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I n t r o d u c t i o n 

One of the current problems in natural sciences is study of kinetic Vlasov-
Maxwel l ( V M ) system [20] describing a behaviour of many-component plas¬
ma. A large literature on the existence of solutions for the V M system 
is available, for example, see under references [1, 3, 11, 21, 35] and the 
references given there. Nevertheless, the problem of bifurcation analysis of 
V M sys tem,which was firstformulated by A . A . V l a s o v [20], hasappeared 
very complicated on the background of progress of bifurcation theory in 
other fields and it remains open up to the present t ime. There are only 
some isolated results. In [9, 10] the V M system is reduced to the system 
of semilinear el l ipt ical equations for special classes of distr ibution functions 
introduced in [12]. The relativistic version of V M system for such distri¬
butions was considered in [1]. One simple existence theorem of a point of 
bifurcation is announced in [13], and another one is proved for this system 

in [14]. 
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Vlad i l en A . Trenogin laid out the fundamentals of the modern analytical 
branching theory of nonlinear equations. Here readers may refer to his 
monograph [19], chapters 7-10. The bifurcation theory have been developed 
by various authors [5, 6, 15, 16, 17, 18, 21, 22, 25, 30], etc. The approximate 
methods of construction branching solutions were constructed in [21, 22, 
24, 25, 26, 27, 28, 30, 31, 32, 33, 34], [36, 37]. The readers may refer to the 
pioneering research contributions presented in original paper [13, 14, 23, 29], 
in the monograph [21] as well as in recently published monograph [35] in 
the field of bifurcation analysis of the Vlasov-Maxwel l systems. 

The objective of the present paper is to give the survey of a general 
existence theorems of bifurcation points of V M system wi th the given boun¬
dary conditions on potentials of an electromagnetic field both the densities 
of charge and current. Here we apply our results of bifurcation theory from 
[15, 17, 21, 22, 23] and we use the index theory [2, 7, 22] for the study of 
bifurcation points of the V M system. 

We consider the many-component plasma consisting of electrons and 
positively charged ions of various species, which described by the many-
particle dis tr ibut ion function fi = / j(r , v), i = 1, N. The plasma is confined 
to a domain D С R 3 w i th smooth boundary. The particles are to interact 
only by self-consistent force fields, collisions among particles being neglec¬
ted. 

The behaviour of plasma is governed by the following version of the 
stationary V M system [20] 

v • drfi + qi/rrii(E + x B) • dvfi = 0, (1) 

r e D С R 3 , i = 1,...,N, 

curlE = 0, 

divB = 0 

divE = 47ry~]qk fk(r, v)dv = p, (2) 

curlB = — V f t / vfk{r, v)dv = j. 
c t[ J R 3 

Here p(r),j(r) are the densities of charge and current, and E(r),B(r) are 
the electrical and the magnetic fields. 

We seek the solution E, B, f of V M system (1)-(2) for r e D С R 3 

wi th boundary conditions on the potentials and the densities 

U \SD= u o i , (A,d) \ 9 D = u o 2 ; ( 3 ) 

P \dD=0,j \dD=0, (4) 
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where E = —drU, B = curlA,and U, A be scalar and vector potentials. 
We call a solution E 0 , B 0 , f 0 for which p0 = 0 and j0 = 0 in domain 

D , t r iv ia l . 
In the present paper we investigate the case of distr ibution functions of 

the special form [9] 

ft(r, v) = \}г(—агv2 + Pi(r),v • di + fa%(r)) = Xft(R, G ) ( 5 ) 

Pi : R3 -+ R; fai : R3 -+ R; r e D С R3; v e R3; 

X e R+; ai e R+ = [0, oo); di e R 3 , i = 1,...,N, 

where functions , generating the appropriate electromagnetic field 
(E, B ) , h a s to be defined. 

We are interested in the dependence of unknown functions ^i upon 
parameter X in distr ibution (5). Here we study the case, when X in (5) 
does not depend on physical parameters ai and d i . The general case of a 
bifurcation problem wi th ai = ai(X), di = di(X), (fi = ^i(X, r), fa = fa(X, r) 
wi l l be considered in the following paper. 

Definition 1. The point X 0 is called a bifurcation point of the solution 
of VM system with conditions (3), (4), if in any neighbourhood of vector 
(X0,E°,B0,f°)) corresponding to the trivial solution with p° = 0, j0 = 0 
in domain D,there is avector (X,E,B,f) satisfying to the system (1)-(2) 
with (3), (4) and for which 

\\ E — E 0 \\ + \\ B — B0 \\ + \\ f — f0 \\> 0. 

Let Lp0 ,fa0 are such constants that the corresponding p 0 and j 0 , induced 
by distributions fi in the medium for p 0 , f a 0 , a r e equa l t o z e r o i n domain 
D. T h e n V M system has the t r iv ia l solution 

f0 = Xfi(—aiv2 + p0,v• di+fa0),E° = 0 , B 0 = fidi,в — const for ^X. 

The organization of the present work is as follows. In Section 2 two 
theorems of existence of bifurcation points for the nonlinear operator equa¬
t ion in Banach space generalizing known results on a bifurcation point are 
proved. The method of proof of these theorems uses the index theory of 
vector fields [2, 7] and allows to investigate not only the point, but also the 
bifurcation surfaces wi th min imum restrictions on equation. 

