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Abstract. We investigate combinations of structures by families of structures relative
to families of unary predicates and equivalence relations. Conditions preserving w-cate-
goricity and Ehrenfeuchtness under these combinations are characterized. The notions
of e-spectra are introduced and possibilities for e-spectra are described.

It is shown that w-categoricity for disjoint P-combinations means that there are
finitely many indexes for new unary predicates and each structure in new unary predicate
is either finite or w-categorical. Similarly, the theory of E-combination is w-categorical if
and only if each given structure is either finite or w-categorical and the set of indexes is
either finite, or it is infinite and FEj;-classes do not approximate infinitely many n-types
for n € w. The theory of disjoint P-combination is Ehrenfeucht if and only if the set of
indexes is finite, each given structure is either finite, or w-categorical, or Ehrenfeucht,
and some given structure is Ehrenfeucht.

Variations of structures related to combinations and E-representability are considered.

We introduce e-spectra for P-combinations and E-combinations, and show that these
e-spectra can have arbitrary cardinalities.

The property of Ehrenfeuchtness for E-combinations is characterized in terms of
e-spectra.

Keywords: combination of structures, P-combination, F-combination, e-spectrum.

1. Introduction

The aim of the paper is to introduce operators (similar to [9;10;12;14]) on
classes of structures producing structures approximating given structure,
as well as to study properties of these operators. These operators are
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connected with natural topological properties related to families of theories
[2-4;7:8].

In Section 2 we define P-operators, E-operators, and corresponding
combinations of structures. In Section 3 we characterize the preserva-
tion of w-categoricity for P-combinations and E-combinations as well as
Ehrenfeuchtness for P-combinations. In Section 4 we pose and investigate
questions on variations of structures under P-operators and FE-operators.
The notions of e-spectra for P-operators and E-operators are introduced
in Section 5. Here values for e-spectra are described. In Section 6 the
preservation of Ehrenfeuchtness for F-combinations is characterized.

Throughout the paper we consider structures of relational languages.

2. P-operators, F-operators, combinations

Let P = (FP;)icr, be a family of nonempty unary predicates, (A;);er be
a family of structures such that P, is the universe of A;, ¢ € I, and the
symbols P; are disjoint with languages for the structures A;, j € I. The
structure Ap = |J A; expanded by the predicates P; is the P-union of the
=
structures A;, and the operator mapping (A;)ier to Ap is the P-operator.
The structure Ap is called the P-combination of the structures A; and
denoted by Combp(A;)icr if A = (Ap [ 4;) | (A;), i € I. Structures A’,
which are elementary equivalent to Combp(A4;);cr, will be also considered
as P-combinations.
By the definition, without loss of generality we can assume for

Combp(A;)icr

that all languages ¥ (A;) coincide interpreting new predicate symbols for
A; by empty relation.

Clearly, all structures A" = Combp(A;);cr are represented as unions of
their restrictions A; = (A" [ B;) | X(A;) if and only if the set poo(z) =
{=P;(z) | i € I} is inconsistent. If A" # Combp(A})cr, we write A" =
Combp(Aj)ierufoc}, where AL = A" | (| P;, maybe applying Morleyza-

el
tion. Moreover, we write Combp(A;)icrufoc} for Combp(A;)icr with the
empty structure A.

Notice that each structure A in a predicate language Y can be repre-
sented as a P-combination. Indeed, taking formulas o;(x), whose sets of
solutions cover A, we can take p;-restrictions A; of A with P;(z) = ¢;(z).
The P-combination of A; restricted to ¥ forms A.

Clearly, if all predicates P; are disjoint, a structure Ap is a P-combina-
tion and a disjoint union of structures A; [14]. In this case the P-combina-~
tion Ap is called disjoint. Clearly, for any disjoint P-combination Ap,



84 S. V. SUDOPLATOV

Th(Ap) = Th(A%), where A’ is obtained from Ap replacing A; by pairwise
disjoint A, = A;, ¢ € I. Thus, in this case, similar to structures the P-
operator works for the theories T; = Th(.A4;) producing the theory Tp =
Th(Ap), which is denoted by Combp(T;)c;s.

On the opposite side, if all P; coincide then P;(x) = (z ~ x) and remov-
ing the symbols P; we get the restriction of Ap which is the combination
of the structures A; [10;12].

For an equivalence relation E replacing disjoint predicates P; by FE-
classes we get the structure Ag being the E-union of the structures A;.
In this case the operator mapping (A;)ier to Ag is the E-operator. The
structure Ag is also called the E-combination of the structures A; and
denoted by Combpg(A;)icr; here A; = (Ag | A;) | X(A;), ¢ € I. Similar
above, structures A’, which are elementary equivalent to Ag, are denoted
by Combp(A})jes, where A} are restrictions of A’ to its F-classes.

If Ap < A, the restriction A’ | (A" \ Ag) is denoted by A’_. Clearly,
A = AL [T AL, where Al = Combg (A})icr, Al is a restriction of A’ to its
FE-class containing the universe A;, i € I.

Considering an E-combination Ag we will identify F-classes A; with
structures A;.

Clearly, the nonempty structure A’_ exists if and only if I is infinite.

Notice that any F-operator can be interpreted as P-operator replacing
or naming FE-classes for A; by unary predicates P;. For infinite I, the dif-
ference between ‘replacing’ and ‘naming’ implies that A., can have unique
or unboundedly many FE-classes returning to the E-operator.

Thus, for any E-combination Ag, Th(Ag) = Th(A%), where A is
obtained from Apg replacing A; by pairwise disjoint A, = A;, i € I.
In this case, similar to structures the F-operator works for the theories
T; = Th(A;) producing the theory T = Th(Ag), which is denoted by
Combg(T;)icr, by Tg, or by CombgT, where T = {T; | i € I'}.

