtain
equalities
OLy
D&

It follows the following claim:

—< R,(I =TR,) ros, ¢ >, i,k =1,...,n.
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Lemma 1. In order BEq (7) to be potential it is sufficient that a matriz
== [< Rm(FRm)mgpzﬁwk >]Zk:1
to be symmetric at ¥(x, ) in a neighbourhood of point (0,0).

Corollary 1. Let all matrices
[< Rm(FRm)mQOi, WV >]Zk:1, m=20,1,2,...

are symmetric in some neighbourhood of point (0,0). Then BEq (7) be
potential.

Corollary 2. Let By = Ey = H, H be Hilbert space. If operator B
is symmetric in D, and operator R.(x,£) is symmetric for Y(x,£) in a
neighbourhood of point (0,0) in D, then BEq be potential.

In the paper [16] more delicate sufficient conditions of BEq potentiality
have been proposed.

Suppose that BEq (7) is potential. Then it follows from the proof of
lemma 1 that the corresponding potential U in (15) has the form

U(ED) =5 3 ai(e +wlE2),

k=1
where || w(¢,2) [|[=0(] € [?) at £ — 0.

Theorem 2. Let BEq (7) be potential. Assume condition A). Moreover, let
the symmetrical matriz |a;,(£(t))] possesses at least v1 positive eigenvalues
at t > 0 and at least v positive eigenvalues at t < 0, vy #£ vo. Then eg will
be a bifurcation point of (6).

Proof. We take the arbitrary small 6 > 0 and we consider the function
U(£,2((20 — 1)0)), defined at © € [0, 1] in a neighbourhood of the critical
point ¢ = 0.

Case 1. If there is ©* € [0, 1] such that & = 0 is the nonisolated critical
point of the function U (&, £((20* — 1)4), then by definition 2, ¢ will be a
bifurcation point.

Case 2. Assume that point & = 0 will be the isolated critical point of the
function U (&, £((20—1)4)) at VO € [0, 1|, where £(¢) be continuous function
from condition A). Then at YO € [0, 1], the Conley index [2] Kg of the
critical point & = 0 of this function is defined. Let us remind that

DU (€,2((20 — 1)6))
008

Since a((20 — 1)8) # 0 at © # 1, then the critical point £ = 0 at © #

% is nonsingular. Therefore, index K¢ for any © # % by the definition

det | le—o— (26 — 1)).
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(here readers may refer to p.6 [2]), is necessary equal to number of positive
eigenvalues of the corresponding Hessian. Thus, Kg = 11, K7 = v, where
V1 # Vo by the condition of theorem 2. Hence, Ko # K;. Suppose that &g
is not a bifurcation point. Then V¢U(£,2((20 — 1)) #0 at 0 <|| £ [|< 7,
where r > 0 is small enough, © € [0, 1]. Because of homotopic invariancy of
Conley index (see theorem 4, p.52 in [2]), Kg is constant at © € [0, 1] and
Ky = K;. Hence, in the second case we find a pair (£*,©*) for arbitrary
small » > 0, 6 > 0, where 0 <|| & ||< r, ©* € [0,1], satisfying to the
equation VU (&,2((20 — 1)6) = 0 and &g is a bifurcation point.

Remark 2. Other proof of the theorem 2 with application of the Roll
theorem is given in [18] for the case Y = R, vy =n, v_ = 0.

Remark 3. The theorems 1, 2 (see remark 1) allow to construct not only
the bifurcation points, but also the bifurcation sets, surfaces and curves of
bifurcation.

Corollary 3. Let Y = R! and BEq be potential. Moreover, let ik (€))7 =1
be positively definite matriz at = € (0,r) and negatively defined at = €
(—r,0). Then £ =0 is a bifurcation point of (6).

Consider the connection of eigenvalues of matrix [a;x(£)| with eigenvalues
of operator B — R,(0,¢).

