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Abstract: The paper focuses on the stationary self-consistent problem of magnetic
insulation for a vacuum diode with space-charge limitation, described by a singularly
perturbed Vlasov-Maxwell system of dimension 1.5. The case of insulated diode when
the electrons are deflected back towards the cathode at the point z* is considered. First,
the initial VM system is reduced to the nonlinear singular limit system of ODEs for the
potentials of electric and magnetic fields. The second step deals with the limit system’s
reduction to the new nonlinear singular ODE equation for effective potential §(z). The
existence of non-negative solutions is proved for the last equation on the interval [0, z*)
where 6(z) > 0. The most interesting and unexplored case takes place if (x) < 0 on
the interval (x*,1] and such case corresponds to the case of an insulated diode. For the
first time, a numerical analysis of complex bifurcation of solutions in insulated diode is
considered for 8(z) < 0 depending on parameters and boundary conditions. Bifurcation
diagrams of the dependence of solution 6(z) on a free point (free boundary) z* were
constructed. Insulated diode spacing is found. These results could lead to more efficient
and effective magnetically insulated diodes in future power conversion systems.

Keywords: relativistic Vlasov-Maxwell system, magnetic insulation, effective potential,
insulated diode, initial value problem, singular boundary value problem, contractive
mapping, fixed point theorem, complex numerical bifurcation
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Hayunasa crarbsa

KpaeBag 3amava aJjisg imoga ¢ MAarHUTHOW M30JISITIAE:
CyIIIeCTBOBaHME peIIeHnii 1 KOMILIEKCHas oudypKaius

. H. Cunopos', A.B. Cuaunem?®, O. 1. T. Jleruzamon?,
JI. Bonr?®

L UNucruryt cucrem suepreruku um. JI. A. Menearsesa CO PAH, Upkyrck, Poccuiickas
Denreparust

? Haumowmansuerit yamsepcurer Koxym6un, Borora, Komymbus

3 Xapburcknii moMTEXHUUECKUii yHHBepcHTeT, Xap6uH, Kurait

X asinitsyne@unal.edu.co

Awnnorauus: Vccnenyercst crarimonapHast CaMOCOIVIaCOBaHHAsI 33,1298 O MArHUTHOM U30-
JIAIWM BaKyyMHOTO JIMOJA C MPOCTPAHCTBEHHBIM OTPDAHUYEHUEM 3apsifia, OMMCHIBAEMOI
CHUHTYJISIPHO BO3MYIIeHHO#! cucteMoii Biracosa — Makcsesta pasmepuoctu 1,5. Paccmar-
puBaeTcs CIydail M30JMPOBAHHOTO JUOJIA, KOT/A JIEKTPOHBI OTKJIOHSIIOTCS HA3aJ K Ka-
Tomy B Touke x”. CHavasa ucxoaHas cucreMa BM cBOIUTCS K HEJTMHENHON CUHTYISAPHON
npenesbaoit cucreme OY njist MOTEHIUAIOB JIEKTPUIECKOTO U MAarHUTHOrO moJeit. Ha
BTOPOM 3Talle IIPOUCXOJUT CBEJEHUE IIPEJIeJIbHON CUCTEMBI K HOBOMY HEJIMHEHHOMY CHH-
rynspaomy ypasaenuto OJLY mys sdbdexkrusnoro nmorenmmana 0(z). ns mocaemmero
yPaBHEHHsl JJOKA3aHO CyIIeCTBOBAHME HEOTPHUIATENbHBIX DelleHuil Ha unTepsase [0,z%),
rae O(x) > 0. Hambosee MHTEPECHBIM M HEUCCIIEOBAHHBIM SBJIAETCS CIIyHdail, KOTJIa
6(z) < 0 Ha uaTepBase (z*,1] U COOTBETCTBYET CJIy4ar0 M30JMPOBAHHOIO quozaa. Buep-
BbI€ [IPOBEJICH YMCJICHHbBINH aHau3 6udypKanuil pereHnii B M30JIMPOBAHHOM JIUOJIE JIJIsT
6(z) < 0 B 3aBUCHMOCTH OT IIApAMeTPOB U TpaHMYHBIX ycsosuii. ITocrpoersr 6udyp-
KaIlMOHHBIE IUArPAMMBI 3aBUCUMOCTH pemteHust 0(z) or cBoGOAHONM TOUKM (CBOGOIAHOMN
rpanunp!) . Haiiien usonmmpoBanublii nHTEpBa muosa. [0y 9eHHbIe pe3yIbTaThl MOTYT
crocobCcTBOBaThL pa3paborke 6oJiee 3(pHEKTUBHBIX JTUOJIOB ¢ MArHETHON U3OJISIIUENH JJIs
OyIyIIIUX CACTEM IIPEOOPA3OBAHNS SHEPIUU.