Note that P-combinations and F-unions can be interpreted by random-
izations [1] of structures.

Sometimes we admit that combinations Combp(A;)ic; and
Combpg(A;)icr are expanded by new relations or old relations are extended
by new tuples. In these cases the combinations will be denoted by
ECombp(A;)icr and ECombg(A;);cr, respectively.

3. w-categoricity and Ehrenfeuchtness for combinations

Proposition 3.1. If predicates P; are pairwise disjoint, the languages
Y(A;) are at most countable, i € I, |I| < w, and the structure Ap is infinite
then the theory Th(Ap) is w-categorical if and only if I is finite and each
structure A; is either finite or w-categorical.
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Proof. If I is infinite or there is an infinite structure A; which is not
w-categorical then T'= Th(Ap) has infinitely many n-types, where n = 1
if |I| > w and n = ng for Th(A;) with infinitely many no-types. Hence by
Ryll-Nardzewski Theorem Th(Ap) is not w-categorical.

If Th(Ap) is w-categorical then by Ryll-Nardzewski Theorem having
finitely many n-types for each n € w, we have both finitely many predicates
P; and finitely many n-types for each Pj-restriction, i. e., for Th(A4;). O

Notice that Proposition 3.1 is not true if a P-combination is not disjoint:
taking, for instance, a graph A; with a set P; of vertices and with infinitely
many Rj-edges such that all vertices have degree 1, as well as taking a
graph Ay with the same set P; of vertices and with infinitely many Rs-
edges such that all vertices have degree 1, we can choose edges such that
Ri N Ry = @, each vertex in P, has (R U Ry)-degree 2, and alternating
R;- and Ry-edges there is an infinite sequence of (R; U Rg)-edges. Thus,
A; and Ay are w-categorical whereas Comb(A1,.43) is not.

Note also that Proposition 3.1 does not hold replacing Ap by Ag. In-
deed, taking infinitely many infinite F-classes with structures of the empty
languages we get an w-categorical structure of the equivalence relation F.
At the same time, Proposition 3.1 is preserved if there are finitely many
E-classes. In general case Ag does not preserve the w-categoricity if and
only if E;-classes approrimate infinitely many n-types for some n € w, i. e.,
there are infinitely many n-types ¢,,(z), m € w, such that for any m € w,
©;j(z) € ¢;(z), j < m, and classes Ey,, ..., Ey,,, all formulas ¢;(Z) have

m
realizations in A\ |J Ek,. Indeed, assuming that all A; are w-categorical
r=1
we can lose the w-categoricity for Th(Ag) only having infinitely many n-
types (for some n) inside A,. Since all n-types in Ao, are locally (for any
formulas in these types) realized in infinitely many A;, E;-classes approx-
imate infinitely many n-types and Th(Ag) is not w-categorical. Thus, we
have the following

Proposition 3.2. If the languages ¥(A;) are at most countable, i € I,
lI| < w, and the structure Ag is infinite then the theory Th(Ag) is w-
categorical if and only if each structure A; is either finite or w-categorical,
and I is either finite, or infinite and E;-classes do not approximate infinitely
many n-types for any n € w.

As usual we denote by I(T, ) the number of pairwise non-isomorphic
models of 7" having the cardinality .

Recall that a theory T is Ehrenfeucht if T' has finitely many countable
models (I(T,w) < w) but is not w-categorical (I(7,w) > 1). A structure
with an Ehrenfeucht theory is also Ehrenfeucht.

Theorem 3.3. If predicates P; are pairwise disjoint, the languages
Y(A;) are at most countable, i € I, and the structure Ap is infinite then
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the theory Th(Ap) is Ehrenfeucht if and only if the following conditions
hold:
(a) I is finite;
(b) each structure A; is either finite, or w-categorical, or Ehrenfeucht;
(c) some A; is Ehrenfeucht.

Proof. If I is finite, each structure A; is either finite, or w-categorical, or
Ehrenfeucht, and some A4; is Ehrenfeucht then 7' = Th(Ap) is Ehrenfeucht
since each model of T' is composed of disjoint models with universes P; and

I(T,w) = [ [ I(Th(A;), min{| 4], w}). (3.1)

el

Now if [ is finite and all A; are w-categorical then by (3.1), I(T,w) =1,
and if some I(Th(A;),w) > w then again by (3.1), I(T,w) > w.

Assuming that |I| > w we have to show that the non-w-categorical
theory T has infinitely many countable models. Assuming on contrary
that I(T,w) < w, i. e., T is Ehrenfeucht, we have a nonisolated powerful
type q(z) € S(T) [5], i. e., a type such that any model of T realizing
q(z) realizes all types in S(T"). By the construction of disjoint union, ¢(z)
should have a realization of the type poo(z) = {—F;(x) | ¢ € I'}. Moreover,
if some Th(A;) is not w-categorical for infinite A; then ¢(z) should contain
a powerful type of Th(A4;) and the restriction r(y) of ¢(Z) to the coordinates
realized by poo(x) should be powerful for the theory Th(As ), where Ay is
infinite and saturated, as well as realizing r(y) in a model M |= T, all types
with coordinates satisfying poo(x) should be realized in M too. As shown
in [11;12], the type 7(7) has the local realizability property and satisfies the
following conditions: for each formula ¢(y) € r(y), there exists a formula
U(y,z) of T (where [(y) = I(2)), satisfying the following conditions:

(i) for each a € r(M), the formula ¢(a, y) is equivalent to a disjunction of
principal formulas v;(@, %), i < m, such that ¥;(a, y) - r(¢), and |= v;(a, b)
implies, that b does not semi-isolate a;

(ii) for every a,b € r(M), there exists a tuple ¢ such that = o(¢) A
P(¢,a) Ny (e,b).

