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Аннотация:
Исследуется проблема разрешимости глобально допустимых правил логики S4. Для
правил, модель для которых удовлетворяет некоторым естественным свойствам,
получено необходимое и достаточное условие глобальной допустимости в логике
S4 (Grz). Указанные свойства модели M(r,X) не зависят от выбора заданной логи-
ки, что позволило применить технику истинности правила на n-характеристической
модели. На основе полученного описания построен алгоритм проверки глобальной
допустимости произвольного правила в редуцированной форме. Таким образом, про-
блема глобальной допустимости в логике S4 (Grz) разрешима.
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Abstract:
In the early 2000s, the key questions of the theory of admissible rules (decidability by
admissibility, the presence of a basis) were resolved for most basic non-classical logics.
The question arose about the direction of development of this theory. One of the direc-
tions of further study of admissible rules became globally admissible inference rules, i.e.
rules admissible in all (finitely approximable) extensions of a given logic or in some class
of extensions. For them, the problem of decidability, the presence of a finite or explicit
basis, etc. also arises.
In the presented work the problem of decidability of globally admissible rules of logic
S4 is investigated. For rules, the model for which satisfies some natural properties, the
necessary and sufficient condition of global admissibility in logic S4 (Grz) is obtained.
The specified properties of the model M(r;X) do not depend on the choice of the given
logic, which allowed to apply the technique of truth of the rule on the n-characteristic
model. Based on the obtained description, an algorithm for checking the global admis-
sibility of an arbitrary rule in a reduced form is proposed. Thus, the problem of global
admissibility in logic S4 (Grz) is decidable.
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1. Введение

Теория допустимых правил вывода (ДПВ), введенных Лоренценом в
1955 г. [12], возникла на стыке теории доказательств и неклассической
логики. Напомним, что в заданной логике L правило вывода допусти-
мо, если множество теорем L замкнуто относительно данного правила.
Прямо из определения следует, что совокупность всех допустимых в
логике правил — наиболее общий вид правил, которые можно доба-
вить к логике, не изменяя множество доказуемых в L теорем, при этом
значительно усилив ее дедуктивную силу.

Изучение допустимых правил вывода было стимулировано постанов-
кой проблемы Фридмана [7] о разрешимости интуиционистской логики
Int относительно допустимости: существует ли алгоритм распознава-
ния допустимости правила вывода в интуиционистской логике? Для
классической логики вопрос допустимости правил вывода решался три-
виально: допустимы только выводимые в логике правила вывода. В слу-
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чае неклассических логик оказалось (см. примеры [1], [13]), что в этих
логиках существуют допустимые, но не выводимые в логике правила.
Для широкого класса неклассических логик (Int,KC,K4, S4, S5, S4.3
и др.) проблема разрешимости по допустимости правил вывода была
решена В. В. Рыбаковым в середине 1980-х гг. (см., например, [6; 17]).
Однако разрешающий алгоритм не позволял описать допустимые пра-
вила в легко обозримом виде. Для большинства базовых и некоторых
табличных логик явный базис допустимых правил был описан в [9–11;
15; 16] в начале 2000-х. Возник вопрос о дальнейшем развитии теории
допустимых правил.

Одним из направлений изучения допустимых правил могло бы стать
использование допустимых правил вывода для описания нетривиаль-
ных семантических свойств неклассических логик (см. описание слабого
свойства ко-накрытий [4;8]). Другим направлением дальнейшего изуче-
ния допустимых правил вывода неклассических логик стали глобально
допустимые правила вывода (введенные в 2005 г. в [18]), т. е. правила,
допустимые не только в заданной модальной логике L или S4, а в це-
лом классе ее финитно аппроксимируемых расширений. Такие правила
развивают и обобщают понятие допустимого правила вывода. Как и
для допустимых правил заданной индивидуальной логики, для гло-
бально допустимых правил также возникает проблема разрешимости
(проблема Фридмана), наличия конечного или явного базиса (проблема
Кузнецова) и т. д.