In Section 3 we reduce the problem on a bifurcation point of V M system 
to the problem on bifurcation point of semilinear elliptic system. Last one is 
treated as the operator equation in Banach space. We derive the branching 
equation (BEq) which allows to prove the principal theorem of existence 
of bifurcation points of V M system because of results of the Section 2. A n 
essential moment here is that the semilinear system of elliptic equations is 
potential that reduces to potentiality of B E q . 
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It follows from our results that for the original problem (1) - (4) the 
bifurcation is possible only in the case, when number of species of particles 
N > 3. 

1. B i f u r c a t i o n o f s o l u t i o n s o f n o n l i n e a r e q u a t i o n s i n B a n a c h 
spaces 

Let E1,E2 are real Banach spaces; Y be normalized space. Consider the 
equation 

Bx = R(x,e). (6) 

Here B : D С E\ —>• E2 be closed linear operator w i th a dense range 
of definition in E\. The operator R(x,e) w i th values in E2 is defined, is 
continuous and continuously differentiable by Frechet w i th respect to x in 
a neighbourhood 

Q = {x e E 1 , e e Y : | | x \\<r, \\ e \\<Q}. 

Thus, R ( 0 , e ) = 0, Rx(0,0) = 0. Let operator B be Fredholm. Let us 
introduce the basis {ipi}n in a subspace N(B), the basis {фг}п in N(B*), 
and also the systems {i}n e E * , {zi}n e E2 which are biorthogonal to 
these basises. 

Definition 2 . The point e0 is called a bifurcation point of the equation 
(6), if in any neighbourhood of point x = 0 , e o there is a pair (x,e) with 
x = 0 satisfying to the equation (6). 

It is well known [19] that the problem on a bifurcation point of (6) is 
equivalent to the problem on bifurcation point of finite-dimensional system 

L(i,e)=0, (7) 

where £ e Rn, L : Rn x Y — Rn. We call equation (7) the branching 
equation ( B E q ) . We wright (6) as the system 

B x = R(x,e) + J2 £s zs (8) 
s=l 

£s =<x,Ys >, s = l,...,n, (9) 

1 < -,Yis 
has the unique small solution 

n 

x = J2 Zs<Ps + U (£,e) (10) 

- def 
where В = B + J2n=i < ',1s >Zs has inverse bounded. The equation (8) 

s = l 

n 
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at £ — 0, e — 0. Substi tut ion (10) into (9) yields formulas for the coordi
nates of vector-function L : Rn x T — Rn 

Lk(£, e)=<R( CsVs + U(£, е),е\фк >. (11) 
4 = i ' 

Here derivatives 

^ | f = o = < Rx{0,e){I - T R ^ e ) ) - 1 ^ , ^ >d= агк(е) 

are continuous in a neighbourhood of point e = 0, \\ YRx(0,e) \\< 1. 

Let us introduce a set Q = {e | det[aik(e)] = 0},containing point e = 0 
and the following condit ion: 

A ) Suppose that in a neighbourhood of point eo € П there is a set S, 
being Jordan continuum, representable as S = S + I J S_ , e0 € OS+f] OS-. 
Moreover, there is a continuous map e(t), t € [—1,1] such that e 0) — 
S_, e :(0,1] — S+, e(0) = eo, det^k(e(t))] f n

k= 1 = a ( t ) , w h e r e a(t): 
[— 1, 1] — Ri be continuous function vanishes only at t =0. 

Theorem 1. Assume condition A,and a(t) is monotone increasing fun
ction. Then e0 be a bifurcation point of (6). 

Proof. We take arbitrari ly small r> 0 and 5> 0. Consider the continuous 
vector field 

H(£, в) d== L(£, e((26 — 1)5)) : Rn x R 1 — Rn, 

defined at в € M,where M{£, в l\\ £ \\= r, 0 < в < 1}. 
Case 1. If there is a pair (£*, в*) € M for which H(£*, e*) = 0, then by 

definition 2, e0 w i l l be a bifurcation point. 
Case 2. We assume that H(£, в) =0 at \/(£, в) € M and, hence, e0 is not 

a bifurcation point. Then vector fields H(£, 0) and H(£, 1) are homotopic 
on the sphere \\ £ \\= r. Consequently, their rotations [6] are coincided 

J(H(£, 0), \\ £ \\= r)= J(H(£, 1), (\\ £ \\= r) (12) 

Since vector fields H(£, 0), H(£, 1) and their linearizations 

n 

L_(£) *k(e(—5))£k | n = i , 
k=1 

L+(£) atk(e(+5))£k u = i 
k=1 

are nondegenerated on the sphere \ £ \ = r, then by smallness of r> 0, 
fields (H(£, 0), H(£, 1) are homotopic to the linear parts L_(£) and L+(£). 
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Therefore 

J(H(£, 0), \\ £ \\ = r) = J(L-(£), \\ £ \\ = r) (13) 

J(H(£, 1), \\ £ \\= r) = J(L+ (£), \\ £ \\= r). (14) 

Because of nondegeneracy of linear fields L±(£), by the theorem about 
Kronecker index, the following equalities hold 

J(L-(£), \\ £ \\= r)= signa(-S), 

J(L+(£), \\ £ \\= r)= signa(+S). 