KuroyeBbie cjioBa: pesisiTUBUCTCKas cucrema BitacoBa — MakcBesiia, MaruuTHas H30JI51-
1si, 9K TUBHBIN TOTEHIMA, U30JIMPOBAHHBIN IO/, 3a/1a9a C HAYaJIbHBIM 3HAYEHUEM,
CUHTYJIIpHAs KpaeBas 3a/ia9a, CXKUMAIOIIUEe OTOOPaKeHNsI, TeOPEMa O HEIOIBUXKHOM TOY-
K€, KOMILIEKCHAsI JUC/IeHHAsT OudypKaIust
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1. Motivation

Power electronics is a cornerstone of contemporary power systems, bring-
ing theoretical physics and practical engineering to enable efficient energy
conversion and transmission. Among its critical challenges is ensuring the
stability and reliability of high-voltage devices, such as thouse employed in
high-voltage direct current (HVDC) systems. A fascinating intersection of
applied mathematics and plasma physics arises in the study of magnetic
insulation in vacuum diodes — a phenomenon where magnetic fields surpass
electron backflow, allowing these devices to operate efficiently at extreme
voltages. The seminal work of Langmir and Compton [3] provides the
fundamental theory to model electron behavior. For the comprehansive
review the advancement of diode physics since the pioneering works of Child
and Langmuir readers may refer to work [11].

The Vlasov-Maxwell theory provides a rigororous kinetic framework to
model the collective behavior of charged particles (electrons) and electro-
magnetic fields. Here readers may refer to part 3 of book [6], chapater 5
in [7] and references therein including works [2;3;8]. The generic theory
of the parametric families of small branching (bifurcation) solutions of
nonlinear differential equations is proposed in [1;5] and applied to mag-
netic insulation problem. The reduction of the boundary value problem for
noninsulated magnetic regime in a vacuum diode to a singular system of
nonlinear Fredholm equations is fulfilled in [4]. In [10] an equation for the
space-charge limited current of a crossed-field diode is derived and it can
be solved numerically.

The nonlinear dynamics of these models often leads to bifurcations —
sudden qualitative shifts in system behavior caused by small parameter
changes. Bifurcations analysis is crucial for predicting instabilities, optimiz-
ing insulation thresholds, and preventing catasctrophic failures in devices
like vacuum diodes. It is to be noted that electron transport in high energy
devices such as vacuum diodes exhibits many nonlinear phenomena due to
the extremely high applied voltages. One of these effects is the saturation
of the current due to the self-consistent electric and magnetic field.

The effect of magnetic insulation consists in that the electrons emitted
from cathode cannot reach the anode due to the extremely high applied
electric and magnetic field; they are reflected by the magnetic forces back to
the cathode. Here two basic regimes are possible: the first, when electrons
reach the anode ("noninsulated” diode) and the second one, when electrons
rotate back to the cathode ("insulated” diode).
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2. Setting of the problem

We consider a plane diode consisting of two perfectly conducting elec-
trodes, a cathode (X = 0) and anode (X = L). The system is described
by the 1.5 dimensional VM model:

Va—F—Fe do Vﬁ —8F +e ﬂ—aF—O
Xox ax v 0Py Xdxory
d>® e

W—%N(X% X €(0,L),

d2A

axe —pody (X), X €(0,L).