Вероятно, практическое применение глобально допустимых правил
может быть основано на следующем наблюдении. Известно, что в ком-
пьютерных науках объекты или явления часто могут быть описаны с
точки зрения различных неклассических логик (модальных, временных
и т. д.). Наличие правил вывода, допустимых сразу во всех логиках
(достаточно широком классе таких логик), позволит по-новому взгля-
нуть на исследуемый объект или явление, получить новые следствия из
имеющихся данных.

На сегодняшний день известно относительно мало результатов, по-
священных изучению глобально допустимых правил вывода. В корот-
кой заметке [18] была доказана редукция глобальной допустимости к
табличной допустимости: правило глобально допустимо в логике L, если
и только если оно допустимо во всех табличных расширениях логики
L. В [3] получен явный (бесконечный) базис правил вывода, глобально
допустимых в модальных предтабличных логиках PT2, PT3. В [4] был
описан явный базис глобально допустимых правил для (бесконечного
класса) расширений логики S4 со слабым свойством ко-накрытий.

Представленная работа продолжает изучение глобально допустимых
правил логики S4 и развивает результаты, полученные в [2; 5]. Для за-
данного правила в редуцированной форме строится модель из формул
посылки правила. В указанных статьях [2; 5] были описаны свойства
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этой модели (условия), наличие которых гарантировало глобальную
допустимость или недопустимость заданного правила в логике S4. Их
описание позволило существенно сузить множество правил (моделей
для правил), где вопрос глобальной допустимости оставался открытым
(см. свойства (1)–(4) в теореме 2).

Для правил в редуцированной форме, модель которых удовлетво-
ряет некоторым естественным свойствам (свойства (1)–(4)), получено
необходимое и достаточное условие глобальной допустимости в логике
S4 (Grz). На основе полученного критерия построен алгоритм провер-
ки глобальной допустимости произвольного правила в редуцированной
форме. Таким образом, проблема глобальной допустимости в S4 (Grz)
разрешима.

2. Определения, предварительные результаты

Все необходимые определения, обозначения можно найти, напри-
мер, в [2;5] Для детального знакомства с семантикой модальных логик
и теорией допустимых правил рекомендуем монографию [17]. Однако
для полноты изложения напомним вкратце основные определения и
обозначения, используемые далее. Мы рассматриваем только логики,
расширяющие S4, поэтому все фреймы рефлексивны и транзитивны.

Говорим, что фрейм F является λ-фреймом, если все теоремы логики
λ истинны на F при любом означивании переменных. Соответственно,
λ(F) – множество формул, истинных на F – есть логика, порожденная
фреймом F .

Будем говорить, что сгустки C1, C2, . . . , Cn некоторого фрейма F
попарно не сравнимы по отношению R, если справедливо: ∀Ci, Cj , 1 ≤
i, j ≤ n, ∀x ∈ Ci, y ∈ Cj(¬(xRy)&¬(yRx)), т. е. из элементов одного
сгустка данного множества сгустков не достижимы по отношению R
элементы другого сгустка. Любое множество попарно несравнимых по
отношению R сгустков фрейма F называется антицепью. Антицепь A
называется нетривиальной, если A состоит по крайней мере из двух
различных сгустков, в противном случае — тривиальной.

Пусть F = 〈F, R〉 — некоторый фрейм. Для любого элемента a ∈ F
обозначим aR = {x|aRx} и a<R = aR \ C(a) и будем говорить, что
элемент a (сгусток C(a)) порождает как корень подфрейм aR (C(a)R