Lemma 2. Let £y = E», = E, ¢ € R'; v = 0 be isolated Fredholm point
of operator-function B — vI. Then

k n
sign(e) = (—1)ksignH1/i(€) = signHui(e)

where k be a root number of operator B; {u}} are eigenvalues of matrix
[aik(2)], A(e) = det|a(e)].

Proof. Since {y;}} are eigenvalues of matrix [a;x(¢)], then T[} pi(e) =
A(g). Thus, it is sufficient to prove the equality A(g) = (—1)* [¥ vi(e).
Since zero is the isolated Fredholm point of operator-function B — v, then
operators B and B* have the corresponding complete Jordan systems [19]

AV = Ol T = ) Y i1 ns s = 1 B (18)

Here
< @B i > 5, <g0,,1/1< Vs b, =1, n; Y Pi=k
Let us remind that

-1
o) £ oy = TPy £ g, — oyl T <B+Z< L > >> ;
(19)
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where k = Iy + ... + [, we call a root number of operator B — R,(0,¢).
The small eigenvalues v(e) of operator B — R,.(0, £) satisfy to the following
branching equation [19]

L(v,2) £ det |< Ro(0,2)+uT)(T—T Ry (0, 2) =) "\ps, 005 >, = 0. (20)

Because of preliminary Weierstrass theorem [19], p. 66, by the equalities
(18), (19), equation (20) in a neighbourhood of zero will be transformed to
the form

Lv,e) = (W* + H_(e)* 1 ...+ Ho(£)Q(g,v) = 0,

where Hi_1(2), ..., Ho(g) = A(g) are continuous functions of , €(0,0) # 0,
Hy(0) = 0. Consequently, operator B— R,(0, <) has k > n small eigenvalues
vi(e), i = 1,...,n, which we may define from the equation

VP Hy (e L Ae) = 0.

Then [¥ vi(e) = Ale)(—=1)*.

Assume now ¢ € R!. Consider the calculation of asymptotics of eigen-
values p(g) and v(e). Let us introduce the block representation of matrix
|aik]7 -1, satisfying the following condition:

B) Let [au ()| pey = [Aik(g)]é,kzl ~ [5”1”4?1@]2,1@:1 at € — 0, where [Ay]
are blocks of dimensionality [n; x ng], 1 + ... +ng=n, min(rya,...,rqg) =

A .. , N
ri =g B > rpat k> (orat k <), i=1,...,1 Let [} det[A%] # 0.
The condition B) means that matrix | (¢)];;—; admits the block repre-
sentation being "asymptotically trianglar"at £ — 0.

Lemma 3. Assume B). Then

l
detlase()[ oy — Mt (H det | A% | +o<1>),
1

formulas
i ="(C; +0(1)), i=1,...,1 (21)

define the principal terms of all n eigenvalues of matriz | a;k(£) |Zk:1, where
wi, Ci € R™; C; be vector of eigenvalues of matriz AY,.

Proof. By B) and the property of linearity of determinant, we have
A+ o), 0(1)...... e 0(1)

A3, +0(1), A +0(1), 0(1)...0(1)
det[aik(g)] _ €n17“1+m+nlrl det 21 22 )
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l
€n17‘1+m+nl7'l (H det | Azoz | +O(1)> .

Substituting p = £"ic(e), i = 1,...,1 into equation det | a;k(£)— 1o |’sz,€:1:
0 and using the property of linearity of determinant we obtain equation

t—1
8”171+~~~+ni—17'7;—1+<ni+~~~+nl)7'1'{H det | A?j
J=1
det(AY, — (e)E) ()t t=4 gy} =0, i=1,...,1, (22)

where a;(¢) — 0 at £ — 0. Hence, the coordinates of unknown principal
terms C; in asymptoticses (21) satisfy to the equations det | A%, — E |= 0,
i=1,...,1

If k = n, then operator B — R,(0,¢), as well as the matrix [aix(e)]7—;
has n small eigenvalues. In this case we state a result:

Corollary 4. Let operator B has not I- joined elements and let the con-
dition B) holds. Then the formula

vi=—e"(C; +0(1)), i=1,....1 (23)

defines all n small eigenvalues of operator B — R,(0,2), where C; € R™ be

vector of eigenvalues of matriz A%, i=1,...,1, n1+...+n; =n.