Here, F(X, Px, Py) is electron distribution function, ®, A are potentials of
electromagnetic field, €g, pg are the vacuum permittivity and permeability.

After appropriate scaling and taking the limit € — 0, we obtain (see [2]
and [7]) the following limit system

Po _ 1+ () 0) = 0. ol) =
dz? Jx \/(1 T 4,0(36))2 1 (a(m))Qa 90( ) ) 90( ) YL,
Za _ a(x (2.1)

, a(0)=0, a(l)=ar,

& T e@) -1 - (a(2)?

where j, > 0, a € [0,1], ¢ is a potential of electric field and the potential
of magnetic fields is a.
Let us now define the effective potential by 0(z) = (1+¢(z))?—1—a?(z).

3. Main Results

We introduce the substitution u = 1 + ¢, a = v and reduce problem to
the following form:

u' = o g wl(0) = 1Lu(l) = “““”(0) e
U//:jmﬁa (0)—OU<1) v'(0) =6 >0. ’

Definition 1. A function (u,v) = (u(z),v(z)) is a solution of the initial
value problem (IVP) on [0,¢) if:

— u,v € C0,e) N C?(0,¢),

— O(u(x),v(z)) >0 for x € (0,¢),

— (u,v) satisfies the differential equations (3.1),

— the initial conditions hold.



122 D. N. SIDOROV, A. V. SINITSYN, O. D. T. LEGUIZAMON, L. WANG

Proposition 1. Let (u,v) be a solution of the IVP on [0,e) and define
0 =u?—1—v2 Then:

— 0(x) € CY0,e) N C?(0,¢),

— 0(0) =6'(0) =0 and O(x) > 0 on (0,¢),

— 0 satisfies the differential equation:

2 1
0" = ju <6\/§+\/§—47)7 v=—-5-5

Theorem 1. For every v € R there exists a unique solution on [0,00) of
the tnitial value problem:

D" =j, <6\/5 + \/25 - 4’y> , D(0) = D'(0) = 0. (3.2)

The solution has different properties depending on the value of :
Case 1: v < 2: D € C0,00) N C?(0,0), D(00) = 0.

Case 2: v =2: D € C'0,00) N C?(0,0), D(c0) = 1.

Case 3: v > 2: D € C'[0,a] N C?(0,a], can be extended periodically.

Employing Banach’s fixed-point theorem, the existence of a unique so-
lution to (3.2) is proved.

Proposition 2 (Child-Langmuir Law). Let 0 < ¢ < j, < jm%* ¢ = 0.
Then equation

s0// _] 1—{—90
—JxrT V>
Ve2+e)

has a lower positive solution ug = 623 if 463 > 9579 (1 4 62)/v/2 + 62
and an upper positive solution v’ = o + Bz with pr, > §2.

©(0) =0, o(1) = oL

INSULATED CASE

For the study of the magnetically insulated diode (MID), § < 0 we want
to analyze the conditions under which this phenomenon occurs.

Considering the system (2.1) and the effective potential 6 defined in
Proposition 1, we get the following first-order ODE after some simple
algebraic and calculus-based manipulation:

()2 = k6 +8j,07 + 8,07 +48> | 6(0) =0,

where k is an integration constant that we got during the order reduction
process. As we want to know when the electrons start to deflect, we will
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use this expression to find where the 6 values decrease. We will call this
point 4. Then

3 1
(0(xq)")? = 0 = kg + 85,03 + 85,02 +45% =0,

Proposition 3 (6 and u solutions relationship). Let k = ﬁ and B = 262 ,

and consider the equations:

Wk +u+ =0, 02+k0+02+52=0.
Then, any solution u of the first equation with Re(u) > 0 induces a solution
0 = u? of the second equation.

As solving the equation described in terms of u induces the desired
solutions for 64, the efforts can be focused on solving the cubic expression,
which is more tractable than the corresponding radical expression.