Since a(—5) < 0, a(+5) > 0, then the equality (12) is impossible by (13), 
(14). Hence, we find a pair (£*, &*) € M for which H(£*, &*) = 0 and e0 be 
a bifurcation point. 

Remark 1. If the conditions of the theorem 1 are satisfied for \/e € Qo С 
Q , t h e n Q 0 be a bifurcation set of (6). If moreover, Q 0 is connected set and 
its every point is contained in a neighbourhood, which is homeomorphic to 
some domain of E r a , t h e n Q0 is called n-dimensional manifold of bifurcation. 

For example, it is true, if Y = R n + 1 , n > 1, Q0 be a bifurcation set 
of (6) containing point e = 0 and V£ det[dik(e)] \ £ = 0 = 0 . It follows from 
the theorem 1 at Y = R1 the generalization [17], and also other known 
strengthenings of M . A . Krasnoselskii theorem on a bifurcation point of odd 
mult ipl ic i ty [6]. A n important results in the theory of bifurcation points 
were obtained for (6) wi th potential B E q to £,when 

L(£,e)= greedy U (£,e). (15) 

This condition is valid, if a matr ix [^ t ]7fc=i is symmetric. B y differentiation 
of superposition, one finds from (11) that 

-gr} =< R* [J2 + 11 & £^£) +д£г),Фк >J (16) 

where according to (8), (10) 

dU 
Рг + т - = {1-ТПху1>р1. (17) 

d£i 

The operator I — TRx is continuously invertible because \\ TRx \\< 1 for 
sufficiently small by norm £ and e. Substi tut ing (17) into (16) we obtain 
equalities 

d L 

—- =< RX(I - TRx)~lLpi,tpk >, i, к = 1 , . . . , п. 
d£i 

It follows the following c la im: 
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Lemma 1. In order BEq (7) to be potential it is sufficient that a matrix 

Z = [<Rx(TRx)m^i,фк >]п,к=г 

to be symmetric at V(x,e) in a neighbourhood of point (0,0). 

Corollary 1. Let all matrices 

[<Rx (TRx)m<Pi ,ipk >]i,k=i,™ = 0,1,2,... 

are symmetric in some neighbourhood of point (0,0). Then BEq (7) be 
potential. 

Corollary 2 . Let E1 = E2 = H, H be Hilbert space. If operator B 
is symmetric in D, and operator Rx(x,e) is symmetric for V(x,e) in a 
neighbourhood of point (0,0) in D,then BEq be potential. 

In the paper [16] more delicate sufficient conditions of B E q potentiality 
have been proposed. 

Suppose that B E q (7) is potential. T h e n it follows from the proof of 
lemma 1 that the corresponding potential U in (15) has the form 

1 

i,k=1 

where \\ u(£,e) \\=0(\ £ \2) at £ — 0. 

Theorem 2 . Let BEq (7) be potential. Assume condition A). Moreover, let 
the symmetrical matrix [aik(e(t))] possesses at least v1 positive eigenvalues 
at t> 0 and at least v2 positive eigenvalues at t< 0, v1 = v2.Then e0 will 
be a bifurcation point of (6). 

Proof. We take the arbitrary small 5> 0 and we consider the function 
U(£,e((29 — 1)5)),definedat 9 € [0,1] in a neighbourhood of the cri t ical 
point £ =0. 
Case 1. If there is 9* € [0,1] such that £ = 0 is the nonisolated cri t ical 
point of the function U(£,e((29* — 1)5), then by definition 2, e0 w i l l be a 
bifurcation point. 
Case 2. Assume that point £ =0will be the isolated cri t ical point of the 
function U(£,e((29 —1)5)) at \/9 € [0,1],where e(t) be continuous function 
from condition A ) . T h e n at У9 € [0,1], the Conley index [2] K& of the 
cr i t ical point £ = 0 of this function is defined. Let us remind that 

д2и(£,е((2в-1)5))  
det || — | | c = 0 = « ( ( 2 6 - 1)5). 

Since a ( ( 2 9 — 1)5) ф 0 at 9 ф | , then the cr i t ical point { = 0 at 9 Ф 
\ is nonsingular. Therefore, index K@ for any 9 ф \ by the definition 
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(here readers may refer to p.6 [2]), is necessary equal to number of positive 
eigenvalues of the corresponding Hessian. Thus, K@ = v1, K\ = v2,where 
v1 = v2 by the condition of theorem 2. Hence, K@ = K\. Suppose that e0 

is not a bifurcation point. Then V ^U(£,e((29 — 1)a) =0 at 0 <\\ £ \\< r, 
where r> 0 is small enough, 9 € [0,1]. Because of homotopic invariancy of 
Conley index (see theorem 4, p.52 in [2]), K@ is constant at 9 € [0,1] and 
K0 = K\. Hence, in the second case we find a pair (£*, 9*) for arbitrary 
small r > 0 , 5>0,where0 <\ £* \< r, 9* € [0, 1],satisfyingtothe 
equation U(£,e((29 — 1)5)= 0 and e0 is a bifurcation point. 

Remark 2 . Other proof of the theorem 2 wi th application of the R o l l 
theorem is given in [18] for the case Y = R 1 , v+ = n, v- =0. 

