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Fractional Optimization Problems
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Abstract. We consider fractional maximization and minimization problems with an
arbitrary feasible set, with a convex function in the numerator, and with a concave
function in the denominator. These problems have many applications in economics and
engineering. It has been shown that both of kind of problems belongs to a class of global
optimization problems. These problems can be treated as quasiconvex maximization and
minimization problems under certain conditions. For such problems we use the approach
developed earlier. The approach based on the special Global Optimality Conditions
according to the Global Search Theory proposed by A. S. Strekalovsky. For the case
of convex feasible set, we reduce the original minimization problem to pseudoconvex
minimization problem showing that any local solution is global. On this basis, two
approximate numerical algorithms for fractional maximization and minimization prob-
lems are developed. Successful computational experiments have been done on some test
problems with a dimension up to 1000 variables.

Keywords: fractional maximization, fractional minimization, global optimality condi-
tions, approximation set.

1. Introduction

In this paper we consider the fractional optimization problems of the
following types:

f(@)

max @) (L.1)
fl@)

2eD g(x)’ (12)

where D C R™ is a subset, and f(z) is convex, g(z) is concave on D,
f(z) and g(x) are positive on D. We call these problems as the fractional
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optimization problems. Problems (1.1)-(1.2) have many applications in eco-
nomics and engineering. For instance, problems such as minimization of
average cost function [7] and minimizing the ratio between the amount
of resource wasted and used on the production plan belong to a class of
fractional programming.

The most well-known and studied class of fractional programming is the
linear fractional programming class. When D is convex then well known
existing methods for solving problem (1.2) are variable transformation [8],
nonlinear programming approach [5], and parametric approach [3]. The
variable transformation method reduces problem (1.2) to convex program-
ming for the case

D={xeScCR"|h(x) <0}
with A : R™ — R™ a convex vector-valued function and S a convex set.
Theorem 1. [5/ Problem (1.2) can be reduced to convexr programming
min{tf(t 'y) | th(t 'y) <0, tg(t 'y), t 'y € S, t >0} (1.3)

applying the transformation
1
y=uxt andt=—— .
g(x)
Moveover, if (y*,t*) solves problem (1.2) then x* = t~'y* solves (1.2).

One of the most popular strategies for fractional programming is the
parametric approach which considers the class of optimization problems
associated with problem (1.2) given by

inf {f(x) — Ag(x)} (1.4)

zeD

with A € R.

Introduce the function F'(\) as follows

F() = min{f(z) — Ag(a)}.

Lemma 1. /3] If D is a compact set then

(a) The function F: R — R is concave, continuous and strictly increa-
sing.

(b) The optimal solution \* to (1.2) is finite and F(\*) = 0.
(c) F(X\) =0 implies that A = \*.

(d) N = f@) = min@.

gla*)  weD g()
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2. Fractional Maximization and Global Optimality Conditions

Consider the fractional maximization problem:
_ fl=)
max {cp(w) -l (2.1)

where f,g: D — R are differentiable functions, D is a convex subset in R",
and f(z) is convex on D and g(x) is concave on D, f(zx) > 0 and g(z) > 0
for all z € D.

Introduce the level set of the function ¢(z) for a given C' > 0.

L(p,C) = {x € D| p(z) < C}.
Lemma 2. The set L(p,C) is convex.

Proof. Since g(z) > 0 on D, then ¢(z) < C Vx € D can be written
as follows:

f(z) —Cg(z) <0 VzeD.
Clearly, a set defined by
M =A{z € D| f(z) - Cg(x) < 0}
is convex which implies convexity of L(y,C).

Definition 1. A function f: D — R is said to be quasiconvex on D if

flaz + (1 — a)y) < max{f(z), f(y)}
hold for all z,y € D and « € [0, 1].

Lemma 3. /4] The function f(x) is quasiconvexr on D if and only if the
set L(f,C) is convex for all C € R.

Then it is clear that the function ¢(z) is quasiconvex on D. The optimali-
ty conditions for a quasiconvex maximization problem were given in [4].
Applying this result to problem (2.1), we obtain the following proposition.

The optimality condition for problem (1.1) will be formulated as fol-
lows [4].

Theorem 2. Let z be a solution to problem (2.1), and let
Ec(p) ={y € B"| ¢(y) = C}.
Then

(¢ (y),z —y) <0 (2.2)

forally € E .\ (¢) and x € D.
If in addition ¢'(y) # 0 holds for all y € E, (), then condition (2.2)
is sufficient for z € D to be a global solution to problem (2.1).
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Condition (2.2) can be simplified as:

> {20 ) - 200 5} (22 <o

i=1

for all y € E,(;)(¢) and x € D.
These global optimality conditions are based on the Global Search The-
ory developed by A.S. Strekalovsky [10].