Since the type poo(x) is not isolated each formula ¢(y) € 7(y) has real-
izations d in | J A;. On the other hand, as we consider the disjoint union of

iel
A; and there are no non-trivial links between distinct P; and Py, the sets of
solutions for ¢(d, §) with = ¢(d) in {~P;(z) |= P;(d;) for some d; € d} are
either equal or empty being composed by definable sets without parameters.
If these sets are nonempty the item (i) can not be satisfied: v (a, ) is not
equivalent to a disjunction of principal formulas. Otherwise all i-links for
realizations of r(y) are situated inside the set of solutions for p.(y) =

U Poo(y;). In this case for a = r(y) the formula 3z(¢(Z, a) A (Z,7)) does
Y;i€Y
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not cover the set (M) since it does not cover each @-approximation of
r(M). Thus, the property (ii) fails.

Hence, (i) and (ii) can not be satisfied, there are no powerful types, and
the theory T is not Ehrenfeucht. O

4. Variations of structures related to combinations and
FE-representability

Clearly, for a disjoint P-combination Ap with infinite I, there is a
structure A" = Ap with a structure AL_. Since the type poo(z) is non-
isolated (omitted in Ap), the cardinalities for A/ are unbounded. Infinite
structures A’ are not necessary elementary equivalent and can be both
elementary equivalent to some 4; or not. For instance, if infinitely many
structures A; contain unary predicates g, say singletons, without unary
predicates Q7 and infinitely many A; for i’ # i contain Qi, say again
singletons, without Qg then AL  can contain @y without Qq, @1 without
Qo, or both Qo and Q. For the latter case, A/ is not elementary equivalent
neither A;, nor A;.

A natural question arises:

Question 1. What can be the number of pairwise elementary non-
equivalent structures AL_?

Considering an FE-combination Ag with infinite I, and all structures
A" = Ag, there are two possibilities: each non-empty E-restriction of AL,
i. e. a restriction to some FE-class, is elementary equivalent to some A;,
i € I, or some E-restriction of AL is not elementary equivalent to all
structures A;, i € I.

Similarly Question 1 we have:

Question 2. What can be the number of pairwise elementary non-
equivalent E-restrictions of structures AL 7

Example 4.1. Let Ap be a disjoint P-combination with infinite I
and composed by infinite A;, i € I, such that [ is a disjoint union of
infinite I;, j € J, where A;; contains only unary predicates and unique
nonempty unary predicate @; being a singleton. Then A’ can contain any
singleton (); and finitely or infinitely many elements in () Gj. Thus, there

JjeJ
are 2171 . (A + 1) non-isomorphic A._, where X is a least upper bound for
cardinalities | () Q|-
Jj€J

For T'= Th(Ap), we denote by I.(7T,A) the number of pairwise non-
isomorphic structures A’ having the cardinality \.
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Clearly, Ino (T, \) < I(T, \).

If structures A exist and do not have links with A% (for instance, for a
disjoint P-combination) then I (T, \)+1 < I(T, \), since if models of T" are
isomorphic then their restrictions to ps () are isomorphic too, and po(z)
can be omitted producing A = @. Here Io(T,\) +1 = I(T,)) if and

only if all I(Th(A;),A) = 1 and, moreover, for any | |J P; |-restrictions
i€l
Bp,Bp of B,B" |= T respectively, where |B| = |B’| = A, and their P;-
restrictions B;, B., there are isomorphisms f;: B; % B, preserving P; and
with an isomorphism J fi: Bp = B)p.
el

The following example illustrates the equality Io(T,\) + 1 = I(T,\)

with some I(Th(A4;),A) > 1.

Example 4.2. Let Py be a unary predicate containing a copy of the
Ehrenfeucht example [13] with a dense linear order < and an increasing
chain of singletons coding constants ¢, £ € w; P,, n > 1, be pairwise
disjoint unary predicates disjoint to Py such that P = (—o0,¢) Pyry2 =
[, Chi1), M € w, and |J P, forms a universe of prime model (over @) for

n>1
another copy of the Ehrenfeucht example with a dense linear order <’ and
an increasing chain of constants ¢}, k € w. Now we extend the language

Y= <§, Sla Py, {Cn}’ {C;L}>n€w

by a bijection f between Py = {a | a < ¢gorcy < a} and {a’ | o’ <
chorcy < a'} such that a < b < f(a) <' f(b). The structures AL,
consist of realizations poo(x) which are bijective with realizations of the
type {¢, < x| n € w}.

For the theory T of the described structure ECombp(A;);c; we have
I(T,w) = 3 (as for the Ehrenfeucht example and the restriction of T" to F)
and I (T, w) = 2 (witnessed by countable structures with least realizations
of poo(z) and by countable structure with realizations of p () all of which
are not least).

For Example 4.1 of a theory 7" with singletons @; in A; and for a
cardinality A > 1, we have
min{|J|,A}
1
Gy
|J], if J is infinite and |J| > A;
2171, if J is infinite and |J| < \.

if J and X\ are finite;
I (Ta )‘) = =0

Clearly, A" = Ap realizing po(x) is not elementary embeddable into
Ap and can not be represented as a disjoint P-combination of A, = A,,
i € I. At the same time, there are F-combinations such that all A’ = Ag

WzBectusi IpKyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
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can be represented as FE-combinations of some .A; = A;. We call this

representability of A’ to be the E-representability. If, for instance, all A;

are infinite structures of the empty language then any A" = Ag is an

E-combination of some infinite structures .A;- of the empty language too.
Thus we have:

Question 3. What is a characterization of E-representability for all

A = Ag?