Proposition 4. Let A, = 18k + k2 — 4 — 4k33 — 27532, then the cubic
equation u® + ku? +u + B2 = 0 has the following solutions in C:
- A, <O0:

u1=§ va (¢A1+A2+¢A1 4,)

uQ:[— —\1/81({’/A1+A2+§"/A1—A2) +
f(\/A1+A2 \/A1—A2>
U3=[ \i/;(\/A1+A2+\/A1 ) +

\[

(\/A1+A2—\/A1 )

i,

36

where Ay = —54k® + 243k — 7295 and Ay = \/A% + 2916(3 — k2)3;
— A, =0, k=4, f =143

=

u1=u2=u3=¢f3;

Ay=0,k#+%, B#+V3:

K —4k+98 —k+95.

U= ———>,",U2=U3 = —=—

3 — k2 2k2 — 6
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—Au>o,k¢i§,3¢i\(§; A
u; = Ascos (% arccos(A4)) — %, uy = Az cos (% arccos(Ay) + 2%) — %,

ug = As cos (% arccos(Ay) + %ﬂ) — %, where Az = %\/ k2 —3 and Ay =
453 —9k+278 (7.2 —1/2
(=37
With the analytical description of the solutions of the cubic equation in
Proposition 3 and the method to induce the solutions for 64, the behavior
of the solutions can be described by understanding and manipulating the
parameters k and [.

4. Bifurcation diagrams

In order to understand how the parameters k and /3’ influence the exis-
tence or non-existence of the solutions required for the magnetic insulated
diode, the different bifurcation diagrams over the solutions in the 6 and «
space can be employed.

CONSTRUCTION OF BIFURCATION DIAGRAMS VIA ANALYTICAL
SOLUTIONS

The bifurcation diagrams presented are constructed by analytically solv-
ing the steady-state condition of the system, specifically the differential
equation 6’ = 0. This approach focuses on identifying equilibrium points
of the system as a function of a control parameter, such as magnetic field
strength.

Methodology for Constructing the Bifurcation Diagram
1) Analytical determination of equilibrium points. The condition §' = 0
implies that the system is at equilibrium. By setting the derivative
to zero, the resulting algebraic equation is solved analytically to find
expressions for # in terms of the control parameter. This process yields
the equilibrium solutions of the system.

2) Parameter variation and solution evaluation. The analytical expres-
sions for 0 are evaluated across a range of values for the control pa-
rameter. This step involves substituting different parameter values
into the analytical solutions to compute the corresponding equilibrium
points.

3) Plotting the bifurcation diagram. The computed equilibrium points
are plotted against the varying control parameter using Python’s mat-
plotlib library. Each point on the diagram represents a steady-state
solution for a specific parameter value. Connecting these points reveals
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the structure of the solution branches and highlights bifurcation points
where qualitative changes in the system’s behavior occur.

This analytical approach to constructing bifurcation diagrams provides
a clear and precise understanding of the system’s steady-state behavior,
facilitating the identification of critical parameter values that lead to qual-
itative changes in dynamics. The Python code [9] used to generate the
bifurcation diagrams.

2D DIAGRAMS FOR u AND 6

In this first set of diagrams, one parameter was fixed at a specific value,
while the other was varied over the interval [—5,5]. The fixed values were
chosen to allow the existence of a real solution to the cubic equation with
multiplicity three.

u-Bifurcation Diagram for ﬁ = —g

Real part plot Complex part plot

T T
- Real solutions 1.004 - Imaginary part Complex solutions
\ - Real part (Complex solution) = Special Real Solution (Multiplicity 3)
v

1 \ = Special Real Solution (Multiplicity 3) 0754 / AN
0.50 4 / \
2 \

. - —
\(’ e N

AN \ /

—a ] N\, N\
) \ ~1.00 4 \ e

Re(u)
o
Imag(u)
o
=
3

T——— e

Figure 1. Bifurcation diagram of the solutions of the cubic equation related to u centered
on the 3-multiplicity real solution

In Figure 1, we observe the behavior of the solutions in the u-space. As
predicted by theory, the number of solutions in the complex plane ranges
from one to three. However, since complex solutions occur in conjugate
pairs, the plot reveals loop-like structures, which are of particular interest
for further analysis.

