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Аннотация: Рассматриваются обобщенные решения задач оптимального управле-
ния. Вводится понятие обобщенного импульсного управления. Предлагается некото-
рое расширение для задачи управления с ограничениями, подчиняющейся динамике
общего вида. Сформулирована соответствующая теорема существования в классе
разрывных дуг. Представленное расширение является более узким, чем ранее полу-
ченные в литературе для задач этого типа, поскольку содержит меньше обобщенных
импульсных управлений и, соответственно, меньше траекторий. Это достигается за
счет отказа от конвексификации задачи. В качестве основного инструмента иссле-
дования применяется общеизвестная разрывная замена переменной времени Лебега.
Эта замена переменной реализуется за счет некоторой редукции задачи. Важно от-
метить, что полученная теорема существования не всегда применима. Поэтому воз-
никает задача нахождения более тонких условий существования решения. В связи
с этим обсуждается ряд классических задач вариационного исчисления в контексте
представленного нелинейного импульсного расширения. Статья посвящается памяти
Владимира Александровича Дыхты.
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1. Introduction

Some problems of Calculus of variations do not have continuous solu-
tions. There exists a number of classical examples illustrating this phe-
nomenon such as Catenary, Dido’s problem, etc., when the boundary con-
ditions reach critical values. The absence of a classical solution naturally
gives rise to the issue of extension or relaxation of the problem. The
extension leads to the concept of a generalized solution. Regarding the
topic of extensions, one can read, for example, in the books [1; 5; 10].

Passing to a broader setting, one can consider controlled dynamics

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑢(𝑡) ∈ 𝑈 a.e. 𝑡 ∈ [0, 1],

where 𝑢(𝑡) is a measurable function in 𝐿𝑝([0, 1]), 𝑝 ≥ 1. Considering end-
point constraints and a minimizing cost, one can examine an optimal control
problem over this dynamics, in which discontinuous arcs can be candidates
for solutions. Such arcs may only arise when the set 𝑈 is unbounded. In-
deed, on the one hand, it is clear that discontinuities appear when 𝑥̇ begins
to take unbounded values. On the other hand, in the case of a bounded
set 𝑈 , and under fairly general assumptions, an extension into the class
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of absolutely continuous trajectories is implementable. It was proposed
in [8] and is based on the concept of generalized control. For compact
𝑈 , the set of generalized controls is weakly sequentially compact which
is of decisive importance for the existence of a solution in the extended
problem. However, if 𝑈 is unbounded, then this is not the case. For this
reason, when extending a control problem, it follows convenient to split the
control parameter in two parts 𝑢 and 𝑣, and to put that 𝑢 ∈ 𝑈 , and 𝑈 is
compact, while 𝑣 ∈ 𝑉 , and 𝑉 is some closed, but necessarily unbounded
set, for example, a cone.

Consider a simple type of extension in case when 𝑉 ̸= ∅. The measur-
able control function 𝑣(𝑡) can be replaced by a Borel measure 𝜇 on [0, 1].
Indeed, on the one hand, any absolutely continuous Borel measure generates
an integrable function, namely its Radon-Nikodym derivative: 𝑑𝜇/𝑑𝑡 =
𝑣(𝑡). On the other hand, there are measures which cannot be associated
with any measurable integrable function, for example, Dirac’s measure.
Then, it is simple to verify that this approach offers some extension for the
following dynamical system affine in the control variable 𝑣:

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) +𝐺(𝑡)𝑣, 𝑣 ∈ 𝐾,

where 𝑢 = 𝑢(𝑡) is an ordinary bounded control with values in 𝑈 , 𝑣 = 𝑣(𝑡) is
an unbounded control function with values in some convex closed cone 𝐾,
and 𝐺 is some smooth matrix-valued function. Replacing 𝑣 with 𝜇, and
minimizing the cost on the solutions to the extended control system with
measure, one arrives at the optimal impulsive control problem in its sim-
plest form. The generalized trajectories 𝑥(𝑡) are functions of bounded
variation, and therefore, can exhibit discontinuities. The generalized con-
trols are Borel vector-valued measures which are also termed as impulsive
controls. The idea of such an extension was first proposed in [19;24].