соответственно) фрейма F . Аналогично для множества X ⊆ F опреде-
ляем XR := ∪{xR|x ∈ X} и X<R = XR \X и также будем говорить, что
множество X ⊆ F порождает подфрейм XR или X<R соответственно.
Далее, помимо стандартного обозначения фреймов прописными латин-
скими буквами (F, F , G, . . . ), также будем использовать и обозначения
aR, CR, XR, . . . для подфреймов (фреймов), порожденных элементом
a ∈ F , сгустком C ∈ F или множеством X ⊆ F соответственно.
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Фрейм F – корневой, если существует элемент a ∈ F такой, что
∀b ∈ F aRb. Данный элемент a (и сгусток C(a)) называем также корнем
F . Сгусток C(a) из F есть ко-накрытие для множества (или антицепи)
X ⊆ F , если aR\C(a) = XR := ∪{xR|x ∈ X}. Говорим, что элемент
a есть ко-накрытие для X ⊆ F , если одноэлементный сгусток C(a)
образует ко-накрытие для X. λ-ко-накрытием называем ко-накрытие,
порождающее как корень λ-фрейм.

Глубиной элемента x фрейма (модели) F называется максимальное
число сгустков в цепях сгустков, начинающихся со сгустка, содержаще-
го x. Множество всех элементов фрейма (модели) F глубины не более
чем n будем обозначать S≤n(F), а множество элементов глубины n
обозначим Sn(F).

Модель 〈F,R, V 〉, где V : Pn → 2F и Pn = {p1, p2, . . . , pn}, называется
n-характеристической для логики λ тогда и только тогда, когда для
любой формулы α от переменных p1, . . . , pn выполняется α ∈ λ ⇐⇒
〈F,R, V 〉 |= α (см. Опр. 3.3.2 [17] ). Построение и свойства этой модели
можно найти в гл. 3 [17].

В данном исследовании нам также понадобится редуцированная фор-
ма модальных правил вывода. Говорим, что правило r имеет редуци-
рованную форму, если r := {∨1≤j≤m φj/x0}, где

φj :=
∧

0≤i≤k

xaii ∧
∧

0≤i≤k

✸xbii , ai, bi ∈ {0, 1}; x0 := x, x1 := ¬x.

Для каждого члена φj посылки правила в редуцированной форме опре-
делим также множества
θ1(φj) := {xj : 0 ≤ j ≤ k, aj = 0}; θ2(φj) := {xj : 0 ≤ j ≤ k, bj = 0};
θ3(φj) := {xj : 0 ≤ j ≤ k, aj = 1}; θ4(φj) := {xj : 0 ≤ j ≤ k, bj = 1}.

Для правила r в редуцированной форме множество всех формул φj
в посылке обозначим как Pr(r).

Утверждение 1 (см. гл. 3.1 [17]). Для любого модального правила
вывода R существует правило rf(R) в редуцированной форме, эквива-
лентное R относительно истинности на S4-алгебрах и S4-фреймах;
R и rf(R) одновременно выводимы или допустимы в любой модальной
логике, расширяющей S4.

Напомним определение глобально допустимого правила вывода, вве-
денное в [18]. Правило вывода r глобально допустимо в логике L, если
r допустимо во всех финитно аппроксимируемых логиках, расширяю-
щих логику L. Набор правил вывода R называется базисом глобально
допустимых правил логики L, если: 1) каждое правило из R глобально
допустимо в L; 2) любое глобально допустимое в L правило выводится
из R во всех финитно аппроксимируемых логиках, расширяющих L.
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Основным результатом [18] была редукция глобальной допустимости
правила в логике S4 (Int) к допустимости во всех табличных расшире-
ниях этой логики:

Теорема 1 (см. Т. 3 [18]). Правило вывода r допустимо во всех фи-
нитно аппроксимируемых логиках, расширяющих S4 (Int) ⇐⇒ r
допустимо во всех табличных логиках (в том числе порожденных
конечными корневыми S4-фреймами), расширяющих S4(Int).