Definition (cf. [6]). For a first-order formula ¢(z1,...,x,), an equiva-
lence relation E and a formula o(x) we define a (E, 0)-relativized formula
"7 by induction:

n
(i) if ¢ is an atomic formula then 7 = p(z1,...,2,) A N\ E(xi,z;) A

ij=1
Fy(E(z1,y) Ao(y));
(ii) if ¢ = 7y, where 7 € {A,V,—}, and ¥ and x® are defined
then SDE,G — ¢E70',7_XE,O';
(iii) if p(z1,...,2n) = “Y(21,...,2,) and P (zy,..., 2,) is defined

then SOE7U((L.17 e 7'%'71) = _'1/}E7U(x17 e ,I’n) A /\ (E(xhwj) /\Ely(E(xlay) A

ij=1
o(y));
(iv) if p(z1,...,2,) = Jz(z,21,. .., 2,) and YE (z,21,...,2,) is de-
fined then

E',o(

% TlyeooyTp) =

=3 (/\(E@c,m ATy(B(w,5) A o(y)) AYE (o, .. >> ;
i=1
(v) if o(z1,...,2,) = Vau(z,z1,...,2,) and PP (z, 21,..., 2,) is de-
fined then

Eﬁ(xla s axn) =

P
=V (/\ E(x,z;) A Jy(E(z,y) Ao(y)) = P (z, x4, ... ,mn)> .

=1

We write E instead of (E,0) if 0 = (x = x).

Note that two E-classes E; and E; with structures A; and A; (of a
language Y.), respectively, are not elementary equivalent if and only if there
is a Y-sentence o such that Ap [ E; | ©F (with A; = ¢) and Ag |
E; E (—mp)F (with A; = —p). In this case, the formula ¢ is called (4, 7)-
separating.

The following properties are obvious:

(1) If ¢ is (4, j)-separating then —¢ is (j, )-separating.

(2) If ¢ is (i, j)-separating and 1) is (i, k)-separating then ¢ A ¢ is both
(i, 7)-separating and (i, k)-separating.
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(3) There is a set ®; of (i, j)-separating sentences, for j in some J C
I'\ {i}, which separates A; from all structures A; # A;.

The set @, is called e-separating (for A;) and A; is e-separable (witnessed
by ‘I)Z)

Assuming that some A" = Apg is not E-representable, we get an E’-class
with a structure B in A’ which is e-separable from all A;, i € I, by a set ®.
It means that for some sentences ¢; with Ag | E; = ngE , 1.e., A; E ¢;, the

i€l
the restriction of A’ to the class E’; with the universe B of B.
Thus, answering Question 3 we have

E
sentences < A —mpi> , where Iy Cg, I, form a consistent set, satisfying

Proposition 4.3. For any E-combination Ag the following conditions
are equivalent:

(1) there is A" = Ag which is not E-representable;

(2) there are sentences y; such that A; = ¢i, i € I, and the set of

E
sentences ( A —mpi> , where Iy Cqp I, is consistent with Th(Ag).
i€lp

Proposition 4.3 implies

Corollary 4.4. If Ag has only finitely many pairwise elementary non-
equivalent E-classes then each A' = Ag is E-representable.

5. e-spectra

If there is A" = Ag which is not E-representable, we have the E’-
representability replacing E by E’ such that E’ is obtained from E adding
equivalence classes with models for all theories T, where T is a theory
of a restriction B of a structure A’ = Ag to some E-class and B is not
elementary equivalent to the structures 4;. The resulting structure Apg:
(with the E’-representability) is a e-completion, or a e-saturation, of Ag.
The structure Apg: itself is called e-complete, or e-saturated, or e-universal,
or e-largest.

For a structure Ag the number of new structures with respect to the
structures A;, i. e., of the structures B which are pairwise elementary non-
equivalent and elementary non-equivalent to the structures A;, is called
the e-spectrum of Ag and denoted by e-Sp(Ag). The value sup{e-Sp(A")) |
A" = Ag} is called the e-spectrum of the theory Th(Ag) and denoted by
-Sp(Th(Ap)).

If Ar does not have E-classes A;, which can be removed, with all E-
classes A; = A;, preserving the theory Th(Ag), then A is called e-prime,
or e-minimal.

WzBectusi IpkyTCKOro rocyjapCTBEHHOI'O yHUBEPCHUTETA.
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For a structure A" = Agp we denote by TH(A’) the set of all theories
Th(A;) of E-classes A; in A'.

By the definition, an e-minimal structure A’ consists of E-classes with
a minimal set TH(A’). If TH(A') is the least for models of Th(A’) then A’

is called e-least.
The following proposition is obvious:

Proposition 5.1. 1. For a given language ¥, 0 < e-Sp(Th(Ag)) <
gmax{|X]w}

2. A structure Ag is e-largest if and only if e-Sp(Ag) = 0. In particular,
an e-minimal structure Ag is e-largest is and only if e-Sp(Th(Ag)) = 0.

3. Any weakly saturated structure Ag, i. e., a structure realizing all types
of Th(Ag) is e-largest.

4. For any E-combination Ag, if A < e-Sp(Th(Ag)) then there is a
structure A" = Ag with e-Sp(A") = X; in particular, any theory Th(Ag)
has an e-largest model.

5. For any structure Ag, e-Sp(Ag) = |TH(A%,) \ TH(AE)|, where A%,
is an e-largest model of Th(Ag).

6. Any prime structure Ag is e-minimal (but not vice versa as the
e-minimality is preserved, for instance, extending an infinite E-class of
given structure to a greater cardinality). Any small theory Th(Ag) has
an e-minimal model (being prime), and in this case, the structure Ag is
e-minimal if and only if

TH(Ag) = (] TH(A),
A'=Ag
i. e., Ag is e-least.
7. If Ag is e-least then e-Sp(Ag) = e-Sp(Th(Ag)).