The complexity of the extension increases if one considers more general
control systems, for example, when the matrix 𝐺 begins to depend also
on the state variable: 𝐺 = 𝐺(𝑥, 𝑡), or even on the both state and con-
trol variables: 𝐺 = 𝐺(𝑥, 𝑢, 𝑡). It follows that in this case, the class of
Borel measures is not sufficient to describe the generalized control in the
extended problem. The impulsive control turns out to be something more
than just a Borel measure, but it is a pair (𝜇; {𝑣𝜏}), where 𝜇 is a Borel
measure, and {𝑣𝜏} is a certain family of ordinary measurable and bounded
controls termed attached. The attached controls act only on the breaks of
the system, that is, at the moments when an impulse occurs. This case
of extension was of interest to many researchers as there is an extensive
literature on this topic, see, e.g., [2; 3; 5; 11;14;25]. This list of works is far
from exhaustive.

The general case is given by the system

𝑥̇ = 𝑔(𝑥, 𝑣, 𝑡), 𝑣 ∈ 𝑉, (1.1)
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where 𝑔 is some smooth vector-valued function, and the set 𝑉 , as noted
above, is closed and unbounded. The system (1.1) obviously includes the
above considered cases. Various types of extensions to (1.1) have been
studied, for example, in [12;15;18;20;24].

In [12], the idea of ‘merging’ a Borel measure 𝜇 on [0, 1] with generalized
Gamkrelidze controls over 𝑉 was proposed by virtue of the discontinuous
Lebesgue time-variable change. Such a composition of controls of different
types, together with some standard compactification procedure, leads to a
fairly general extension of the original problem into the class of discontin-
uous trajectories. In this work, an extension is proposed for a constrained
control problem driven by (1.1), which is smaller than the one of [12], as
it contains less generalized impulsive controls, and, correspondingly, less
trajectories. This is achieved due to rejecting the problem convexification.
The drawback is a weak existence theorem, which is not always applicable.
Therefore, a task of finding more subtle conditions for the existence of
a solution arises. In this regard, some classical variational problems are
discussed in the context of a nonlinear impulsive extension.

In general, there exists an extensive literature focusing at the theory of
optimal impulsive control. In addition to those already mentioned above,
there are, for example, sources [4; 6; 9; 13; 16; 17; 21–23]. In conclusion, let
us note profound works of Vladimir Alexandrovich Dykhta on the control
theory and, in particular, the book [5], which had a great impact on the
author’s Ph.D. thesis, [11].

2. Statement of the problem

Below, we will study generalized solutions which may arise in the fol-
lowing constrained optimal control problem:

Find the minimum of 𝜙(𝑥0, 𝑥1)
under constraints 𝑥̇ = 𝑔(𝑥, 𝑣, 𝑡),

𝑥0 = 𝑥(𝑡0) ∈ 𝐴, 𝑥1 = 𝑥(𝑡1) ∈ 𝐵,

ℎ(𝑥(𝑡), 𝑡) ≤ 0 ∀ 𝑡 ∈ [𝑡0, 𝑡1],

𝑣(𝑡) ∈ 𝑉 a.e. 𝑡 ∈ [𝑡0, 𝑡1],

(2.1)

where 𝜙 : R𝑛 × R𝑛 → R1, 𝑔 : R𝑛 × R𝑚 × R1 → R𝑛, ℎ : R𝑛 × R1 → R𝑙

are given continuous mappings, 𝐴,𝐵, 𝑉 are given closed sets, and [𝑡0, 𝑡1]
is a given time interval which is fixed. The measurable function 𝑣(𝑡) is a
control, which is allowed to take unbounded values. The function ℎ specifies
the so-called inequality-type state constraints.

Let us associate with Problem (2.1) some a priori given scalar function
𝜔 : R+ → R+. The function 𝜔 has the following properties:

a) 𝜔(0) = 1;
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b) it is continuous and increasing;
c) lim

𝑦→∞
𝜔(𝑦) = +∞.1

Suppose that the control function 𝑣(𝑡) in Problem (2.1) is such that
𝜔(|𝑣(𝑡)|) is integrable. If, for example, 𝜔(𝑦) = 1 + 𝑦, then 𝑣 is a function
of class 𝐿1, if 𝜔(𝑦) = 1 + 𝑦2, then 𝑣 is a function of class 𝐿2, and so
on. Thus, the function 𝜔 defines the base class of measurable controls for
Problem (2.1). Those functions 𝑣 for which 𝜔(|𝑣|) is non-integrable will not
participate in the construction of the extension. If it is necessary to extend
the problem with bounded controls, that is, for class 𝐿∞, then the function
𝜔 can be chosen arbitrarily taking into account its properties mentioned
above, for example, 𝜔(𝑦) = 1 + 𝑦.