3. Вспомогательный результат

Определим модель M(r,X) для правила r (см. гл. 3.1 [17]). Пусть
задано правило вывода r в редуцированной форме. И пусть множе-
ство X ⊆ Pr(r) состоит из всех членов посылки правила, таких, что
∀φj ∈ X(θ1(φj) ⊆ θ2(φj)). Модель M(r,X) построена на множестве X
с отношением R и означиванием V : ∀φj, φk ∈ X (φjRφk ⇐⇒ θ2(φk) ⊆
θ2(φj)); ∀φj ∈ X,∀p ∈ V ar(r) (φj ∈ V (p) ⇐⇒ p ∈ θ1(φ1)). Понятно,
что отношение R рефлексивно и транзитивно на множестве X.

Пусть G — произвольный конечный S4-фрейм (модель), первый слой
которого содержит одноэлементный сгусток e1. Для произвольного эле-
мента y ∈ G определим локальную компоненту Kc(y) следующим об-
разом. Пусть F0 := yR

⊔{e1}. На каждом шаге построения i > 0 для
каждой нетривиальной антицепи Aj ⊆ S≤i+1(Fi), имеющей одноэле-
ментное ко-накрытие в G, добавляем одно из них к Fi+1 (в случае,
когда антицепь имеет строго больше одного ко-накрытия, выбираем
одно из них). Через конечное число шагов процесс построения оборвется
в силу конечности G. Полученный в результате фрейм и есть локальная
компонента K(y).

Заметим, что локальная компонента определяется неоднозначно, ес-
ли существуют дубли ко-накрытий. Однако антицепь имеет ко-накры-
тие в локальной компоненте ⇐⇒ данная антицепь имеет ко-накрытие
в G. Кроме того, локальная компонента – конечный фрейм. Наличие
всех необходимых ко-накрытий в локальной компоненте элемента c ∈
Chn(λ) позволяет сформулировать:

Утверждение 2. Для любого n и произвольного элемента c∈Chn(λ)
существует p-морфизм из фрейма n-характеристической модели
Chn(λ) на локальную компоненту K(c) данного элемента.

Пусть задано правило r в редуцированной форме и модель M(r,X)
для этого правила. Используя результаты, полученные в [2], рассмот-
рим сначала следующие (тривиальные) случаи (исключив их в даль-
нейшем):
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Лемма 1. (1) Если ∀φ ∈ S1(M(r,X)) выполняется θ1(φ) 6= θ2(φ), то
правило r глобально допустимо в логике S4.

(2) Если ∀φ ∈ M(r,X) выполняется x0 ∈ θ1(φ), то правило r гло-
бально допустимо в S4. Если существует φ0 ∈ Pr(r) : x0 6∈ θ1(φ0) и
при этом выполняется также θ1(φ0) = θ2(φ0), то правило r недопу-
стимо глобально в логике S4.

(3) Если в модели M(r,X) выполняется

∃φ1 ∈ S1(M(r,X)) : θ1(φ
1) = θ2(φ

1),

∃φ0 ∈ M(r,X) : x0 6∈ θ1(φ0) & θ1(φ0) 6= θ2(φ0)),

и при этом локальная компонента

Kc(φ0) = φR0 ∪ φ1 ∪
⋃

{φ ∈ M(r,X) : ∃z ∈ φR0 ∪ φ1(φRz)} ⊑ M(r,X)

насыщенна по ко-накрытиям до глубины d(φ0) элемента φ0 (т. е. каж-
дая антицепь элементов из Kc(φ0) глубины не более d(φ0) имеет ко-
накрытие), то правило r не допустимо глобально в логике S4.

(4) Если ∃φ ∈ Kc(φ0) ⊑ M(r,X) : φ 6|=V φ, то правило r глобально
допустимо в логике S4.

(5) Пусть задано подмножество Z ⊆ X такое, что M(r, Z) ⊑
M(r,X). Если |Z| ≤ 3 и правило r опровергается на подмодели M(r, Z),
то правило r не допустимо глобально в логике S4.