Proof. By lemma 2 in this case Y 7 P = n (root number k = n) and
operator B — R,(0, ) possesses at least n small eigenvalues. Since le n; =
n, AY is quadratic matrix, then formula (23) yields n eigenvalues, where
the principal terms coincide to within a sign with principal terms in (21).
For calculation of eigenvalues v of operator B — R,(0, <) we transform (20)
to the form

L(v,e) = detlam(e) + > b3 w2, =0, (24)
j=1

where
b0 =< (I = TRy (0,2)) ' TP 1T = T Rp(0,2)) " ps, 14 > -

Substituting ¥ = —&"¢(g) into (24) and taking into account the property
of linearity of determinant we shall receive the equation, which differs from
(22) by error term a;(<) only. Then in conditions of corollary 4 the principal
terms of all small eigenvalues of operator B — R,.(0, ) and matrix —[a;z(e)]
are defined from the same equations and therefore, are equal.

Conclusions. 1) By lemma 3 we can replace condition A) in the theorem
1 with the following one:
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A*). Let Ey = Ey = F; v = 0 be isolated Fredholm point of operator-
function B — vI. Let in a neighbourhood of point ¢y € {2 there is a set
S, containing point £y and be continuum represented as S = S [JS_.
Moreover, assume

g0 €954 (0S=; [ wile) lees, - [ vile) lees_< 0,

where {v;(2)} are small eigenvalues of operator B — R,(0, ).

2) If the principal terms of asymptotics of small eigenvalues of operator
B—R,(0, ) and matrix [a;(¢)|?,_, coincide, then we may use eigenvalues of
such operator in the theorem 2. By corollary 4 it is possible, if £} = Fy = H,
operators B and R, (0, ) are symmetric and condition B) is valid. Let us
note that condition B) is valid in papers [15, 16, 17, 18] about bifurcation
point with potential BEq, thus ry = ... =r, = L.

2. Statement of boundary-value problem and problem on a
bifurcation point for the system (32) [9]

We begin with a one preliminary result on reduction of VM system (1)-
(2) with conditions (3) to the quasilinear system of elliptical equations
for distribution (5), was first investigated in [10]. Assume the following
condition:

C). fi(R, G) are fixed, differentiable functions in distribution (5); «;, d;
are free parameters; | d; |/ 0; ©; = c1; + Lip(r), Wi = coi + kitp(r); ¢, coi-
const; the parameters I;, k; are connected by relations
[PLLC S W LR B (2 B T B (25)

Q1q1 my mi msg

and the integrals [ps fidwv, S s fivdv converge at Y;, 1.
. . A A A
Let us introduce notations m; =m, o = «, ¢1 = ¢.

Theorem 3. Let f; are defined as well as in (5) and the condition C) is
valid. Let the vector-function (p, ) is a solution of the system of equations

N
Srag
A — d —
e M;qk/Rka v, p=—
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20
o lop= ——Lug1, ¥ lop= ——ug (27)
m me
on a subspace
(&gpi, dz) = O, ((97«’(/}@', dz) = O, 1= 1, N ,N. (28)

Then the VM system (1), (2) with conditions (5) possesses a solution

m d ! me
E = — 0y, B _ —= 9 - T 2 ?
Sipy B =3+ [ (@x (). na) —ldx o0l (29
where
g A ir
= E / vfrdv, B — const.
The potentials
m me
U 20[(]@7 ngl/fd + 1(7’), ( 1, d) 0 (30)

satisfying to condition (3) are defined through this solution.