It is clear that (2.1) is more general in its formulation than the previously
discussed problem, in which the set of control parameters 𝑈 is compact.
The set 𝑉 in (2.1) can be unbounded. The formulation (2.1) includes the
possibility of minimizing the integral functional∫︁ 𝑡1

𝑡0

𝑓0(𝑥, 𝑢, 𝑡)𝑑𝑡.

This can be done by introducing an additional state variable 𝜒 : 𝜒̇ =
𝑓0(𝑥, 𝑢, 𝑡), 𝜒0 = 0, with 𝜒1 to be minimized.

In order to perform the extension, we need a natural compactification
of the space R𝑚, which is obtained by adding to R𝑚 the set 𝑆∞, called the
‘sphere at infinity’. The sphere at infinity is the usual (𝑚− 1)-dimensional
unit sphere, but it is contained in the copy of R𝑚. Formally, such a com-
pactification is defined as a pair (Θ, 𝐵1), where 𝐵1 is a closed unit ball in
the R𝑚-copy, and Θ : R𝑚 → 𝐵1 is an embedding, which is defined by the
formula:

Θ(𝑣) =
𝑣

1 + |𝑣|
, 𝑣 ∈ R𝑚.

Extending this embedding onto the sphere at infinity by the identity map-
ping Θ(𝑙) = 𝑙, 𝑙 ∈ 𝑆∞, one obtains a topology on R̄𝑚 := R𝑚 ∪ 𝑆∞, in
which the sets Θ−1(𝑂) are considered open, where 𝑂 is open in the induced
topology on 𝐵1. Then, Θ : R̄𝑚 → 𝐵1 is a homeomorphism, while the space
R̄𝑚 is topologically equivalent to the closed unit ball, and hence, is compact.

Note that the set 𝑉 is closed in R𝑚, but generally speaking, not in R̄𝑚.
Denote by 𝑉 its closure in the above described topology of R̄𝑚. Clearly,

the relation 𝑉 = Θ−1
(︁
clΘ(𝑉 )

)︁
holds, which will be used below.

Consider the function

𝑔(𝑥, 𝑣, 𝑡) :=
𝑔(𝑥, 𝑣, 𝑡)

𝜔(|𝑣|)
.

1 One can also consider the case of a finite limit. However, then, as it will become
clear from the further exposition, discontinuities of trajectories do not arise. This case
fits into the already known theory.
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Our main assumption will be that the mapping 𝑔 is continuously extendable
from R𝑛×R𝑚×R1 to R𝑛× R̄𝑚×R1. Thus, for each 𝑥, 𝑡 the function 𝑔(𝑥, ·, 𝑡)
is defined on the compactified space R̄𝑚, and is continuous. In particular,
it is continuous on the sphere at infinity, and one has

𝑔(𝑥, 𝑙, 𝑡) = lim
𝑣→𝑙

𝑔(𝑥, 𝑣, 𝑡)

𝜔(|𝑣|)
∀𝑥, 𝑡 ∈ R𝑛 × R1, ∀ 𝑙 ∈ 𝑆∞.

Above, the convergence of elements 𝑣 ∈ R𝑚 to an element 𝑙 ∈ 𝑆∞ is
understood in the sense of topology on R̄𝑚 and means that

Θ(𝑙) =
𝑣

|𝑣|
+ 𝛼(𝑣),

where 𝛼(𝑣) → 0 for |𝑣| → ∞, 𝑣 ̸= 0.
Consider the following definition.

Definition 1. We will say that the control problem (2.1) admits an im-
pulsive extension of order 𝜔 if the mapping 𝑔 can be continuously extended
to R𝑛 × R̄𝑚 × R1 and this extension is nontrivial, that is,

𝑔(·, ·, ·)|R𝑛×𝑆∞×R1 ̸= 0.

Thus, if there are points 𝑥, 𝑡 such that the function 𝑔(𝑥, ·, 𝑡) : 𝑆∞ → R𝑛

is not identically equal to zero, then we say that the control problem admits
an impulsive extension of order 𝜔.

Consider also the following hypothesis regarding 𝑔.

H1) The mapping 𝑔 satisfies the following estimate:

|𝑔(𝑥, 𝑣, 𝑡)| ≤ 𝜅(𝑡)(1 + |𝑥|) ∀ (𝑥, 𝑣, 𝑡) ∈ R𝑛 × R̄𝑚 × R1,

where 𝜅 is some integrable function on [𝑡0, 𝑡1].