Доказательство. 1) Предположим, что правило r недопустимо глобаль-
но в S4, т. е. недопустимо в некоторой табличной (финитно аппрокси-
мируемой) логике L над S4. Тогда для некоторой подстановки e выпол-
няется

e(
∨
φj) ∈ L, e(x0) 6∈ L.

В силу финитной аппроксимируемости логики, существует конечная
L-модель M , такая, что выполняется M |= e(

∨
φj), M 6|= e(x0).

Но тогда одноточечная модель E также адекватна данной логике
(такая модель может быть получена как р-морфный образ фрейма ко-
нечной модели M) и на ней в силу e(

∨
φj) ∈ L выполняется E |=

e(
∨
φj). Однако это невозможно по условию: на такой модели для всех

формул φj не выполняется θ1(φ) 6= θ2(φ), т. е. неверно ∀j ∃x : x 6∈
θ1(φ) & x ∈ θ2(φ) (что невозможно по рефлексивности отношения).
Получили противоречие, что завершает доказательство.

2) Если такой формулы φ0 ∈ Pr(r) не существует, то заключение
правила будет истинно на любой модели (правило истинно на любой
конечной модели), и значит, по лемме 3 [2] глобально допустимо в логи-
ке S4. Если такая формула φ0 ∈ Pr(r) существует в модели M(r,X), то
при равенстве θ1(φ0) = θ2(φ0) правило недопустимо глобально в логике
S4 по теореме 6 [2].
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3) Следует из теоремы 2 [2].
4) Следует из теоремы 3.1 [2].
5) Если |Z| ≤ 3, то фрейм модели M(r,X) состоит из одной рефлек-

сивной точки, двух несравнимых точек, собственного сгустка, цепи из
двух элементов (сгустков), «вилки» из трех элементов. Если правило
опровергается на данной модели, то легко проверить, что оно недопу-
стимо в табличной логике, порожденной фреймом M(r,X). И значит,
данное правило недопустимо глобально в логике S4.

Таким образом, далее рассматриваем правила вывода в редуциро-
ванной форме, модель M(r,X) для которых удовлетворяет свойствам:

(1) ∃φ1 ∈ S1(M(r,X)) : θ1(φ
1) = θ2(φ

1),
(2) ∃φ0 ∈ M(r,X) : x0 6∈ θ1(φ0) & θ1(φ0) 6= θ2(φ0)),
(3) локальная компонента Kc(φ0) не насыщена по ко-накрытиям,
(4) правило r опровергается на Kc(φ0) (т. е. ∀φ ∈ Kc(φ0) (φ |=V

φ), ∃φ0 ∈ Kc(φ0) (φ0 6|=V x0))).

Теорема 2. (T. 2 [5]) Пусть модель M(r,X) удовлетворяет свой-
ствам (1)–(4), приведенным ранее. Пусть также для любого непусто-
го множества дизъюнктов Z ⊆ X (|Z| ≥ 4) существует нетривиаль-
ная антицепь A ⊆ Kc(φ0) ⊆ M(r, Z), такая, что:

(1) ∃ Y ⊆ Kc(φ0) : f(YR) = AR&f − p-млрфизм;
(2) ∃φY ∈ Kc(φ0) — ко-накрытие для Y в Kc(φ0); т. е.

θ2(φY) = θ1(φY) ∪
⋃

Y{θ2(φi) : φi ∈ Y} & θ4(φY) = θ3(φY) ∩
⋂

Y{θ4(φi) :
φi ∈ Y}

(3) антицепь A не имеет ко-накрытия в M(r,X), т. е. выполня-
ется:

∀φa ∈ Pr(r) (θ2(φa) 6= θ1(φa) ∪
⋃

A

θ2(φi) & θ4(φa) 6= θ3(φa) ∩
⋂

A

θ4(φi)).

Тогда правило r глобально допустимо в логике S4.