The proof of theorem 3 follows from theorem 1 of paper [14].
Introduce notations

R R I S I
R3 R3

and the following condition:
D). There are vectors 3; € R? such that j; = Bips, i = 1,..., N.
For example, the condition D holds for distribution

fi = fila(—aav® 4 @) + b((ds, v) + 1)) (31)

for 8; = S &dz, a, b-const.
Suppose that condition D is valid. Then the system (26) will be trans-
formed to the following

N N
Ao =Y qihs, Db = > qi(Bi, d) Ay, (32)
i=1 i=1
where
Ailip, kb, i, di) 2 / fidv.
R3
Further, we shall suppose that the auxiliary vector d in (5) is directed

along axes Z. Because of conditions (28) we put in system (32) ¢ = p(x,y),
v =(x,y), 2,y € D C R% Moreover, let N >3 and L 7 const.
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Let D be bounded domain in R? with the boundary 9D of class C>%,

€ (0, 1]. The boundary conditions (4) on the densities of local charge and
current induce the equalities:

I.

N N
D G Aelle® ke o di) = 03 ae(Be, ) Ar(leg®, ket i, ds) = 0
k—1

k=1

(33)
for Ve € 1, where ¢ is a neighbourhood of point € = 0 and
gpo — —@u 1/,0 — iu (34)
Ut e 02
Remark 4. f N =2 and 3; = 2a , then by condition I and equalities
(Bi, d) = ]lc we have alternative: or in condition I: Ay = Ay = 0or k; = {;,

i=1,2. In this case, and also at Z =const the system (32) is reduced to one
equation and bifurcation of solutlons in such approach, as it is considered
in this paper is impossible.

By (33), (34) system (32) with boundary conditions

¢ lop=¢" ¥ lop=1v"° (35)

has a trivial solution ¢ = ¢°, ¥ = ¢¥% at VA € R,
Then because of theorem 3 the VM system with boundary conditions
(3), (4) has a trivial solution at VYA
o m

= —9,0° =0, B"=pd, reDcCR?
2aq

FO = M= + en + Ui, (v,di) + e + kiy?).

Thus, the densities p and j vanish at domain D.

Now our purpose is to find A\p in neighbourhood of which system (32),
(35) has a nontrivial solution. Then the corresponding densities p and j will
be identically vanish at domain D, and the point Ag is a bifurcation point
of the VM system with conditions (4), (5).

Let functions f; are analytical in (5). Using the expansion in Taylor series

>

Alry) = D0 5 — %)

: )0, y)
= x

.0
+(y y)ay

and selecting linear terms, we transform (32) to operator form

(Lo — AL1)u — Ar(u) = 0. (36)
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Here
A0 0 Wy,
Lo = ,u=(p—¢, v—=97); (37)
0 A
HA HA
N 'UZS D Mks 8ys
A
L= Z s HA, HA, -
s=1 Vls(/Bsy d) Or Vk;s(/BSy d) oy m:ls@()’y:kswo
wly ply
; (38)
I/T3 I/T4
r(u) =Y > pis(u)bs, (39)
i>l s=1
where

A (s 0 az 0 0
is :,_Ls a. s _Ass s fvs
pus) £ B (Lo + b A1 k)

are ¢ homogeneous forms by u;
Gtz .
gy ) lemtugnypin=0 at

2< i fin<l—1, s=1,....N; 1>2 bs2 (,v(Bs,d)).

We study the problem of existence of a bifurcation point \° for (32), (34)
as the problem on bifurcation point for operator equation (36). Let us
introduce Banach spaces C%%(D) and C%¥(D) with norms || - 2.4, || - llo.a
and W22(D), which is usual L2 Sobolev space in D. Let us introduce Banach

A .
space I of vectors u = (u1,us2), where u; € Ly(D), Ly be real Hilbert
space with internal product ( , ) and the corresponding norm || - ||, (D).