Set 𝑇 = [𝑡0, 𝑡1]. Consider a Borel measure 𝜇 : ℬ(𝑇 ) → [0,+∞) such that
𝜇 ≥ ℓ. Here, ℬ(𝑇 ) denotes the 𝜎-algebra of Borel subsets of 𝑇 , and ℓ is
the Lebesgue measure on R. The inequality 𝜇 ≥ ℓ means that 𝜇(𝐵) ≥ ℓ(𝐵)
∀𝐵 ∈ ℬ(𝑇 ). Below, we will identify 𝜇 with its unique completion in the
Lebesgue-Stieltjes sense. Thus, one also has that 𝜇(𝐸) ≥ ℓ(𝐸) ∀𝐸 ∈ ℒ(𝑇 ),
where ℒ(𝑇 ) is the 𝜎-algebra of Lebesgue subsets of 𝑇 .

Consider the following change of variable which is, in fact, the well-
known discontinuous time-variable change due to H. Lebesgue,

𝜋(𝑡) = 𝜇([𝑡0, 𝑡]), 𝑡 ∈ (𝑡0, 𝑡1], 𝜋(𝑡0) = 0. (2.2)

It is clear that 𝜋 : 𝑇 → [0, ‖𝜇‖], where ‖𝜇‖ = 𝜇([𝑡0, 𝑡1]) is the total variation
of the measure. It is simple to derive that, since 𝜇 ≥ ℓ, there exists an
inverse function 𝜃(𝑠): [0, ‖𝜇‖] → 𝑇 such that

a) 𝜃(𝑠) is monotonically increasing;
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b) 𝜃(𝑠) is Lipschitz continuous with |𝜃(𝑠)− 𝜃(𝑡)| ≤ |𝑠− 𝑡| ∀ 𝑠, 𝑡;
c) 𝜃(𝑠) = 𝜏 , ∀ 𝑠 ∈ Γ𝜏 , ∀ 𝜏 ∈ 𝑇 , where Γ𝜏 = [𝜋(𝜏−), 𝜋(𝜏+)].

Note that the function 𝜋(𝑡) maps 𝜇-measurable sets to ℓ-measurable
sets. Indeed, this follows directly from the definition of 𝜋 and from the
representation of a measurable set as union of a Borel set and a set of
zero measure. Therefore, if a set 𝐸 is 𝜇-measurable, then the set 𝜃−1(𝐸)
is measurable. This implies the following important fact. The function
𝑣(𝜃(·)) is measurable if 𝑣(·) is 𝜇-measurable. Thus, the following change of
variable under the integral is feasible:∫︁ 𝑡1

𝑡0

𝑣(𝑡)𝑑𝜇 =

∫︁ ‖𝜇‖

0
𝑣(𝜃(𝑠))𝑑𝑠.

By Ds(𝜇), denote the set of atoms of 𝜇, that is,

Ds(𝜇) := {𝜏 ∈ 𝑇 : 𝜇({𝜏}) > 0}.

By 𝒟(𝑡;𝜇), we denote the Radon-Nikodym derivative (if exists) of the
Lebesgue measure ℓ w.r.t. 𝜇, that is, 𝒟(𝑡;𝜇) := 𝑑ℓ

𝑑𝜇 . It is clear that 𝒟(·;𝜇)
is 𝜇-measurable and has values in [0, 1].

3. Extended Problem

The extension for (2.1) takes the following form:

Find the minimum of 𝜙(𝑥0, 𝑥1), (3.1)

subject to constraints 𝑥(𝑡) =

∫︁ 𝑡

𝑡0

𝑔(𝑥, 𝑣, 𝑡)𝑑c, ∀ 𝑡 ∈ (𝑡0, 𝑡1], (3.2)

𝑥0 ∈ 𝐴, 𝑥1 ∈ 𝐵, (3.3)

ℎ(𝑥, 𝑡) ≤ 0, (3.4)

c = {𝜇, 𝑣, 𝑣𝜏}, range c ⊆ 𝑉 .

The above formulae and new notation require clarification. The symbol
c denotes generalized impulsive control. By definition, it consists of three
components:
− 𝜇 : ℬ(𝑇 ) → [0,+∞) – a non-negative Borel measure such that 𝜇 ≥ ℓ;
− 𝑣 : 𝑇 → 𝑉 – a 𝜇-measurable function such that2

𝒟(𝑡;𝜇) =
1

𝜔(|𝑣(𝑡)|R𝑚)
𝜇-a.e.; (3.5)

2 In (3.5), it is naturally assumed that |𝑣|R𝑚 = ∞ ∀ 𝑣 ∈ 𝑆∞, 𝜔(∞) = ∞, and 1
∞ = 0.

Hence, in particular, taking into account that 𝜇 ≥ ℓ, it follows that the set of points 𝑡 in
which the control value 𝑣(𝑡) is on the infinitely distant sphere has zero ℓ-measure.
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− 𝑣𝜏 : [0, 1] → 𝑉 ∩ 𝑆∞ – a family of measurable functions depending on
𝜏 ∈ Ds(𝜇) with the values from the infinitely distant sphere.