В обратную сторону:

Теорема 3. Пусть модель M(r,X) удовлетворяет свойствам (1)–(4).
Пусть для некоторого непустого множества дизъюнктов Z ⊆ X для
любой нетривиальной антицепи A ⊆ Kc(φ0) ⊆ M(r, Z) выполняется:

(1) либо A имеет ко-накрытие в Kc(φ0) ⊑ M(r,X), т. е. выполня-
ется: ∃φa ∈ M(r,X)

(θ2(φa) = θ1(φa) ∪
⋃

A

θ2(φi) & θ4(φa) = θ3(φa)Ap
⋂

A

θ4(φi)),

(2) либо
(
∀ Y ⊆ Kc(φ0)

(
f(YR) = AR&f − p-морфизм =⇒ не суще-

ствует ко-накрытия φY ∈ Kc(φ0) для антицепи Y в Kc(φ0)
)
;

(т. е. ∀φY ∈ Kc(φ0) θ2(φY ) 6= θ1(φY) ∪
⋃

Y{θ2(φi) : φi ∈ Y}).
Тогда правило r недопустимо глобально в логике S4.

Известия Иркутского государственного университета.
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Доказательство. Конечным фреймом Kc(φ0) породим табличную ло-
гику L = L(Kc(φ0)). Тогда для некоторого n фрейм Kc(φ0) являет-
ся открытым подфреймом n-характеристической модели Chn(L) (см.
Proposition 4, c. 8 [14]). По условию теоремы при заданном означивании
V правило опровергается на открытой подмодели Kc(φ0). Если доопре-
делим означивание переменных на всем фрейме n-характеристической
модели так, чтобы посылка правила была истинной, то опровергнем за-
данное правило на Chn(L), откуда будет следовать его недопустимость
в табличной логике L над S4.

Для этого определим p-морфизм фрейма n-характеристической мо-
дели Chn(L) на ее подфрейм Kc(φ0). Перенося с помощью данного
p-морфизма означивание с Kc(φ0) на весь фрейм Chn(L), опровергнем
заданное правило на n-характеристической модели Chn(L).

Определим p-морфизм g на фрейме Chn(L) следующим образом:
1) Для всех элементов x ∈ Kc(φ0) ⊑ Chn(L) p-морфизм g определим

как тождественный: g(x) = x.
2) Для всех элементов z ∈ S1(Chn(L)) \ S1(Kc(φ0)) p-морфизм g

определим g(z) = e, где e ∈ S1(Kc(φ0)) — некоторый фиксирован-
ный элемент, порождающий одноэлементный сгусток (такой элемент
существует по построению Kc(φ0)).

Таким образом, p-морфизм определен на всем первом слое Chn(L).
3) Возьмем произвольный элемент z ∈ S2(Chn(L) \ Kc(φ0). По по-

строению модели данный элемент является ко-накрытием для некото-
рой антицепи элементов Z ⊂ S1(Chn(L)), на которой p-морфизм уже
определен и g(Z) ⊂ S1(Kc(φ0)).

Так как фрейм Kc(φ0) порождает логику L, то легко показать, что
корневой фрейм zR = {z} ∪ Z является p-морфным образом (при неко-
тором p-морфизме f) корневого подфрейма φRz = {φz} ∪ Y ⊑ Kc(φ0).
Следовательно, композиция p-морфизмов f и g является p-морфизмом
подфрейма YR ⊑ Kc(φ0) на подфрейм ZR ⊑ Kc(φ0).

Если антицепь A = g(Z) имеет ко-накрытие t ∈ S2(Chn(L)) : |C(t)| =
1, то определяем g(z) = t. В противном случае приходим к проти-
воречию. Действительно, в таком случае условие (1) не выполняется.
Условие (2) также не выполняется, так как для некоторого p-морфизма
выполняется AR = g(f(YR)) и антицепь Y имеет ко-накрытие φz в
Kc(φ0).

4) Предположим, что для всех элементов z ∈ S≤k(Chn(L) p-морфизм
уже определен и g(S≤k(Chn(L)) ⊑ S≤k(Kc(φ0)).