Remark 3 . The theorems 1, 2 (see remark 1) allow to construct not only 
the bifurcation points, but also the bifurcation sets, surfaces and curves of 
bifurcation. 

Corollary 3 . Let Y = R1 and BEq be potential. Moreover, let [aik(e)]n

k=1 

be positively definite matrix at e € (0,r) and negatively defined at e € 
(—r, 0).Then e = 0 is a bifurcation point of (6). 

Consider the connection of eigenvalues of matr ix [aik(e)] w i th eigenvalues 
of operator B — Rx(0,e). 

Lemma 2 . Let E1 = E2 = E, e € Rl; v = 0 be isolated Fredholm point 
of operator-function B — vI.Then 

k n 

signA(e) = (—1)k sig^Y\vi (e)= sign\\ni(e), 
i i 

where k be a root number of operator B; {/J.}'n are eigenvalues of matrix 
[aik(e)}, A(e)=det[aik(e)}. 

Proof. Since {id.i}n are eigenvalues of matr ix [aik(e)],then f ] n / i i (e) = 
A(e). Thus, it is sufficient to prove the equality A(e) = (—1)kY[k Vi(e). 
Since zero is the isolated Fredholm point of operator-function B — v I , t h e n 
operators B and B* have the corresponding complete Jordan systems [19] 

^ = (Ту-1<р(1),ф(з) = (Т*у-1Ф(1),i = 1,...,n; s = 1,...,Pi. (18) 

Here 
n 

< 
i=1 

Let us remind that 

(19) 
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where k = l1 + ... + ln we call a root number of operator B — Rx(0,e). 
The small eigenvalues v(e) of operator B — Rx(0,e) satisfy to the following 
branching equation [19] 

L(v,e)= det \<Rx(0,e)+vI)(I—rRx(0,e)—vr)-1

 V l ф >\п

%]=1=0. (20) 

Because of preliminary Weierstrass theorem [19], p. 66, by the equalities 
(18), (19), equation (20) in a neighbourhood of zero wi l l be transformed to 
the form 

L(v,e) = (vk + Hk-1(e)vk-1 + ... + H(e))tt(e,v )= 0, 

where Hk-1(e),... ,H0(e) = A(e) are continuous functions of e, Q(0,0) =0, 
H0(0) = 0. Consequently, operator B — Rx(0,e) has k > n small eigenvalues 
vi (e), i = 1,...,n, which we may define from the equation 

vk + Hk-1(e)vk-1 + ... + A(e) = 0. 

Then ik vi(e)=A(e)(1—1)k. 
Assume now e € R1. Consider the calculation of asymptotics of eigen¬

values i (e) and v(e). Let us introduce the block representation of matr ix 
[aik]nk=v satisfying the following condition: 

B ) Let [aik(e)]nk=1 = [Ak(e)]l

hk=i ~ [enkA0

k]{k=1 at e - 0 ,where [Aik] 
are blocks of dimensionality [ni x nk ], n1 + ...+ nl = n, min(ri1,...,ril ) = 

rii = ri Ё rik >ri at k> i (or at k< i), i = 1 , . . . , l . L e t П 1 det[A 0

i ] = 0 . 
The condition B ) means that matr ix [aik(e)]i

n

k=1 admits the block repre¬
sentation being "asymptotically trianglar"at e — 0. 

Lemma 3 . Assume B ) .Then 

det[aik(e)]nk=1 = e n i r i + - + n r (Ц det \ A0 \ +0(1)^ , 

formulas 
Ш = eri (d + 0(1)),i = 1,...,l (21) 

define the principal terms of all n eigenvalues of matrix \ aik(e) \rn'k=1,where 
li, C i € Rni; C i be vector of eigenvalues of matrix A0

i. 

Proof. B y B ) and the property of linearity of determinant, we have 

' A°11 +0(1), 0(1) , 0(1) • 

A%1 +0(1),A222 + 0(1), 0(1) ...0(1) 
det[aik(e)] = eniri+-+niri det 

A°n + 0(1), , A0i + 0(1) 
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eni\JJ det | A 0 | +0(1) 

Substi tuting /л = eric(e), i = 1,... ,l into equation det | aik(e) — /i5ik \nk=1= 
0 and using the property of linearity of determinant we obtain equation 

e'ni n+...+ni-iri-i+(ni+...+ni )ri I A0 - I-

j=i 

de t (A 0 i — (e)E)(e)ni+1+...+ni + ai (e)} = 0 , i = 1,...,l, (22) 

where ai(e) — 0 at e — 0. Hence, the coordinates of unknown principal 
terms C i in asymptoticses (21) satisfy to the equations det | A0 — E | = 0 , 
1 = 1,...,l. 

If k = n, then operator B — Rx(0,e), a s w e l l a s t h e matr ix [aik(e)]n
k=i 

has n small eigenvalues. In this case we state a result: 

Corollary 4 . Let operator B has not I - joined elements and let the con
dition B ) holds. Then the formula 

Vi = —eri (d + 0 ( 1 ) ) , i = 1,...,l, (23) 

defines all n small eigenvalues of operator B — Rx(0,e),where Ci £ Rni be 
vector of eigenvalues of matrix A0

i, i = 1,...,l, n\ + ... + щ = n. 