8. If e-Sp(Th(Ag)) finite and Th(Ag) has e-least model then Ag is
e-minimal if and only if Ap is e-least and if and only if e-Sp(Ag) = e-
Sp(Th(Ag)).

9. If e-Sp(Th(Ag)) is infinite then there are A’ = Ap such that e-
Sp(A’) = e-Sp(Th(Ag)) but A" is not e-minimal.

10. A countable e-minimal structure Ag is prime if and only if each
E-class A; is a prime structure.

Reformulating Proposition 3.2 we have

Proposition 5.2. For E-combinations which are not EComb, a count-
able theory Th(Ag) without finite models is w-categorical if and only if
e-Sp(Th(Ag)) =0 and each E-class A; is either finite or w-categorical.
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Note that if there are no links between E-classes (i. e., the Comb is
considered, not EComb) and there is A" = Ag which is not E-representable,
then by Compactness the e-completion can vary adding arbitrary (finitely
or infinitely) many new E-classes with a fixed structure which is not ele-
mentary equivalent to structures in old E-classes.

Proposition 5.3. For any cardinality A there is a theory T = Th(Ag)
of a language ¥ such that |E| = |A 4+ 1] and e-Sp(T") = A.

Proof. Clearly, for structures A; of fixed cardinality and with empty
language we have e-Sp(Th(Ag)) = 0. For A > 0 we take a language ¥
consisting of unary predicate symbols P;, i < A\. Let A; ,41 be a structure
having a universe A;, with n elements and P; = A;,, P; = @, i,j <
A i # j,n € w) {0}. Clearly, the structure Ag, formed by all A;,,
is e-minimal. It produces structures A" = Ag containing E-classes with
infinite predicates P;, and structures of these classes are not elementary
equivalent to the structures A;,. Thus, for the theory T' = Th(Ag) we
have e-Sp(7T) = A. O

In Proposition 5.3, we have e-Sp(T") = |X(T')|. At the same time the
following proposition holds.

Proposition 5.4. For any infinite cardinality \ there is a theory T =
Th(Ag) of a language ¥ such that |X| = X\ and e-Sp(T) = 2*.

Proof. Let P; be unary predicate symbols, j < A, forming the language
Y, and A; be structures consisting of only finitely many nonempty predi-
cates Pj,,...,P;, and such that these predicates are independent. Taking
for the structures A; all possibilities for cardinalities of sets of solutions for
formulas Pfljl (T)A... /\P;»Skj’C (x), 0, € {0,1}, we get an e-minimal structure
Ag such that for the theory T' = Th(Ag) we have e-Sp(T) = 2.

Another approach for e-Sp(T') = 2* was suggested by E.A. Palyutin.
Taking infinitely many A; with arbitrarily finitely many disjoint singletons
Rj,,...,Rj,, where ¥ consists of R;, j < X, we get A" = Ap with arbitrar-
ily many singletons for any subset of A producing 2% E-classes which are
pairwise elementary non-equivalent. O

If e-Sp(T") = 0 the theory T is called e-non-abnormalized or (e,0)-
abnormalized. Otherwise, i. e., if e-Sp(T") > 0, T is e-abnormalized. An
e-abnormalized theory T" with e-Sp(7") = A is called (e, A)-abnormalized. In
particular, an (e, 1)-abnormalized theory is e-categorical, an (e,n)-abnor-
malized theory with n € w\ {0, 1} is e-Ehrenfeucht, an (e,w)-abnormalized
theory is e-countable, and an (e, 2*)-abnormalized theory is (e, \)-mazimal.

If e-Sp(T) = X and T has a model Ag with e-Sp(Ag) = p then Ag is
called (e, »c)-abnormalized, where s is the least cardinality with p+ s = A.

By proofs of Propositions 5.3 and 5.4 we have
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Corollary 5.5. For any cardinalities p < A and the least cardinality
s with p+ s = X\ there is an (e, \)-abnormalized theory T with an (e, »)-
abnormalized model Ag.

Let Ar and Bpgs be structures and Cgr = Ag[[Bg be their disjoint
union, where E” = E][E’. We denote by ComLim(Ag, Bg/) the num-
ber of elementary pairwise non-equivalent structures D which are both a
restriction of A’ = Ag to some E-class and a restriction of B’ = By to
some E’-class as well as D is not elementary equivalent to the structures

A; and B;.
We have:

ComLim(Ag, Bg/) < min{e-Sp(Th(Ag)), e-Sp(Th(Bg))},

max{e-Sp(Th(Ag)), e-Sp(Th(Bg))} < e-Sp(Th(Cgr)),
e-Sp(Th(Ag)) + e-Sp(Th(Bgr)) = e-Sp(Th(Cgr)) + ComLim(Ag, Bgr).

Indeed, all structures witnessing the value e-Sp(Th(Cg~)) can be ob-
tained by Th(Ag) or Th(Bg/) and common structures are counted for
ComLim(Ag, Bgr).

If Ap = Bp: then ComLim(Ag, Bg/) = e-Sp(Th(Ag)). Assuming that
Ag and Bgps do not have elementary equivalent classes A; and Bj, the
number ComLim(Ag, Bg/) can vary from 0 to 2>+,

Indeed, if Th(Ag) or Th(Bg/) does not produce new, elementary non-
equivalent classes then ComLim(Ag,Bg/) = 0. Otherwise we can take
structures A; and B; with one unary predicate symbol P such that P has
2i elements for A; and 2¢ + 1 elements for B;, i € w. In this case we
have Sp(Th(Ag)) = 1, Sp(Th(Bgr)) = 1, ComLim(Ag, Bg/) = 1, and Cgr
witnessed by structures with infinite interpretations for P. Extending the
language by unary predicates F;, ¢ < A, and interpreting P; in disjoint
structures as for P above, we get Sp(Th(Ag)) = A, Sp(Th(Bg:)) = A,
ComLim(Ag, Bg') = A\. Thus we have

Proposition 5.6. For any cardinality \ there are structures Ag and
Bg' of a language ¥ such that |X| = |\ + 1| and ComLim(Ag, Bg/) = \.