The family {𝑣𝜏}𝜏∈Ds(𝜇) is termed the attached family of controls. It is
clear that all the three components of the generalized impulsive control are
closely related with each other.

Let 𝑥𝜏 (𝑠) denote the solution of the attached differential control system:{︂
𝑥̇𝜏 (𝑠) = Δ𝜏𝑔(𝑥𝜏 (𝑠), 𝑣𝜏 (𝑠), 𝜏), 𝑠 ∈ [0, 1],
𝑥𝜏 (0) = 𝑥(𝜏−),

where Δ𝜏 := 𝜇({𝜏}). A function of bounded variation 𝑥(𝑡) is called a
solution of Equation (3.2) corresponding to 𝑥0 ∈ 𝐴 provided that:

𝑥(𝑡) = 𝑥𝐴 +

∫︁ 𝑡

𝑡0

𝑔(𝑥(𝜃), 𝑣(𝜃), 𝜃)𝑑𝜇c +
∑︁

𝜏∈Ds(𝜇): 𝜏≤𝑡

(︁
𝑥𝜏 (1)− 𝑥𝜏 (0)

)︁
.

for all 𝑡 ∈ (𝑡0, 𝑡1], and 𝑥(𝑡0) = 𝑥0. Here, 𝜇c is the continuous component of
𝜇, that is, the sum of its absolutely continuous and singular components.

The state constraints (3.4) are understood in a somewhat broader sense
than the usual inequality. More precisely,

ℎ(𝑥, 𝑡) ≤ 0 ⇔
{︂
ℎ(𝑥(𝑡), 𝑡) ≤ 0, ∀ 𝑡 ∈ 𝑇,
ℎ(𝑥𝜏 (𝑠), 𝜏) ≤ 0, ∀ 𝑠 ∈ [0, 1], ∀ 𝜏 ∈ Ds(𝜇).

A pair (𝑥, c) is called a control process if condition (3.2) is valid. A
control process is called admissible if the endpoint constraints (3.3) and
state constraints (3.4) are satisfied. The set of all admissible processes
is denoted by 𝒫. An admissible process (𝑥*, c*) is called optimal, or a
solution to problem (3.1), if the value of the minimizing functional is the
least possible on the set 𝒫.

Let us comment on these definitions. Problem (3.1) represents an ex-
tension of (2.1), since for any admissible control 𝑣(𝑡) in Problem (2.1)
there exists a generalized impulsive control c in Problem (3.1) such that
the corresponding trajectories, and hence, the values of the minimizing
functional, coincide. Indeed, let 𝑣(𝑡) be an ordinary control. Consider an
absolutely continuous Borel measure

𝜇(𝐸) =

∫︁
𝐸
𝜔(|𝑣(𝑡)|)𝑑𝑡, 𝐸 ∈ ℬ(𝑇 ).

Set c = (𝜇, 𝑣(·), 0). It is clear that 𝒟(𝑡;𝜇) = 1
𝜔(|𝑣(𝑡)|) , and hence, Condition

(3.5) is valid. At the same time, by definition of 𝑔, one has

𝑥(𝑡) = 𝑥0 +

∫︁ 𝑡

𝑡0

𝑔(𝑥, 𝑣, 𝜃)𝑑c = 𝑥0 +

∫︁ 𝑡

𝑡0

𝑔(𝑥(𝜃), 𝑣(𝜃), 𝜃)

𝜔(|𝑣(𝜃)|)
· 𝜔(|𝑣(𝜃)|)𝑑𝜃 =
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= 𝑥0 +

∫︁ 𝑡

𝑡0

𝑔(𝑥(𝜃), 𝑣(𝜃), 𝜃)𝑑𝜃.

Condition (3.5) is of critical importance. Indeed, without this condition,
the proposed formulation is not a correct extension of the original problem
(2.1), which can be easily seen in the simplest examples. Let

𝑛 = 𝑚 = 1, 𝑥0 = 0, 𝑔(𝑥, 𝑣, 𝑡) = 1 + 𝑣, 𝑉 = [1;∞], 𝜔(𝑦) = 1 + 𝑦.