Proof. B y lemma 2 in this case n Pi = n (root number k = n ) a n d 
operator B — Rx(0,e) possesses at least n small eigenvalues. Since Yi ni = 
n, A0

i is quadratic matrix, then formula (23) yields n eigenvalues, where 
the principal terms coincide to wi th in a sign wi th principal terms in (21). 
For calculation of eigenvalues V of operator B — Rx(0,e) we transform (20) 
to the form 

CO 
L(V, e) = d e t K f c ( e ) + £ bi£vj]n

k=i = 0, (24) 
j=i 

where 

Ь£ =< [(I — rRx(0,e))-1 r ] j — TRx(0,e))-1

 Vl,Yk >. 

Substi tuting V = —eric(e) into (24) and taking into account the property 
of linearity of determinant we shall receive the equation, which differs from 
(22) by error term ai(e) only. T h e n in conditions of corollary 4 the principal 
terms of al l small eigenvalues of operator B — Rx(0,e) and matr ix — [aik(e)] 
are defined from the same equations and therefore, are equal. 

C o n c l u s i o n s . 1) B y lemma 3 we can replace condition A ) in the theorem 
1 wi th the following one: 
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A * ) . L e t Ei = E2 = E; v = 0 be isolated Fredholm point of operator-
function B — vI. Let in a neighbourhood of point eo S Q there is a set 
S, containing point e0 and be continuum represented as S = S + [ J S-. 
Moreover, assume 

eo S OS+f) OS-; Л vt(e) \ e e s + П V(e) \ees_ < 0, 

where [vi(e)} are small eigenvalues of operator B — Rx(0,e). 
2) If the principal terms of asymptotics of small eigenvalues of operator 

B—Rx(0,e) and matr ix [aik(e)]n'k=l coincide, then we may use eigenvalues of 
such operator in the theorem 2. B y corollary 4 it is possible, if Ei = E2 = H, 
operators B and Rx(0,e) are symmetric and condition B) is val id. Let us 
note that condition B) is valid in papers [15, 16, 17, 18] about bifurcation 
point wi th potential B E q , thus ri = ... = rn = 1. 

2 . S t a t e m e n t o f b o u n d a r y - v a l u e p r o b l e m a n d p r o b l e m o n a 
b i f u r c a t i o n p o i n t for t h e s y s t e m (32) [9] 

We begin wi th a one preliminary result on reduction of V M system (1)-
(2) w i th conditions (3) to the quasilinear system of el l ipt ical equations 
for dis tr ibution (5), was first investigated in [10]. Assume the following 
condit ion: 

C ) . fi(R, G ) are fixed, differentiable functions in distr ibution (5); ai, di 

are free parameters; \ di \=0 ; Lpi = оц + ktp(r), fa = c2i + kiip(r); вц, c2i-
const; the parameters li, ki are connected by relations 

к = , h—di = —di, ki = h = 1, (25) 
aiqi mi mi mi 

and the integrals JR3 fidv, JR3 fivdv converge at , fa. 
A A A 

Let us introduce notations mi = m, ai = a, qi = q. 

T h e o r e m 3. Let fi are defined as well as in (5) and the condition C ) is 
valid. Let the vector-function (tp, fa) is a solution of the system of equations 

N г о 

= V V Qk / fkdv, ii = 

(26) 

N 

Аф = иУ^ак (v,d)fkdv, v = 
^ JR3 mc2 

4nq 
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2aq q 

P \dD= « 0 1 , У \dD= — З Д 2 (27) 
m mc 

on a subspace 

(Orpi,di) = 0, (Orfai,di) = 0 , i = 1,...,N. (28) 

Then the VM system (1), (2) with conditions (5) possesses a solution 
m d

 i
 m c 

E = 2c\7qdr^' В = ^ Р + I { d X J ( * r ) ' r ) d * ) " t d x дгФ}^2 (29)> 

where 

J = — / vfkdv, fj - const. 
c t=i 3 

The potentials 
m m c 

U = ~ 2 ^ ' A = ^ d + Mr), {Aud)=0 (30) 

satisfying to condition (3) are defined through this solution. 

The proof of theorem 3 follows from theorem 1 of paper [14]. 
Introduce notations 

ji = \ vfidv, pi = \ fidv, i = 1,...,N 
R3 R3 

and the following condit ion: 
D ) . There are vectors pi S R 3 such that ji = f3ipi, i = 1,...,N. 
For example, the condition D holds for distr ibution 

fi = fi(a(—ai v 2 + pi) + b((di ,v)+ fai)) (31) 

for Pi = i ^ d i , a, 6-const. 
Suppose that condition D is val id. Then the system (26) w i l l be trans¬

formed to the following 

N N 

Ap = X ^ q i A i , Afa = XvY,qi(Pi,d)Ai, (32) 
i=i i=i 

where 

Ai(lip,ki fa,ai ,di ) = j fidv. 
A 

R 

Further, we shall suppose that the auxil iary vector d in (5) is directed 
along axes Z. Because of conditions (28) we put in system (32) p = p(x,y), 
ф = ф(х,у), x,y e D С R2. Moreover, let N > 3 and j 1 Ф const. 
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Let D be bounded domain in R 2 w i th the boundary dD of class C 2 , a , 
a E (0,1]. The boundary conditions (4) on the densities of local charge and 
current induce the equalities: 

I . 