. A .
As a range of definition D(Lg) we take set of vectors u = (up,uz) with
2

02, 022
u; €W (D). Here W (D) denotes W22 functions with trace 0 on
0D. Hence, Ly : D C FF — F is linear self-adjoint operator. By virtue
of embedding
W23D)c C*D), 0<a<l (40)

the operator r : W22 C E — E be analytical in neighbourhood of zero. The
operator L1 € L(E — FE) is linear bounded. For matrix corresponding to
operator L; we shall keep same notations. By embedding (40) any solution of
the equation (36) will be Holder in D(Lg). Moreover, because the coefficients
of (36) are constant, then vector »(u) will be analytical, 9D € C%® and
thanks to well-known results of the regularity theory of weak solutions [8],

02,2
the being searching generalized solutions of (36) in W (D) belong to C%.
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By theorem 3 on reduction of VM system, the bifurcation points of problem
(32), (34) are the bifurcation points of solutions of VM system (1), (2) with
boundary conditions (3), (4). Thanks to given conditions on Ly and L4,

. . . A
all singular points of operator- function L(A) = Lo — ALy be Fredholm.
The bifurcation points of nonlinear equation (36) we can found only among
points of a spectrum for linearized system

(Lo — ALy)u = 0. (41)

For study of spectrum problem (41) we preliminary find the eigenvalues and
the eigenfunctions of matrix Ly in (41) for physically admissible parameters.
With this purpose, we introduce the following condition:

1I: (T1T4 — T2T3) >0, T7 <0.

Lemma 4. Let 2% — %@i >0,i=1,....,N at x = Liy°, y = k'.

Assume
N -1

Z Z i (l]k]z — I{J]lz)(,@z — ,Bj7 Cl) > 07

i=2 j=1

A . .. . .
where a; = qi%, then condition II is valid.

Proof. Without loss of generality we put ¢ 2 G <0,q >0 1=
2,...,N. Then via (25) signq;l; = signg. Further, because of definition
of 11 (see.(38)), we verify that 77 < 0. The positiveness of 71Ty — ToT3
follows from equality

Ty — 1515 = Zliai Z ki(Bi, d)a; — Zkiaz’ Zli(/@h d)a; =

N i—1

Z Z aiaj(ljk:i - k]lz)(/gz - /8j7 d)
=2 j=1
Example. If 3; = 2%27 then (8;,d) = d_i% and
N i-1 , P
ZZ = aza;(ljk; — Lik;)™ - 2alil, > 0.
=2 j=1

Lemma 5. Let distribution function has a form (31) and f; > 0. Then

conditions D and II hold for 8; — %2%2, and the system (32) will be
transformed to the potential form

¥ ap 0 %—Z
A —\ , (42)
’(/J 0 as g—g
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where

N aly bk vd?
— Z (ll_k/ Ar(s)ds, a1 = u/a, az = b’ (43)
— ke Jo a

The proof is conducted by direct substitution (43) into the system (42).

Lemma 6. Letr = o € R',veR?d 2 dy. Then the system (32) with
potential (43) can be written as Hamiltonian system

=—0,H, $=0, H

o= —0pH, =08, H

with Hamiltonian function of the form

2 2
1= =22 - 2 V() ().

Here
alp by
=A A(s,)ds+ A A ds.
alz / . S+ agz / . (QO, )
The proof follows from lemma 2.2 (p.1152) of work [4].

Lemma 7. Assume IL. Then matriz Ly in (38) has one positive eigenvalue

X+ = wIh +0(1)
and one negative

Ty — 15T s
X_:n—l 1 2 3e+0(e), 77:—|q| >0 (44)
T m

A
ate == — 0.
Eigenvalue x— induces the eigenvactors of matrices Ly and L' respecti-
vely

C1 % CT 0
= + O(e), = + O(e).
Co 0 C; 1

The readers may refer to [14] for the proof.
Let us now consider the calculation of bifurcation points Ag of equation
(36). Setting in (36) A = Ag + ¢, we consider the equation