Algorithm and Approximation Set
Definition 2. The set A(z) defined for a given m by
A7 ={y', o3 . Y Y € Ey(9) D, i =1,2,...,m}
1s called an approximation set.

Lemma 4. If there are a point y* € A™ and a feasible point z € D such
that

@@, v —y) >0
then p(u?) > ¢(2), where (¢ (y?),w) = max( (y?), z).

Proof. By the definition of u/, we have

max(f'(y7),x = y') = (£ ("), w’ = ¢).

Since f is convex,
flu) = f(v) = (f'(v),u—v)
holds for all u,v € R™ . Therefore, the assumption in the lemma implies
that
fu') = f(z) = f(u') = f(y') = (f'(y"),u" = y') > 0.

Now we can construct an algorithm for solving problem (1.1) approxima-
tely.

Algorithm MAX
Step 1. Choose z* € D, k:=0. 2* = argloc max o(z), and m is given.
jAS]

Step 2. Construct an approximation set A7; at 2.
Step 3. Solve Linear programming problems:

) .
=1,2,...
max(¢'(y'),z) , i=1,2,....m
Let u' be solutions to above problems:

(@' (u'), z) = max(¢' (), ), i =1,2,...,m.
zeD
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Step 4. Compute 7y, :

me = max (¢ (y"),u’ —y") = (¢ (), w — 7).
1<i<m

Step 5. If n, >0 then zF*! :=w/, k:=k+1 and go to Step 1.
Step 6. Terminate, zF is an approximate global solution.

Lemma 5. Ifn, > 0 for allk =0,1,..., then the sequence {z*} construc-
ted by the Algorithm MAX is a relaxation sequence, i.e,

FERY > f(25, k=0,1,....

The proof follows from Lemma 4.

3. Fractional Minimization and Global optimality conditions

Consider the fractional minimization problem

min {gp(aj) - @} , (3.1)

z€D g(x)

where, D C R is an arbitrary compact set, f,g: R™ — D are differentiable
functions, f(x) is convex, g(z) is concave on D, f and g are positive on D.

As we have shown in section 2, the function ¢(z) is quasiconvex on D.
Now we can apply global optimality conditions in [4] to problem (3.1) as
follows.

Theorem 3. Let z be a global solution to problem (3.1), and let

Ec(p) ={y € R" | p(y) = C}.

Then
(¢'(x),x—y) >0 forally e By (p) and x € D. (3.2)

If, in addition

lim ¢(z) = +oo and ¢’ (x + ay'(x)) # 0

||z|| =00
holds for all x € D and a > 0, then condition (3.2) becomes sufficient.
The optimality condition (3.2) can be written as follows:

I e D

1=1

forally € £

o(z)(p) and z € D.
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Definition 3. Let Q be a subset of R™. A differentiable function h: Q —
R is pseudoconvex at y € Q if

h(z) — h(y) < 0 which implies h'(y)(z —y) <0 Vz € Q.

A function h(.) is pseudoconvexr on Q if it is pseudoconvex at each point

yEQ.

Lemma 6. Let D be a convex set in R™. Let f : D — R be conver,
differentiable and positive; Let g : D — R be concave, differentiable and
f(z)
9(x)

Proof. Take any point y € D. Introduce the function ¥ : D — R as
follows:

positive. Then the function p(z) = 1§ pseudoconvex.

Y(z) = f(z)g(y) — g9(x) f(y)-

Since ¢g(y) > 0 and f(y) > 0, ¥(z) is convex and differentiable. Clearly,
¥(y) = 0. It is obvious that

©(y) > @(x) which is equivalent to ¥ (y) > ¥ (z).
Since 1(.) is convex and differentiable, then we have
0> ¥(z) —¥(y) = (¥'(y),z —y).
Taking into account that

Wz —y) _ LW —gd W@ e—y) _ oy
TWE PO e,

we obtain implications
o(y) > ¢(x), hence we have (¢/(y), — y) < 0
which prove the assertion.

Lemma 7. Let D be a convexr set. Then any local minimizer x* of ¢(x)
on D s also a global minimizer.