Возьмем произвольный элемент z ∈ Sk+1(Chn(L) \ Kc(φ0)). По по-
строению модели данный элемент является ко-накрытием для некото-
рой антицепи элементов Z ⊂ S≤k(Chn(L)), на которой p-морфизм уже
определен и g(ZR) ⊑ S≤k(Kc(φ0)). Как и ранее, можно показать, что
корневой фрейм zR = {z}∪ZR является p-морфным образом (при неко-
тором p-морфизме f) корневого подфрейма φRz = {φz} ∪ YR ⊑ Kc(φ0).
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Следовательно, композиция p-морфизмов f и g является p-морфизмом
подфрейма YR ⊑ Kc(φ0) на подфрейм ZR.

Если антицепь A = g(Y) имеет ко-накрытие t ∈ Sk+1(Chn(L)) (по-
рождающее вырожденный сгусток C(t)), то определяем g(z) = t. В
противном случае (если нет такого ко-накрытия t) приходим к про-
тиворечию. Действительно, в таком случае условие (1) не выполняется.
Условие (2) также не выполняется, так как для некоторого p-морфизма
выполняется AR = g(f(Y)R) и антицепь Y имеет ко-накрытие φz в
Kc(φ0).

Таким образом, определили p-морфизм моделей

g : 〈Chn(L), g−1(V )〉 →g 〈Kc(φ0), V 〉,
сохраняющий истинность формул. Теперь остается заметить, что пере-
нося с помощью p-морфизма g означивание V с открытой подмодели
Kc(φ0) ⊑ Chn(L) (на которой правило r опровергается) опровергнем
данное правило на n-характеристической модели Chn(L) при некото-
ром формульном означивании. Следовательно, правило r недопустимо
в данной табличной логике L(Kc(φ0))(⊇ S4), и значит, не является
глобально допустимым в логике S4.

Из полученных теорем 2, 3 следует:

Теорема 4. Пусть S4-модель M(r,X) для правила r в редуцированной
форме удовлетворяет условиям: (1) ∃φ1 ∈ S1(M(r,X)) : θ1(φ

1) =
θ2(φ

1), (2) ∃φ0 ∈ M(r,X) : x0 6∈ θ1(φ0) & θ1(φ0) 6= θ2(φ0)), (3)
локальная компонента Kc(φ0) не насыщена по ко-накрытиям, (4) пра-
вило r опровергается на Kc(φ0) (т. е. ∀φ ∈ Kc(φ0) (φ |=V φ), ∃φ0 ∈
Kc(φ0) (φ0 6|=V x0))).

Правило r глобально допустимо в логике S4, если и только если
для любого непустого множества дизъюнктов Z ⊆ X существует
нетривиальная антицепь A ⊆ Kc(φ0) ⊆ M(r, Z), такая, что:

(1) ∃ Y ⊆ Kc(φ0) : f(YR) = AR&f −−− p-морфизм;
(2) ∃φY ∈ Kc(φ0) — ко-накрытие для Y в Kc(φ0); т. е.

θ2(φY) = θ1(φY) ∪
⋃

Y{θ2(φi) : φi ∈ Y} & θ4(φY) = θ3(φY) ∩
⋂

Y{θ4(φi) :
φi ∈ Y}

(3) антицепь A не имеет ко-накрытия в M(r,X), т. е. выполня-
ется: ∀φa ∈ M(r, Z) :

θ2(φa) 6= θ1(φa) ∪
⋃

A

θ2(φi) & θ4(φa) 6= θ3(φa) ∩
⋂

A

θ4(φi).

4. Разрешимость глобальной допустимости

Основной результат состоит в следующем утверждении:
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Серия «Математика». 2025. Т. 54. С. 129–142



РАЗРЕШИМОСТЬ ГЛОБАЛЬНОЙ ДОПУСТИМОСТИ ПРАВИЛ ВЫВОДА ... 139

Теорема 5. Проблема глобальной допустимости правила r в логике
S4 разрешима.