N N 

Y °kAk (lk P°,kk ip°,ai ,di) = 0; ^ qk(Pk ,d)Ak (lk ip° ,kk ip°,ai ,di ) = 0 
k=\ k=1 

(33) 
for Me E i ,whe re i is a neighbourhood of point e = 0 and 

<p = «o i , Ф = — « 0 2 - (34) 
m mc 

R e m a r k 4 . If N = 2 and = then by condit ion I and equalities 

(Pi, d) = j: we have alternative: or in condition I: A\ = A2 = 0 or ki = k, 

г = 1,2. In this case, and also at | i = c o n s t the system (32) is reduced to one 
equation and bifurcation of solutions in such approach, as it is considered 
in this paper is impossible. 

B y (33), (34) system (32) wi th boundary conditions 

<P \OD= Р°,Ф \OD= Ф° (35) 

has a t r iv ia l solution ip = ip°, ф = ф° at MX E R+. 
T h e n because of theorem 3 the V M system wi th boundary conditions 

(3), (4) has a t r iv ia l solution at MX 

E° = —drp° = 0, B° = pdi, rEDcR2, 
2aq 

f ° = Xfi(-aiv2 + c i i + lip0, (v, di)+ C2i + ki 

Thus, the densities p and j vanish at domain D . 
Now our purpose is to find X° in neighbourhood of which system (32), 

(35) has a nontr ivial solution. Then the corresponding densities p and j w i l l 
be identically vanish at domain D,andthepointX° is a bifurcation point 
of the V M system wi th conditions (4), (5). 

Let functions i are analytical in (5). Us ing the expansion in Taylor series 

A(x, y) = j t \ ( ( x ~ x°)f- + (y- у0)^-УА(х°,у0) 

and selecting linear terms, we transform (32) to operator form 

(L° - XLi)u - Xr(u) = 0. (36) 
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Here 

L° = 

N 

L i = Y qs 
s=1 

' A 0 ' 

0 A_ 
= (p - р°,ф - ф°)'; (37) 

дх И1 s Qy 

aTi 11T2 

00 n 

r(u) = Y Y l CJis(u)bs, 

A 

x=ls(p° ,y=ksip° 

(38) 

(39) 
i>l s=1 

where 
д д ч< 

QisW = -j(Lsuig^ +kSU2T^) As(lsLp ,kstp ) 

are i homogeneous forms by u; 

+i2 

дхп еду1'2 
A s ( x , y ) \x=ls<p°,y=ksil° = 0 a t 

2 < ii + i2 < l - 1,s = 1,...,N; l > 2; bs = (u,vЦ33,d))'. 

We study the problem of existence of a bifurcation point X° for (32), (34) 
as the problem on bifurcation point for operator equation (36). Let us 
introduce Banach spaces C2'a(D) and C°'a(D) w i th norms \\- \\2>A, \\- \\°>A 

and W22(D), which is usual L 2 Sobolev space in D . Let us introduce Banach 

space E of vectors u = (ui,u2)',where ui E L2(D), L2 be real Hilber t 
space wi th internal product ( , ) and the corresponding norm \\- \\L2 (D). 

A s a range of definition D(L°) we take set of vectors u = (ui,u2) w i th 
• 2,2 • 2,2 

ui EW ( D ) . H e r e W (D) denotes W2,2 functions w i th trace 0 on 
д D . Hence, L° : D С E —> E is linear self-adjoint operator. B y virtue 
of embedding 

W 2,2(D) С C°,a(D), 0 <a< 1 (40) 

the operator r : W2,2 С E — E be analytical in neighbourhood of zero. The 
operator Li E L(E — E) is linear bounded. For matr ix corresponding to 
operator Li we shall keep same notations. B y embedding (40) any solution of 
the equation (36) wi l l be Holder in D(L°). Moreover, because the coefficients 
of (36) are constant, then vector r(u) w i l l be analytical , дD E C 2 , A and 
thanks to well-known results of the regularity theory of weak solutions [8], 

• 2,2 

the being searching generalized solutions of (36) in W (D) belong to C2, . 
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B y theorem 3 on reduction of V M system, the bifurcation points of problem 
(32), (34) are the bifurcation points of solutions of V M system (1), (2) w i th 
boundary conditions (3), (4). Thanks to given conditions on L° and L i , 

л 
all singular points of operator- function L(X) = L° - XLi be Fredholm. 
The bifurcation points of nonlinear equation (36) we can found only among 
points of a spectrum for linearized system 

(L° - XLi )u =0. (41) 

For study of spectrum problem (41) we preliminary find the eigenvalues and 
the eigenfunctions of matr ix Li in (41) for physically admissible parameters. 
W i t h this purpose, we introduce the following condition: 

I I : (TT - T2T3) > 0, Ti < 0. 

Lemma 4 . Let ^ = Щ > 0, i = 1 , . . . , N at x = hp0, у = hip0. 
Assume 

N i-i 

^2^2a,ia,j(ljki - k j l i - fa,d) > 0, 

= 
where ai = qi^*, then condition II is valid. 