In Figure 2, we observe the behavior of the solutions in the #-space. In
this new setting, some solutions are lost compared to the u-space due to
the real part constraint defined in Proposition 3. Nevertheless, the loop-
like behavior persists, which gives hope for its potential application to the
magnetically insulated scenario.
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—
6-Bifurcation Diagram for g = —%
Real part plot Complex part plot
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Figure 2. Bifurcation diagram of the solutions of the cubic equation related to 6 centered
on the 3-multiplicity real solution

3D SURFACE DIAGRAMS FOR u AND 0

The bifurcation diagrams in the 2D space revealed several interesting
features. However, to obtain a more comprehensive understanding of the
phenomenon, we now examine the behavior of the solutions in a 3D space.
In this setting, both parameters are allowed to vary freely within the in-
terval [—5, 5], and the z-axis represents either the real or imaginary part of
the solutions.

Bifurcation Diagram for u values
Real part plot Complex part plot

. Real solutions . Imaginary part Complex solutions
- Real part (Complex solution)
Special Real Solution (Multiplicity 3)

Figure 3. Surface gotten from the parameters k and g for the solutions of the cubic
equation
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In Figure 3, we analyze the behavior of the solutions in the u-space.
As a first observation, we note that for every pair of values (k, B), there
is at least one solution represented on the surface. Moreover, the loop-like
behavior previously observed in the 2D case begins to manifest in a more
structured and continuous form in the 3D surface, suggesting an underlying
pattern that warrants further investigation.

Bifurcation Diagram for 8 values
Real part plot Complex part plot

- Real solutions - Imaginary part Complex solutions
. Real part (Complex solution)

Figure 4. Surface gotten from the parameters k and B for the solutions of the stability
of the 6-based ODE

In Figure 4, we analyze the behavior of the solutions in the #-space.
Notably, we observe that the solutions with a negative real component are
trimmed due to the constraint defined in Proposition 3. Additionally, there
are empty regions that exhibit a likely linear pattern, which could be an
interesting subject for further investigation.

5. Conclusion

This study yielded critical insights into the boundary problem govern-
ing MID through a rigorous analysis of the singularly perturbed Vlasov-
Maxwell system. By reducing the system to a nonlinear ordinary differential
equation framework, the existence of physically admissible solutions under
well-defined parametric constraints is proved. The bifurcation analysis
underscored the important role of the free boundary point in shaping the
solution topology, revealing distinct regimes dependent on system param-
eters. Numerical simulations further elucidated the mechanistic interplay
between magnetic insulation and electron dynamics, particularly the redi-
rection of electron trajectories toward the cathode under varying insulation
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thresholds. These findings emphasize the need for continued exploration of
parameter-driven bifurcation phenomena, which may advance both theoret-
ical and applied understanding of MID in high-energy physics and related
fields. The bifircation analysis enables robust design strategies to avoid
unstable regimes that could compromise device longevity and efficiency.

This study offers significant contributions to the design of high-perfor-
mance power converters through the systematic optimization of MID oper-
ational parameters. Specifically, the analysis provides three key engineering
advantages:

1)

Enhanced Operational Stability: By identifying the optimal working
point of the magnetically insulated diode, the proposed methodol-
ogy ensures robust converter stability under dynamic load conditions.
This equilibrium point minimizes oscillatory behavior and mitigates
instability risks inherent in high-power systems.

Improved Energy Density: The approach enables the accurate cali-
bration of the diode’s rated power capacity, directly enhancing en-
ergy density. This optimization aligns the converter’s output with
application-specific requirements, thereby maximizing efficiency while
avoiding overdesign.

Cost-Effective Hardware Implementation: Traditional designs often
rely on conservative maximum capacity estimates, leading to oversized
components and inflated costs. In contrast, the derived optimal power
threshold allows for tailored diode specifications, reducing material
expenditures without compromising performance or reliability.

Collectively, these insights advance the practical deployment of magneti-
cally insulated diodes in next-generation converters.
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