(Lo — ()\0 + e)Llu — ()\0 -+ E)T’(U) =0 (45)
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in neighbourhood of point Ag. Let 7o =£ 0 and 75 £ 0, or T = T3 = 0.
With the purpose of symmetrization of system at 7T £ 0 and 73 54 0 having
multiplicated both parts of (45) on matrix

10
A uT:
M = ,Wheredzgyé(L
~ I/Tg
0 a
we write (45) as
Bu = eBiu + (Ao + €)R(u). (46)

Here B = M (Lo — MoL1); R(u) 2 Mr(u) 2 (r1(u), ro(u)); By € L(E — E)
be Fredholm self- adjoint operator. If Ay = Ag(alsp + bkgt)), then
DA, DA d? b ds

= AI = AI a = e s — — .
Ay b o @ 4= Mb/(y2aa) s a 20

In expansion (39)
0is = 224D (al g + bht®) (alsur + ko)’

Thus, in this case g% = % matrix R,(u) will be symmetric for Vu and

operator Ry, : Iv — IV is self—adJomt for Yu.

Remark 5. If T, = T35 = 0, thenweputa = 1. If T, = 0, T3 £ Oor T3 = 0,
T, + 0, then the problem (36) has not the property of symmetrization
and we should work with (45). In this case for study of the problem on
bifurcation point we may use our results from [13].

Let @ be eigenvalue of the Dirichlet problem

—Ne=pe elsp=0 (47)
and {eq,...,e,} be orthonormalized basis in a subspace of eigenfunctions.
Denote by c_ = (1, ¢2)’ the eigenvector of matrix Ly, which corresponds to

eigenvalue y_ < 0.

Lemma 8. Let A\g = —p/x—. Then Ao > 0, dimN(B) = n and the
system {e;}7? |, where e; = c_e; forms basis in a subspace N(B).

Proof. Let us introduce matrix of columns A, which are the eigenvectors
of matrix Ly corresponding to eigenvalues x_, x4. Moreover,

x- 0
ATYLA = . LoA = ALg

0 X+

and equation Bu = 0 by change u = AU will be transformed to the form

M[LoAU — M\gL1AU] = M[A(LoU — MATLIAU)] =
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Hence, from here follows that the linear system (41) is decomposed onto
two linear elliptical equations

AUl — )\OX—Ul - O, U1 |8D: O, AUQ — )\0X+U2 - O, U2 |8D: O, (48)

where \ox— = —p, Aox4 > 0. From (47) follows that p € o(—A). Hence,
Ui = Z?zl aze;, ap — const, Uy = 0 and
Uy Cl— Cl+ Uh ci— | n
=AU = = = Z €.
u2 Co— Coy 0 Co_ | i=1

Let us construct Lyapunov-Schmidt BEq for equation (46).

Without loss of generality we assume that the eigenvector ¢;_ of matrix
Ly is chosen such that x_(c?_ + Fc3_) = 1, where F' = *Ij—% Then the
system of vectors {Bje;}} ; is biorthogonal to {e;}? ,. Thus, operator

n
B=B+Y <.%>%
1

with = Bie; has inverse bounded I' € L(E — E), ' =T"*, I'y; = e,.
Rewrite (46) as the system

(B — eB)u = (Ao + )R(u) + Z Evi (49)

L=<u,u >, t=1,...,n. (50)

By the theorem on inverse operator we have from (49)
1 n
u=No+e) (I —el'B) 'TR(w) + —— > e (51)
1—c¢ —
From (50) we have

€ Ao+ €
1—E£Z+ 1—c¢

< R(u),e; >=0, (52)

where R(u) = R;(u) + Ry y1(u) + .... Because of the theorem on implicit
operator, equation (51) has unique solution for sufficiently small €, | £ |.

u=wuy(€e,e) + (Ao + )(I — eI'By) T {w(€e, ) +ugy1(€e,e) +...}. (53)