Proof. On the contrary, assume that z* is not a global minimizer. Then
there exists a point u € D such that

p(a”) > p(u). (3.3)
Since D is a convex set,

t+alu—z)=au+(l—a)z*eD Va: 0<a<l.
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By Taylor’s expansion, we have
p(x* + a(u — %) = p(") + al¢' ("), u — ") + o(allu — z*|]),

_ *
where lim 2@l =27l
a—0+ 0%

there exists 0 < o* < 1 so that

= 0. Since z* is a local minimizer of ¢(.) on D,

o+ alu—2%) —p@*) >0 VYa: 0<a<a’,
which implies
(¢'(@"),u—2") > 0.

Since ¢(.) is pseudoconvex, (¢'(x*),u — z*) > 0 implies that ¢(u) > @(z*)
contradicting (3.3) ¢(2*) > ¢(u). This completes the proof.
Lemma 7 allows us to apply gradient methods for solving problem (3.1).
We provide with an algorithm of conditional gradient method [2].

Algorithm MIN

Step 1. Choose an arbitrary feasible point 2 € D and set k := 0.
Step 2. Solve the linear programming

(¢'(a%), k) = min(g' (2%), 7).

Let Z be a solution to the above problem.
Step 3. Compute 7y, :

e = (¢ (2¥), ), — a").

Step 4. If i, = 0 then z* is a solution.
Step 5. zF*! = 2F(ay), 2¥(a) = 2¥ + oz — 2¥), a € [0,1],

f(a* () = min f(z"(a)).

«€(0,1]

Step 6. Set k:=k + 1 and go to Step 2.
The convergence of the Algorithm MIN is given below.

Theorem 4. [2] The sequence {x*, k =0,1,...} generated by Algorithm
MIN is a minimizing sequence, 1i.e,

li *) = mi .
Jm (%) = min o(z)
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4. Fractional optimization test problems

In order to implement numerically the proposed Algorithm MAX, we
consider the problem of the following type:

(A, x) + (b,x) +k
{cp(a:) - {(Cz,x) + (d,x) + e} ’

max
zeD

where D ={x € R"| o; < x; < fB;, i = 1,2,...,n}, k = 4000, e = 6000000.
Elements of the approximation set are defined as:

Y=+ aht, i=1,2,...,m,
where 2* is a local solution found by the conditional gradient method
starting from an arbitrary feasible point z* € D. Vectors h’ are generated
randomly. Parameter a can be found from the equation ¢(y’) = (2*) in
the following;:

((p(zM)C = A)ht, 2F) + ((p(F)C = A)2F + (2F)d — b — p(zM)e, hT)
((p(2F)C — A)ni, i) '

o =

The following problems have been solved numerically on MATLAB by the
proposed Algorithm MAX and in all cases the global solutions are found.
Consider problem (3.1) for the quadratic case:

g {10 Mz 0 )
zeD | g(z) (Cz,z)+ (d,z) +e

where D = {x € R" | Bx <} is compact, A and C are matrices such that
Apxn >0, Chxn <0, f(z) >0 and g(x) >0 on D.

The algorithm of conditional gradient method is the following..

The problem (3.1) with the following data have been solved numerically
on MATLAB based on Algorithm MIN.

Constraints of problems (2.1) and (3.1) are given as follows.

Problem 1.

1 -2 -1 21 3 3 2
A= -1 3 o), c= 02 1], b6=_2], d=|1
4 1 2 -1 1 -1 4 1
Dy ={1<z1 <3, 2<x<5, 1 <x3<4}
Dy ={z € R" | Qx < q}, where
111
Q=1011], g=(321).
001
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Problem 2.
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2 1 2 2 1
1 -1 -1 -2 ) )
1-1-3 1% 5| 9=] 3
2 -2 1 -9 —4 -1

Dlz{—2§x1§27—1§$2§4,_1§$3§5,_3§w4§1},
Dy ={z € R" | Qz < ¢}, where

4321
0321
Q= 0021 | g=(4321).
0001
Problem 3.
n n—1n—2... 2 1 -1-1-1 -1 -1
n—1 n n—1.. 3 2 -1-2-1 -1 -1
n—2n—1 n 4 3 -1-1-3 -1 -1
A= ,C=| ... ... .. ..
2 3 4 n n—1 -1-1-1 1—-n-1
1 2 3 .n—1 n -1-1-1 -1 —n
b=(n,n—1,n-2,..,321), d=1(1,2,3,...m —2,n—1,n).
D1:{$€Rn| — 1< z; <10, izl,Q,...,n};
Dy ={x € R"| Qx < q}, where
111..11 n
011..11 n—1
001..11 n—2
Q: q:
000..11 2
000..01 1

M3sBectusa VpKyTCKOro rocy1apCTBEHHOIO YHUBEPCHUTETA.
2014. T. 8. Cepusa «Maremarukay. C. 104-114