Applying proof of Proposition 5.4 with even and odd cardinalities for
intersections of predicates in A; and B; respectively, we have Sp(Th(Ag)) =
2%, Sp(Th(Bg)) = 2*, ComLim(Ag, Bg/) = 2*. In particular, we get

Proposition 5.7. For any infinite cardinality A are structures Ag and
B of a language ¥ such that |X| = X and ComLim(Ag, Br/) = 2*.

Replacing E-classes by unary predicates P; (not necessary disjoint) being
universes for structures A; and restricting models of Th(Ap) to the set
of realizations of po(x) we get the e-spectrum e-Sp(Th(Ap)), i. e., the
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number of pairwise elementary non-equivalent restrictions of M = Th(Ap)
t0 poo(x). We also get the notions of (e, A)-abnormalized theory Th(Ap),
of (e, A\)-abnormalized model of Th(Ap), and related notions.

Note that for any countable theory "= Th(Ap), e-Sp(T") < I(T,w). In
particular, if I(T,w) is finite then e-Sp(T') is finite too. Moreover, if T is
w-categorical then e-Sp(7') = 0, and if 7" is an Ehrenfeucht theory, then
e-Sp(T') < I(T,w). Ilustrating the finiteness for Ehrenfeucht theories we
consider

Example 5.8. Similar to Example 4.2, let Ty be the Ehrenfeucht theory
of a structure My, formed from the structure (Q; <) by adding singletons
Ry, for elements cg, ¢ < cx+1, k € w, such that klim ¢ = oo. It is well

—00

known that the theory T3 has exactly 3 pairwise non-isomorphic models:
(a) a prime model My (klim ck = 00);
—00

(b) a prime model M; over a realization of powerful type po(z) €
S1(2), isolated by sets of formulas {cx < x|k € w};

(c) a saturated model My (the limit klim ¢k is irrational).
—00

Now we introduce unary predicates P, = {a € My | a < ¢;}, i < w, on
M. The structures A; = Mg [ P; form the P-combination Ap with the
universe My. Realizations of the type poo(z) in M; and in My form two
elementary non-equivalent structures Ay, and A’ respectively, where Ao,
has a dense linear order with a least element and AL  has a dense linear
order without endpoints. Thus, e-Sp(Ty) = 2 and T} is e-Ehrenfeucht.

As E.A. Palyutin noticed, varying unary predicates P; in the following
way: Py = {a € My | a < ¢a;}, Paiy1 = {a € My | a < 941}, we get
e-Sp(Ts) = 4 since the structures A/ have dense linear orders with(out)
least elements and with(out) greatest elements.

Modifying Example above, let T}, be the Ehrenfeucht theory of a struc-
ture M", formed from the structure (Q; <) by adding constants cy, ¢ <

Ck+1, k € w, such that kl;n;o cr = 00, and unary predicates Ry, ..., R,_o

which form a partition of the set Q of rationals, with

EVr,y(zr<y) = 3Jz((x<2)A(z<y)ARi(2))), i=0,....,n—2.
The theory T}, has exactly n + 1 pairwise non-isomorphic models:

(a) a prime model M™ (lim ¢, = 00);

k—r00

(b) prime models M? over realizations of powerful types p;(z) € S1(2),
isolated by sets of formulas {c; <z |k€cw}U{P(x)},i=0,...,n—2
(lim ¢ € B);
k—o00

(c) a saturated model M;n fty™ (the limit klim ¢ is irrational).

— 00
Now we introduce unary predicates P; = {a € M" | a < ¢}, i < w, on

M. The structures A; = M™ [ P, form the P-combination Ap with the
universe M". Realizations of the type p(z) in M} and in M7, form n—1
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elementary non-equivalent structures A7, j < n—2, and A7, where A’ has
a dense linear order with a least element in R;, and A7, has a dense linear
order without endpoints. Thus, e-Sp(7;,) = n and T, is e-Ehrenfeucht.

Note that in the example above the type po(z) has n — 1 completions
by formulas Ry(x),..., Ry,—2(x).

Example 5.9. Taking a disjoint union M of m € w \ {0} copies of
My in the language {<;, Ri}j<m kew and unary predicates P; = {a | M =
Jz(a < x A Ri(z))} we get the P-combination Ap with the universe M
for the structures A; = M | P;, i € w. We have e-Sp(Th(Ap)) = 3™ —1
since each connected component of M produces at most two possibilities
for dense linear orders or can be empty on the set of realizations of po(z),
and at least one connected component has realizations of pe ().

Marking the relations <; by the same symbol < we get the theory T’
with

m(m + 1) m? +3m

e-Sp(T) = i(l +1)=——F—F4+m=

2 2
=1

Examples 5.8 and 5.9 illustrate that having a powerful type poo(x) we
get e-Sp(Th(Ap)) # 1, i. e., there are no e-categorical theories Th(Ap)
with a powerful type po(z). Moreover, we have

Theorem 5.10. For any theory Th(Ap) with non-symmetric or defin-
able semi-isolation on the complete type pso(x), e-Sp(Th(Ap)) # 1.

Proof. Assuming the hypothesis we take a realization a of poo(x)
and construct step-by-step a (a, poo(2))-thrifty model N of Th(Ap), i. e.,
a model satisfying the following condition: if ¢(x,y) is a formula such
that ¢(a,y) is consistent and there are no consistent formulas v (a,y) with
¥(a,y) F poo(z) then p(a,N) = 2.