A 
Proof. Wi thou t loss of generality we put q = qi < 0, qi > 0, i = 

2,...,N. T h e n v ia (25) signqili = signq. Further, because of definition 
of Ti (see.(38)), we verify that Ti < 0. The positiveness of TT - T2T3 

follows from equality 

TT - T2T3 = laiYl ki(Pi,d)al-Y, kicii^, Wi ,d)ai = 

N i N i- i 

Y Y ai aj (lj ki - kj li )(Pi - Pj ,d). 
i=2 j=i 

E x a m p l e . If & = then (ft, d) = £ r and 2a U 

N i- i 

= a i a j ( l j k i - l i k j ) 2 

i=2 j=i 

d2 

2alilj 
> 0. 

Lemma 5. Let distribution function has a form (31) and fi > 0.Then 
conditions D and II hold for Pi = and the system (32) will be 
transformed to the potential form 

ai 0 - dV -
d(p 

A = X 
0 a2 

dV 
- dip -

(42) 
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where 

N 

V = 
k=i 

-aik <p+bkkip 
Ak(s)ds, ai = u/a, a2 = (43) 

The proof is conducted by direct substitution (43) into the system (42). 

Lemma 6. Let r = x E R1, v E R2, d = d2. Then the system (32) with 
potential (43) can be written as Hamiltonian system 

Pp = -д<рН, ip = др^ H 

Рф = -дф H, ф = дРф H 

with Hamiltonian function of the form 

Here 

V{^)=\alY,Y / A(s,W)ds + \a2J2f / A(<p,s)ds. 
k i k J ° J R2 k i k J ° J R2 

The proof follows from lemma 2.2 (p.1152) of work [4]. 

Lemma 7. Assume I I . Then matrix L1 in (38) has one positive eigenvalue 

X+ = uTi +0(1) 

and one negative 

X - = / l T 4 " T 2 T 3

£ + 0 ( £ ) , . = ^ > 0 (44) 
Ti m 

at e = -г 
2 

0. 
Eigenvalue X- induces the eigenvactors of matrices L1 and Li respecti-

vely 
c i Г T 2 1 

+ O(e), 
0 

= + O(e), = 
c2 0 A . 1 

+ O(e). 

The readers may refer to [14] for the proof. 
Let us now consider the calculation of bifurcation points X° of equation 

(36). Setting in (36) X = X° + e, we consider the equation 

(L° - (X° + e)Liu - (X° + e)r(u) = 0 (45) 
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in neighbourhood of point X°.LetT2 =0and T3 =0,orT2 = T3 =0. 
W i t h the purpose of symmetrizat ion of system at T2 =0and T3 =0having 
multiplicated both parts of (45) on matr ix 

M = I V where a = ^ ф 0, 
V 0 a) V T 3 

we write (45) as 
Bu = eBiu + (X° + e)$l(u). (46) 

Here B = M(L° - X°Li); Щп) = Mr(u) = (n(u),r2(u)); Bi E L(E — E) 
be Fredholm self- adjoint operator. If As = As(alsp + bkkV>),then 

дА^ ., дAs Ai _ T / / d ^ b ds 
ду s дх s 2aa a 2as 

In expansion (39) 

9г* = | 4 * W + bks4>0)(al8Ul + bksu2)\ 

Thus, in this case J^- = matr ix $lu(u) w i l l be symmetric for Mu and 
operator Щи : E — E is self-adjoint for V u . 

Remark 5. If T2 = T3 = 0, then we put a = 1.If T2 = 0, T3 = 0 or T3 = 0, 
T2 =0, then the problem (36) has not the property of symmetrization 
and we should work wi th (45). In this case for study of the problem on 
bifurcation point we may use our results from [13]. 

Let u be eigenvalue of the Dirichlet problem 

-Ae = ue e \ d D = 0 (47) 

and {e1 ,...,en} be orthonormalized basis in a subspace of eigenfunctions. 
Denote by c- = (c1,c2)' the eigenvector of matr ix L 1 , which corresponds to 
eigenvalue X- < 0. 

L e m m a 8. Let X° = -u/x-.Then X° > 0, dimN(B)= n and the 
system {ei^Tn=1,where ei = c - e i forms basis in a subspace N(B). 

Proof. Let us introduce matr ix of columns Л, which are the eigenvectors 
of matr ix L1 corresponding to eigenvalues X - , x+ .Moreove r , 

X- 0 

Л - ^ 1 Л = \ \ , L ° Л = ЛL° 

V
 0 X + ) 

and equation Bu = 0 by change u = Л11 w i l l be transformed to the form 

M[L^U - X°L^U]= M^(L°U - X^-1L^U)] = 0. 
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Hence, from here follows that the linear system (41) is decomposed onto 
two linear el l ipt ical equations 

AUi - X°x-Ui = 0,Ui \dD=0, AU2 - X°X+ U2 = 0,U2 \dD=0, (48) 

where X°X- = -и, X°X+ > 0. F rom (47) follows that u E a ( - A ) . H e n c e , 
U1 = Yln=1 aiei, ai - const, U2 = 0 and 

i=1 

Let us construct Lyapunov-Schmidt B E q for equation (46). 
Wi thou t loss of generality we assume that the eigenvector c1- of matr ix 

L\ is chosen such that %_(cf_ + Fc\_) = 1, where F = ^щ. T h e n the 
system of vectors {B1ei}'n=1 is biorthogonal to {ei}n=1. Thus, operator 

n 

B = B + Y < >Yi 

u1 

= ЛU = 
ci- ci+ 

— 

Ui 
— 

ci-

u2 c2- c2+ 0 c2-

A 
wi th Y% = B1ei has inverse bounded Г E L(E — E), T = T*, Tji = e i . 