Here
n

ul(gey 6) - ! Zgieh

1—¢4
=1
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ul(ﬁe, 6) - §Rl(ul(gey 6))7
uig1(Ee, €) = N1 (ur(€e, e))+
0, 1>2

+
IR (ug (e, ))(do + ) (I — D' By)~Tuy(e,¢), 1 =2

and etc. Substituting the solution (53) into (52) we obtain desired BEq
L, ¢) =0 (BEq)
with L = (L', ..., L"),

i€ . Ao+ €
L' = £z+(1_€)l+1

[< Ri(Ce,e;) > +1L—e < Rip1(e, ;) >+

0, [1>2

/ +ri(£7€)7
ke < W(e(l —I'By) TRy (Ce), 00 >, 1 =2

re = o €N, i = 1,...,n. If L{¢,2) = gradU(¢,2), then we call BEq
potential. In potential case matrix L¢(&, <) is symmetric.

Let in (46) f; = fi(alip+bk), i = 1,..., N. Then from explained above
matrix R, (u) will be symmetric at Yu and we have the following statement:

Lemma 8. Let conditions C), D), I-I1 and Ao = —pu/x— hold. Then
equation (46) possesses so much small solutions u — 0 at X — Ao, as
small solutions & — 0 possesses BEq at € — 0. If in system (32) A; =
Ai(alyp + bki), i = 1,...,N; a,b—-const, then BEq will be potential.

Theorem 4 (Principal theorem). Let N > 3. Let conditions C, D,
I-1T and Ao = —p/x are valid, where i is n multiple eigenvalue of Dirichlet
problem (47). Number x_ see in (44). If n is odd, or distribution function
has the form f; = fi(a(—azv?+ ;) +b((di,v) + 1)), i =1,..., N, then Xo
be a bifurcation point of VM system b (1)-(2) with conditions (3)-(4).

Proof. Case 1. Let n is odd. Then in BEq
oL
Ale) = det ‘—k((), £)

n B c n
23 z’,k:li l—¢/) =

Since n is odd, then A(g) > 0 for ¢ € (0,1), and A=) < 0 for € € (—1,0)
and the statement of theorem follows from theorem 1.

Case 2. Let f; = fi(a(—azv?+p;)+b((ds,v)+1;)). Then BEq is potential,
moreover

OL,(0,e) ¢
85, a 1—¢

5ik7 i,kzl,...,n.
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BL4(0
Hence, all eigenvalues of matrix || ’“—E || are positive at £ > 0 and are

negative at £ < 0. Thus, the validity of the theorem in case 2 follows from
theorem 2.

3. Conclusion

The distributions functions f; in VM system depend not only upon A,
but also on parameters oy, d;, ki, [;. It seems interest to investigate a
behaviour of solutions of (1)-(2) with conditions (3), (4) depending from
these parameters. Applying theorems 1, 2 and their corollaries in the present
paper, we can prove the existence theorems of points and surfaces of bifur-
cation for this more complicated case.
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H. A. Cunopos

Toukn OudypkKamum HEJIMHENHBIX ONEPATOPOB: TEOPEMbI
CyIIECTBOBAHMS 1 MPUJIOXKEHNS K NCCIe0BAHNIO cucreMm Biacosa-
MakcBeJjia

Awnnoranus. Jlan 0630p TeopeM CyIecTBOBaHUS ToUeK OMdypKAINN pellleHnil Helu-
HEHHBIX OMEPATOPHBIX yPAaBHEHNT B 6AHAXOBLIX MPOCTPAHCTBAX. 1[0y densl JOCTATOTHEIE
YCJIOBHSI BETBJIEHWSI PEIleHnii TPAHWYHBIX 3a1a4 st cucTeM BaacoBa-Makcsenna. [lpu
MOCTPOEHUN ACUMITOTUKHU PEIIeHU TPAHUIHOW 3aJa9¥ WCIONB3YETCS AHATNTHIECKUIT
Metop JlamyroBa-IlIvuara-Tperornna.
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