Доказательство. На основе результатов, полученных в лемме 1 и тео-
реме 4, можно предложить следующий алгоритм проверки глобаль-
ной допустимости в логике S4 заданного правила r в редуцирован-
ной форме. Рассмотрим произвольное правило r и его S4-модель мо-
дель M(r,X). Выполним последовательно проверку следующих усло-
вий (свойств модели M(r,X)):

(1) Проверяем условие: ∃φ1 ∈ S1(M(r,X)) : θ1(φ
1) = θ2(φ

1). Если
такого элемента не существует, то по лемме 1 правило глобально допу-
стимо в логике S4. Далее рассматриваем модели M(r,X) для которых
это условие (1) выполняется. Переходим к проверке п. 2.

(2) Проверяем условие: ∃φ0 ∈ M(r,X) : x0 6∈ θ1(φ0) & θ1(φ0) 6=
θ2(φ0)). Если не выполнен первый конъюнкт, то лемме 1 правило r гло-
бально допустимо в логике S4. Если выполнена первая часть условия,
но не выполняется вторая, недопустимо глобально в логике S4. По-
этому далее рассматриваем модели M(r,X) в которых условия (1)–(2)
выполняются. Переходим к проверке пункта 3).

(3) Проверяем условие: посылка правила r истинна на Kc(φ0) (т .е.
∀φ ∈ Kc(φ0) (φ |=V φ), ). Если нет, то по лемме 1 правило недопустимо
глобально в логике S4. Поэтому далее рассматриваем модели M(r,X),
в которых правило r опровергается на локальной компоненте Kc(φ0), т.
е. условия (1)–(3) выполняются. Переходим к проверке пункта 4).

(4) Проверяем условие: локальная компонента Kc(φ0) не насыщена
по ко-накрытиям. Если условие не выполнено (т. е. локальная компонен-
та насыщенна по ко-накрытиям), то при выполнении условий (1)–(3) по
лемме 1 правило r недопустимо глобально в логике S4. Поэтому далее
рассматриваем модели M(r,X), в которых условия (1)–(4) выполняют-
ся. Переходим к проверке п. 5.

(5) Если модель M(r,X) удовлетворяет условиям (1)–(4) и удовле-
творяет также условиям теоремы 2, то правило r глобально допустимо
в логике S4 и проверка закончена. Иначе переходим к проверке п. 6.

(6) Если модель M(r,X) удовлетворяет условиям (1)–(4) и удовле-
творяет также условиям теоремы 3, то правило r недопустимо глобаль-
но в логике S4. Проверка закончена.

В результате для произвольного правила r в редуцированной форме
за конечное число шагов мы можем проверить его глобальную допусти-
мость или недопустимость в логике S4. Теорема доказана.

Заметим, что техника доказательства полученных выше результатов
с некоторыми упрощениями (все сгустки одноэлементные) также верна
для логики Grz. Следовательно, справедливо утверждение:
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Теорема 6. Проблема глобальной допустимости правила r в логике
Grz разрешима.

5. Заключение

В статье исследуются правила вывода, глобально допустимые в логи-
ке S4 (т. е. допустимые сразу во всех финитно аппроксимируемых рас-
ширениях S4). Для правил в редуцированной форме, модель которых
удовлетворяет некоторым естественным свойствам, получено необходи-
мое и достаточное условие глобальной допустимости в логике S4(Grz).
На основе полученного описания предложен алгоритм проверки гло-
бальной допустимости произвольного правила в редуцированной фор-
ме. Таким образом, проблема глобальной допустимости в логике S4(Grz)
разрешима. В связи с этим возникает вопрос о наличии (описании)
конечного или явного базиса для глобально допустимых правил для
S4 и большинства базовых логик (Grz,GL, S4.1 и т. д.)
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