It is clear that 𝑔 ≡ 1. Let 𝜇 := ℓ and consider the time interval [0, 1]. The
trajectory 𝑥(𝑡) ≡ 𝑡 corresponds to the chosen measure and is admissible
in the extended problem. However, 𝑥(1) = 1 /∈ cl𝒜(1) = [2,∞), where
𝒜(𝑡) is the reachability set of the original system at time 𝑡. Therefore,
the indicated trajectory cannot be approximated by the trajectories of the
original problem, and therefore, it should not be included in the extension.
This happened since Condition (3.5) is violated in the considered example.

In the case of a bounded problem (when 𝑉 is compact), can any other
trajectories, except for the trajectories of the original problem, be included
into the extension? The answer is negative. Indeed, by virtue of (3.5), 𝜇 is
absolutely continuous, while its density equals 𝜔(|𝑣(𝑡)|), and therefore, is
bounded. Then, by virtue of the definitions (see the above reasoning),
the set of admissible trajectories does not change when passing to the
extended problem. Thus, new trajectories can manifest only when the
set 𝑉 is unbounded.

4. Existence Theorem

One of the central questions in the theory of extensions concerns the
existence of a solution in the extended problem. The following existence
theorem is a version of A.F. Filippov’s theorem, [7], adjusted to the case of
discontinuous trajectories.

Theorem 1. Suppose that Problem (2.1) admits an impulsive extension
of order 𝜔. Let one of the sets 𝐴 or 𝐵 be compact, and 𝒫 ̸= ∅. Suppose
also that there exists a constant 𝜅 > 0 such that

(𝑥, c) ∈ 𝒫 ⇒ ‖𝜇‖ ≤ 𝜅. (4.1)

Suppose also that the set⋃︁
𝑣∈𝑉

(︂
𝑔(𝑥, 𝑣, 𝑡),

1

𝜔(|𝑣|R𝑚)

)︂
⊂ R𝑛+1 (4.2)

is convex for all 𝑥, 𝑡, and hypothesis H1) holds.
Then, Problem (3.1) has a solution.
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Proof. The idea for the proof is to reduce the impulsive control problem
(3.1) to a conventional optimal control problem using the Lebesgue dis-
continuous time variable change along with a compactification procedure.
Consider the embedding Θ : R𝑚 → 𝐵1 defined in Section 2. Set

𝑓(𝑥, 𝑢, 𝑡) := 𝑔(𝑥,Θ−1(𝑢), 𝑡), 𝑈 := Θ(𝑉 ) ⊆ 𝐵1,

and consider the following conventional control problem with bounded
controls.

Find the minimum 𝜙(𝑥0, 𝑥1),
subject to constraints 𝑥̇ = 𝑓(𝑥, 𝑢, 𝜒),

𝜒̇ = 𝛼, a.e. 𝑠 ∈ [0, 𝑠1],
𝑥(0) ∈ 𝐴, 𝑥(𝑠1) ∈ 𝐵,
𝜒(0) = 𝑡0, 𝜒(𝑠1) = 𝑡1,
ℎ(𝑥, 𝜒) ≤ 0,
𝛼 = 1

𝜔(|Θ−1(𝑢)|R𝑚 )
,

𝑢(𝑠) ∈ 𝑈, 𝛼(𝑠) ∈ [0, 1] a.e. 𝑠 ∈ [0, 𝑠1].

(4.3)

The point 𝑠1 in Problem (4.3) is not fixed, unlike Problem (3.1), which is
set on a fixed time interval. The control functions in Problem (4.3) are 𝛼(𝑠)
and 𝑢(𝑠). Note that 𝑈 is compact, as is the image of 𝑉 under the continuous
mapping Θ. Let us show that Problems (3.1) and (4.3) are equivalent, i.e.,
for any admissible process (𝑥, c) ∈ 𝒫 of Problem (3.1), there exists an
admissible process (𝑥̃, 𝜒, 𝛼, 𝑢, 𝑠1) of (4.3) such that 𝜙(𝑥0, 𝑥1) = 𝜙(𝑥̃0, 𝑥̃1),
and vice versa.