Rewrite (46) as the system 

(B - eBi)u = (X° + eMu) + Y &Ъ 

£i =<u,Yi >, i = 1,...,n. 

B y the theorem on inverse operator we have from (49) 

1 
u (A0 + e)(J - еТВ^ТЩи) + — £ £гег. 

(49) 

(50) 

(51) 
i=1 

From (50) we have 

1 e 
& + уг7<ВД> е * >=o, (52) 

where $l(u) = ^l(u) + $ll+1(u) + .... Because of the theorem on implici t 
operator, equation (51) has unique solution for sufficiently small e, \ £ \ . 

u = ui (£e,e) + (X° + e)(I - eTBi)-1r{ul (£e,e)+ u4+i(£ e,e) + ...}. (53) 

Here 

ui(£ e,e) = 
1 

1 e 
i=1 

n 

e 
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щ(£ e,e) = Щщ (£e,e)), 

u+i(£e,e) = $ll+i(ui (£e,e)) + 

( 0 , l > 2 

j ГЩЫСe,e))(X° + e)(I - eTBi)-1ru2(£e,e),l = 2 

and etc. Substi tut ing the solution (53) into (52) we obtain desired B E q 

L(£,e)=0 (BEq) 

wi th L = (L1 ,...,Ln), 

V = rr^—ii + n

A ° +

v

£ + i [< Ше,ег) > +-^— < М1+1(£е,ег) >] + 
1 - e (1 - e)l+1 1 - e 

0 , l > 2 

+ ri e), 
К ^ е Ц - е Т В г Г ' Т ^ е ) ^ ^ , 1 = 2 

ri = o(\ £ i = 1,...,n.If L(£,e) = gradU (£, e ) , t h e n we call B E q 
potential. In potential case matr ix Lg (£ ,e ) is symmetric. 

Let in (46) fi = fi(alp+bkiф), i = 1 , . . . , N . T h e n f r o m e x p l a i n e d above 
matr ix $lu(u) w i l l be symmetric at Vu and we have the following statement: 

Lemma 8. Let conditions C ) , D ) , I - I I and X° = -u/x- hold. Then 
equation (46) possesses so much small solutions u — 0 at X — X°,as 
small solutions £ — 0 possesses BEq at e — 0. If in system (32) Ai = 
Ai(alip + bkiip), i = 1,...,N; a, b--const, then BEq will be potential. 

Theorem 4 ( P r i n c i p a l t h e o r e m ) . Let N > 3. Let conditions C, D, 
I - I I and X° = -u/x are valid, where u is n multiple eigenvalue of Dirichlet 
problem (47). Number X- see in (44). If n is odd, or distribution function 
has the form fi = fi(a(-aiv2 + pi)+ b((di,v)+ ipi)), i = 1,...,N,then X° 
be a bifurcation point of VM system ,ЬЪ (l)-(2) with conditions (3)-(4). 

Proof. Case 1. Let n is odd. T h e n in B E q 

I дLk 
A(e) = det -(0,e) 

Since n is odd, then A(e) > 0 for e E (0, 1),andA(e) < 0 for e E (-1 , 0) 
and the statement of theorem follows from theorem 1. 

Case 2. Let fi = fi(a(-aiv'2+pi)+b((di,v)+fa)). T h e n B E q is potential, 
moreover 

9Lk(0,e) _ _e . _ 
7TZ — ~; Oik, г, к — 1,... ,n. 
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Hence, al l eigenvalues of matr ix || a L fc(° ' £ ) || a r e positive at e > 0 and are 
negative at e< 0. Thus, the validity of the theorem in case 2 follows from 
theorem 2. 

3. C o n c l u s i o n 

The distributions functions fi in V M system depend not only upon X, 
but also on parameters ai, di, ki, l i . It seems interest to investigate a 
behaviour of solutions of (1)-(2) w i th conditions (3), (4) depending from 
these parameters. A p p l y i n g theorems 1, 2 and their corollaries in the present 
paper, we can prove the existence theorems of points and surfaces of bifur¬
cation for this more complicated case. 
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Н . А . С и д о р о в 

Т о ч к и б и ф у р к а ц и и н е л и н е й н ы х о п е р а т о р о в : т е о р е м ы 
с у щ е с т в о в а н и я и п р и л о ж е н и я к и с с л е д о в а н и ю с и с т е м В л а с о в а -
М а к с в е л л а 

А н н о т а ц и я . Д а н обзор теорем существования точек бифуркации решений нели-
н е й н ы х о п е р а т о р н ы х уравнений в банаховых пространствах. Получены достаточные 
условия ветвления решений г р а н и ч н ы х з а д а ч д л я систем Власова-Максвелла. При 
построении асимптотики решений граничной задачи используется аналитический 
метод Ляпунова-Шмидта-Треногина . 

К л ю ч е в ы е с л о в а : точка бифуркации , нелинейный анализ , система Власова-
Максвелла , плазма , индекс Конли, метод Ляпунова-Шмидта-Треногина . 
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