FRACTIONAL OPTIMIZATION PROBLEMS 113

max min
problems |const- | Initial | Global | time Initial Global time
raints
value | value | /sec / | value value /sec/

problem 1|D1 0.4166 | 0.6566 | 0.063 | 0.4166 | 0.4167 | 0.0047
D2 0.6684 | 0.6810 | 0.064 | 0.0667 | 0.0666 0.058
problem 2|D1 0.3500 | 3.6667 | 0.076 | 0.3500 | 0.1433 0.0773
D2 0.6713 | 0.7155 | 0.071 | 0.6713 | 0.6686 0.356
problem 3|D1 0.0036 | 1.4800 | 1.037 | 0.0141 |2.4224e-20| 0.882
n=50 |D2 0.0141 | 0.0178 | 1.297 | 0.0808 | 0.0667 1.205
problem 3|D1 0.0282 | 14.6461 | 6.259 | 0.1121 |9.5365e-18| 2.220
n=100 |D2 0.1121 | 0.1649 | 6.571 | 0.1789 | 0.0667 5.951
problem 3|D1 0.2241 (168.6475| 16.131 | 0.8982 | 1.6110e-5 | 50.5362
n=200 (D2 0.8982 | 1.3340 | 57.683 | 0.9653 | 0.7788 66.114
problem 3|D1 3.5008 (916.4216| 147.373 | 14.5133 | 3.9996 | 1482.09
n=500 |D2 14.513 | 21.6828 |1854.412| 14.5829 | 7.1792 | 2217.02
problem 3|D1 28.4096 |734.3228| 982.559 [133.4068| 50.5366 |3492.972
n=1000 |D2 133.4068|199.7074(7494.645|133.4868| 100.2541 |6897.254
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P. 9ux6at, T. Basipryrc
IpobHbIe 3aJa4y ONTUMU3AIUNI

AnHoTauusa. B crarbe paccMaTpuBaioTcs ApOOHBIE 3329 ONTUMU3AIMN HA MAKCH-
MyM U Ha MUHAMYM Ha IIPOU3BOJIBHOM JOILYCTHUMOM MHOYKECTBE C BBIIIYKJION (DYyHKIUEN B
YUCIUTE e U BOTHYTON (DyHKITHEH B 3HAMEHATE e, MMEIOINe MHOTO IPUJIOYKEHUN B 9KOHO-
Muke u TexHuke. [lokaszano, uTo 06a TuIa 33729 OTHOCATCS K KJIAcCy 3aJad IJI0O6aIbHOMN
ontumuzanuu. [Ipu onpesesIeHHbIX YCIOBUSX 9TH 33191 MOXKHO HCCJIEI0BATH KaK 3aa9n
KBa3UBBIILYKJION MakcuMu3anuu u MuHuMu3anuu. C 9Toil 1esIbIo NCIoJIb3yeTcst pa3pabo-
TaHHBIN paHee MOAXO. DTOT MOAXO 6A3UPYETCsT Ha CIEIUATbHBIX YCIOBUSX TJIOOATBLHOMN
ONTUMAJILHOCTH, ITOCTPOEHHBIX B COOTBETCTBHU C Teopueil ryiobasbpaoro momcka A. C.
CrpekajoBckoro. st cirydast BBITYKJIOTO JIOIMyCTUMOTO MHOYKECTBA MCXOIHAs IpOOHAS
3a7a4a MUHUMH3AIAA CBOJUTCS K IICEBJOBBIINYKJION 3aJade MUHHMU3AIWH, B KOTODPOI
BCSIKOE JIOKAJIbHOE peIleHne sSBJseTcst ritobasbHbiM. Ha 9Toit ocHOBe paspaboTaHbl B
MPpUOIMKEHHBIX INCIEHHBIX AJITOPUTMA /IS PEITeHnsT TPOOHBIX 33/1a9 ONTHMUBAIINN Ha
MaKCHMyM U Ha MUHUMYM. lIpoBesieHBI BBIYMC/INTEIBbHBIE SKCIEPUMEHTHI 110 PEIIEHUIO
pf4a TECTOBBIX 3aJlad PACCMaTPUBAEMBIX KJIacCOB pa3dMepHocTu 110 1000 mepeMeHHBIX.

KuroueBsbie ciioBa: 1pobHast MaKCUMU3AIHs, JpOOHAS MUHUMU3AIWS, YCIOBUS IJI0-
OaJIbHOU ONTUMAJIBHOCTH, AIIPOKCUMHUPYIOIIEE MHOXKECTBO.
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