Let (𝑥, c) ∈ 𝒫, where c = {𝜇, 𝑣, 𝑣𝜏}. Consider the discontinuous time
change 𝜋(𝑡). The inverse function is denoted by 𝜃 = 𝜃(𝑠), 𝜃 : [0, 𝑠1] → 𝑇 ,
where 𝑠1 = ‖𝜇‖. Take

𝛼(𝑠) =

{︂
𝒟(𝜃(𝑠);𝜇), if 𝑠 ∈ ϒ(𝜇),
0, otherwise,

𝑢(𝑠) =

{︂
Θ(𝑣(𝜃(𝑠))), if 𝑠 ∈ ϒ(𝜇),
Θ(𝑣𝜏 (𝜁𝜏 (𝑠))), otherwise,

𝑥̃(𝑠) =

{︂
𝑥(𝜃(𝑠)), if 𝑠 ∈ ϒ(𝜇),
𝑥𝜏 (𝜁𝜏 (𝑠)), otherwise,

Here,

ϒ(𝜇) := [0, 𝑠1] ∖
⋃︁

𝜏∈Ds(𝜇)

Γ𝜏 , 𝜁𝜏 (𝑠) :=
𝑠− 𝜋(𝜏−)

ℓ(Γ𝜏 )
: Γ𝜏 → [0, 1].

Let us demonstrate that

𝜃(𝑠) = 𝑡0 +

∫︁ 𝑠

0
𝛼(𝜍)𝑑𝜍. (4.4)

Indeed, by definition one has ℓ([𝑡0, 𝑡]) =

𝑡− 𝑡0 =

∫︁
[𝑡0,𝑡]

𝒟(𝜎;𝜇)𝑑𝜇 =

∫︁ 𝑡

𝑡0

𝒟(𝜎;𝜇)𝑑𝜋(𝜎) =

∫︁ 𝜋(𝑡)

0
𝒟(𝜃(𝜍);𝜇)𝑑𝜍.
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Substituting 𝑡 = 𝜃(𝑠), taking into account the definition of 𝛼, 𝜃, and also
the fact that 𝜋(𝜃(𝑠)) = 𝑠, as soon as 𝜋 is continuous at the point 𝑡 = 𝜃(𝑠),
one arrives at (4.4). Therefore, 𝜒 = 𝜃.

By virtue of (3.5), it is obvious that the additional control constraint
𝛼(𝑠) = 1/𝜔(|Θ−1(𝑢(𝑠))|) imposed in (4.3) is satisfied for a.e. 𝑠. It is also
clear that the endpoint and state constraints in Problem (4.3) are satisfied.
By changing the variable in (3.2) and taking into account the concept of
extended trajectory, we obtain that the trajectory 𝑥̃(·) satisfies the dynam-
ics in (4.3) on [0, 𝑠1] for (𝑥0, 𝛼, 𝑢). It is obvious that 𝑥̃(𝑠1) = 𝑥1. Thus,
the constructed process (𝑥̃, 𝜒, 𝛼, 𝑢, 𝑠1) is admissible in Problem (4.3). It is
clear that 𝑥̃1 = 𝑥1, and hence, 𝜙(𝑥0, 𝑥1) = 𝜙(𝑥̃0, 𝑥̃1).

Consider an arbitrary admissible process (𝑥̃, 𝜒, 𝛼, 𝑢, 𝑠1) of Problem (4.3).
Function 𝜒(𝑠) is the inverse of some discontinuous time change 𝜋 : 𝑇 →
[0, 𝑠1], where 𝜋(𝑡) is uniquely defined as a function such that 𝜋(𝜒(𝑠)) = 𝑠,
a.e. 𝑠: 𝛼(𝑠) > 0, 𝜋(𝑡0) = 0, 𝜋(𝑡1) = 𝑠1, and 𝜋(𝑡) is continuous on the right
on (𝑡0, 𝑡1). Define a measure: 𝜇([𝑡0, 𝑡]) = 𝜋(𝑡). It is clear that 𝜇 ≥ ℓ.

Let 𝑣(𝑡) = Θ−1(𝑢(𝜋(𝑡))), 𝑣𝜏 (𝑠) = Θ−1(𝑢(𝜁𝜏 (𝑠))), where

𝜁𝜏 (𝑠) = ℓ(Γ𝜏 )𝑠+ 𝜋(𝜏−) : [0, 1] → Γ𝜏 , 𝜏 ∈ Ds(𝜇).