At the same time, since poo(x) is non-isolated, for any realization a
of poo(x) the set poo(x) U {—p(a,z) | p(a,z) F poo(x)} is consistent. Then
there is a model N7 |= Th(Ap) realizing ps () and which is not (@', poo ())-
thrifty for any realization a’ of peo(z).

If semi-isolation is non-symmetric, N' | poo(z) and N/ | poo(z) are
not elementary equivalent since the formula ¢(a,y) witnessing the non-
symmetry of semi-isolation has solutions in A | poo(x) and does not have
solutions in N | peo ().

If semi-isolation is definable and witnessed by a formula ¢ (a,y) then
again N' | poo(z) and N’ | poo(x) are not elementary equivalent since
—)(a,y) is realized in N’ | poo(z) and it does not have solutions in N |
Poo()

Thus, e-Sp(Th(Ap)) > 1. O

Since non-definable semi-isolation implies that there are infinitely many
2-types, we have
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Corollary 5.11. For any theory Th(Ap) with e-Sp(Th(Ap)) = 1 the
structures AL are not w-categorical.

Applying modifications of the Ehrenfeucht example as well as construc-
tions in [12], the results for e-spectra of E-combinations are modified for
P-combinations:

Proposition 5.12. For any cardinality A there is a theory T = Th(Ap)
of a language ¥ such that |X| = max{\,w} and e-Sp(T") = A.

Proof. Clearly, if ps(z) is inconsistent then e-Sp(7") = 0. Thus, the
assertion holds for A = 0.

If A = 1 we take a theory T} with disjoint unary predicates P;, i € w,
and a symmetric irreflexive binary relation R such that each vertex has
R-degree 2, each P; has infinitely many connected components, and each
connected component on P; has diameter i. Now structures on peo(x)
have connected components of infinite diameter, all these structures are
elementary equivalent, and e-Sp(77) = 1.

If A = n > 1 is finite, we take the theory T, in Example 5.8 with e-
Sp(T,,) = n, as well as we can take a generic Ehrenfeucht theory T3 with
RK(T}) = 2 and with A — 1 limit model M, over the type poo(z), i < A—1,
such that each M; has a @j-chains, j < 4, and does not have @;-chains
for k > i. Restricting the limit models to po(z) we get A elementary non-
equivalent structures including the prime structure A’ without Q;-chains
and structures M; | poo(x), i < A—1, which are elementary non-equivalent
by distinct (non)existence of @;-chains.

Similarly, taking A > w disjoint binary predicates I; for the Ehrenfeucht
example in 5.8 we have A structures with least elements in R; which are
not elementary equivalent each other. Producing the theory T we have
e-Sp(Ty) = .

Modifying the generic Ehrenfeucht example taking A binary predicates
Q; with @Qj-chains which do not imply @j-chains for & > i we get A
elementary non-equivalent restrictions to peo(x). O

Note that as in Example 5.8 the type poo(x) for the Ehrenfeucht-like
example T has A completions by the formulas R;(x) whereas the type
Poo(x) for the generic Ehrenfeucht theory is complete. At the same time
having A completions for the po(z)-restrictions related to T, the poo(x)-
restrictions the generic Ehrenfeucht examples with complete po(x) can
violet the uniqueness of the complete 1-type like the Ehrenfeucht example
Ty, where A realizes two complete 1-types: the type of the least element
and the type of elements which are not least.

Proposition 5.13. For any infinite cardinality \ there is a theory T =
Th(Ap) of a language ¥ such that |S| = X and e-Sp(T) = 2*.

Proof. Let T be the theory of independent unary predicates R;, j < A,
(defined by the set of axioms 3z (Rk, (z) A ... A Rk, () AN=Ry (z) A... A
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Ry, (z)), where {ki,..., kn}N{l1,...,ln} = @) such that countably many
of them form predicates F;, ¢ < w, and infinitely many of them are inde-
pendent with P;. Thus, T' can be considered as Th(Ap). Restrictions of
models of T" to sets of realizations of the type poo(z) witness that predicates
R; distinct with all P; are independent. Denote indexes of these predicates
R; by J. Since p(x) is non-isolated, for any family A = (J;);c.s, where
d; € {0,1}, the types ga(z) = {Rjj | 7 € J} can be pairwise independently
realized and omitted in structures M | poo(z) for M |= T'. Then any pred-
icate R; can be independently realized and omitted in these restrictions.
Thus there are 2* restrictions with distinct theories, i. e., e-Sp(T) = 2*. O

Since for E-combinations Agr and P-combinations Ap and their limit
structures Ao, being respectively structures on F-classes and poo(z), the
theories Th(Ay,) are defined by types restricted to E(z,y) and peo(z),
and for any countable theory there are either countably many types or
continuum many types, Propositions 5.3, 5.4, 5.12, and 5.13 implies the
following

Theorem 5.14. If T = Th(Ag) (respectively, T = Th(Ap)) is a
countable theory then e-Sp(T) € w U {w,2¥}. All values in w U {w,2¥}
have realizations in the class of countable theories of E-combinations (of
P-combinations).

6. Ehrenfeuchtness for F-combinations

Theorem 6.1. If the language |J X(A;) is at most countable and the
el

structure Ag is infinite then the theory T = Th(Ag) is Ehrenfeucht if and
only if e-Sp(T") < w (which is equivalent here to e-Sp(T") = 0) and for an
e-largest model Ap =T consisting of E'-classes Aj, j € J, the following
conditions hold:

(a) for any j € J, I(Th(Aj),w) < w;

(b) there are positively and finitely many j € J such that I(Th(A;),w) >
1;

(c) if I(Th(A;),w) < 1 then there are always finitely many Ay = A; or

always infinitely many Aj = A; independent of A =T.