If 𝐸 is measurable, then 𝜋−1(𝐸) is 𝜇-measurable. Therefore, 𝑣 is 𝜇-measura-
ble. The extended trajectory 𝑥(𝑡) = 𝑥̃(𝜋(𝑡)), 𝑡 ∈ 𝑇 , and 𝑥𝜏 (𝑠) = 𝑥̃(𝜁𝜏 (𝑠))
is by construction a solution to (3.2). This follows directly from the defi-
nitions and the change of variable under the integral. It is also clear that
the endpoint and state constraints are satisfied. Therefore, the process
(𝑥, c), where c = {𝜇, 𝑣, 𝑣𝜏} is admissible in Problem (3.1). Moreover,
𝜙(𝑥0, 𝑥1) = 𝜙(𝑥̃0, 𝑥̃1).

Thus, it has been established that Problems (3.1) and (4.3) are equiva-
lent. Moreover, due to the one-to-one correspondence of processes,

𝑠1 = ‖𝜇‖. (4.5)

Thus, if a solution exists in one of the problems, it also exists in the other.
However, a solution exists in the auxiliary problem (4.3). Indeed, this is a
consequence of the imposed conditions 𝒫 ≠ ∅, H1), compactness of 𝐴 or 𝐵,
conditions (4.1), (4.2), (4.5) and Filippov’s theorem.3 Therefore, Problem
(3.1) has a solution.

Remark 1. It is simple to show that Condition (4.1) is certainly satisfied
as soon as there are constants 𝜀, 𝜅 > 0 such that∫︁ 𝑡1

𝑡0

𝜔(|𝑣(𝑡)|)𝑑𝑡 ≤ 𝜅

3 Herein, its version from [8] is employed.
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for all 𝑣(·) : 𝑇 → 𝑉 , for which dist(𝑥(𝑡1), 𝐵) ≤ 𝜀, ℎ𝑗(𝑥(𝑡), 𝑡) ≤ 𝜀, 𝑗 = 1, ..., 𝑙,
𝑡 ∈ 𝑇 , where 𝑥̇(𝑡) = 𝑔(𝑥(𝑡), 𝑣(𝑡), 𝑡), 𝑥(𝑡0) = 𝑥0 ∀𝑥0 ∈ 𝐴. Then, it is not
necessary to pass to the class of extended controls in order to verify (4.1).
This sufficient condition for validity of (4.1) is often simple to verify. In
particular, it is fulfilled for a number of classical examples, like the Euler
or Dido problems analysed in [12] with regards to their extensions.

Remark 2. Let 𝐴 = {𝑥0}. Then, 𝜙(𝑥0, 𝑥1) = 𝜙(𝑥1). Condition (4.1) can
be replaced by the following:

(𝑥, c) ∈ 𝒫 ⇒ ‖𝜇‖ ≤ 𝑟(𝜙(𝑥1)), (4.6)

where 𝑟(·) : R → R is a continuous monotonically increasing function.

Should we take 𝜔 ≡ 1 in (4.2), then we arrive at Filippov’s theorem, or
rather some of its simple generalization to the case of an unbounded set 𝑈
bearing in mind the compactification of R𝑚. Thus, Theorem 1 formally con-
tains the classical result for bounded controls. However, Theorem 1 can be
applied only to some narrow class of problems with discontinuous solutions.
This is due to the rather strict requirement of convexity of the compound
set in (4.2). In essence, this requirement says that the impulsive control
is scalar and must have a sign. It is clear that, for example, System (2)
in [1] satisfies the given requirement, while Example (1) of the same source
does not. In this connection, a question arises of finding some more subtle
conditions for the existence of a solution that would be applicable to a
broader class of problems including a number of known nonlinear examples
of Calculus of variations which admit discontinuous solutions, [12].

Consider candidates for such type conditions. Suppose that 𝐴 = {𝑎},
𝐵 = {𝑏}+𝐶, where 𝑎, 𝑏 ∈ R𝑛, and 𝐶 = {𝑦 ∈ R𝑛 : 𝑦𝑗 = 0, 𝑗 = 1, ..., 𝑙}, where
1 ≤ 𝑙 < 𝑛. Let 𝑔𝑗 be positively homogenous w.r.t. 𝑣 for 𝑗 = 1, ..., 𝑙. Then,
the proposed type of extension is feasible. In case of inequalities 𝑦𝑗 ≤ 0,
one can consider the following type condition

𝑔𝑗(𝑥, 𝜆𝑣, 𝑡) ≤ 𝜆𝑔𝑗(𝑥, 𝑣, 𝑡)

to be satisfied for all 𝜆 ≥ 𝜆0 > 0. Note that a number of isoparametric
problems, such as, for example, the Catenary problem, or Dido’s problem,
mentioned earlier in the introduction can be fitted into such a paradigm.
Let us leave the verification of validity of these new hypotheses for future
research.
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