Proof. If e-Sp(T) < w and the conditions (a)—(c) hold then the the-
ory T is Ehrenfeucht since each countable model Ag» = T is composed
of disjoint models with universes E} = Ai, k € K, and I(T,w) is a

e-Sp(T)
sum Y of finitely many possibilities for models with [ representa-
=0

tives with respect to the elementary equivalence of E”-classes that are
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not presented in a prime (i. e., e-minimal) model of T. These possi-
bilities are composed by finitely many possibilities of I(Th(Ag),w) > 1
for Ay = Aj and finitely many of Axr # A with I(Th(Agr),w) > 1.
Moreover, there are C'(I(Th(Ayg),w), m;) possibilities for substructures con-
sisting of Ay = Aj where m; is the number of E-classes having the theory
Th(Az), C(n,m) = " m—1 is the number of combinations with repetitions
for n-element sets with m places. The formula for I(7T,w) is based on
the property that each E”-class with the structure A, can be replaced,
preserving the elementary equivalence of Ag~, by arbitrary B = Ay.

Now we assume that the theory T is Ehrenfeucht. Since models of T
with distinct theories of E-classes are not isomorphic, we have e-Sp(7T') < w.
Applying the formula for I(T,w) we have the conditions (a), (b). The
condition (c) holds since varying unboundedly many A; = A; we get
I(T,w) > w.

The conditions e-Sp(7") < w and e-Sp(7") = 0 are equivalent. Indeed, if
e-Sp(T) > 0 then taking an e-minimal model M we get, by Compactness,
unboundedly many FE-classes, which are elementary non-equivalent to E-
classes in M. It implies that [(T,w) > w. O

Since any prime structure is e-minimal (but not vice versa as the e-
minimality is preserved, for instance, extending an infinite F-class of given
structure to a greater cardinality preserving the elementary equivalence)
and any Ehrenfeucht theory T', being small, has a prime model, any Ehren-
feucht theory Th(Ag) has an e-minimal model.

We investigate combinations of structures by families of structures rel-
ative to families of unary predicates and equivalence relations. Conditions
preserving w-categoricity and Ehrenfeuchtness under these combinations
are characterized. The notions of e-spectra are introduced and possibilities
for e-spectra are described.

7. Conclusion

We introduced and studied combinations of structures by families of
structures relative to families of unary predicates and equivalence relations.
Conditions preserving w-categoricity and Ehrenfeuchtness under these com-
binations are characterized. The notions of e-spectra are introduced and
possibilities for e-spectra are described.
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Hosocubupckuti 2ocydapemeennwiti yrhusepcumem, Hosocubupck, Poccudti-
cxan Pedepayus

Awnnoranusi. Uccienyrorcs koMOnHAINN CTPYKTYD, IS JAHHBIX CEMEHCTB CTPYK-
TYDP, OTHOCHTEJIBHO CEMEHCTB OJHOMECTHBIX MPEIUKATOB U OTHOIIEHWI SKBUBAJIEHTHO-
cru. OxapakTepu30BaHbI YCJIOBUSI COXPAHEHUs W-KATEMOPUIHOCTH U IPEHGPONXTOBOCTH
IS 9TUX KoMOmHaruii. BBemeHbl MOHSATHS €-CIIEKTPOB M OMMCAHBI BO3MOXKHOCTH JIJISt
€-CIIEKTPOB.

Ilokazamo, 9TO W-KATETOPUIHOCTD JJIs IU3BIOHKTHBIX P-KOMOWHAIINIT PABHOCHIHLHA
KOHEYHOMY YHCJIy WHIEKCOB JIJIsi HOBBIX OJIHOMECTHBIX HPEIUKATOB C YCJIOBUEM KOHEY-
HOCTU WJIU W-KATETOPUIHOCTH KaXKJOW CTPYKTYPHI B HOBBIX OJHOMECTHBIX MTPEINKATAX.
Anasiornyno, Teopusi F-KOMOMHAIMY W-KATETOPUYIHA TOIIA U TOJBKO TOTJA, KOTJIA KayK-
Iasi JaHHasl CTPYKTypa JuO0 KOHEYHA, OO W-KATErOPWYHA, W MHOXKECTBO HHIIEKCOB
16O KOHEYHO, JTUO0 GECKOHEYHO U TPHU 3TOM F;-KJIacChl HE alllIPOKCUMUPYIOT GECKOHEU-
HOE YHCJIO N-TUTMOB JJig N € w. Teopuss AU3BIOHKTHON P-KOMOMHAIMY 3PEeHMOINXTOBA
TOTJIa ¥ TOJIbKO TOTa, KOT/Ia MHOXKECTBO WHIEKCOB KOHEYHO, KayK/lasl JAHHAsI CTPYKTY-
pa b0 KOHedHa, JUOO W-KaTeropudHa, JUOO 3PEeH(ONXTOBA, U HEKOTOPasl CTPYKTYpPa
3peHdOoiXTOBA.

Paccmorpensl Bapuaruu CTpyKTYp, OTHOCSIIIHECST K KOMOMHaIusiM u F-mipeacraBu-
MOCTH.

Bsenennl e-ciekTpbl st P-kombuHanmii 1 F-KOMOWHAIMI, U OKA3aHO, YTO TH e-
CIIEKTPBI MOT'YT MMETH IMPOU3BOIbHBIE MOIIHOCTH.

B TepMuHax e-CIeKTPOB OXapaKTEPU30BAHO CBOWCTBO 3PEeHMONXTOBOCTH JIjist F-KOM-
OuHAIMIA.

KuroueBbie ciioBa: KoMOuHaIMs CTPYKTYp, P-kKoMOuHausi, e-criekTp, F-kombuna-
.
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