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Awnnoranusi: PaccmarpuBaiorcss HadaIbHbIE U KPAEBbI€ 33/1a9H JIJI CUCTEMBbI Y PABHEHIH
GaJIK¥, COMMPOBOXKIAaeMOI (DYHKIMEH, UMEOIIel TOUKY CHHTYJISIPHOCTH JIJTIsl HEJIMHEWHOMN
nedopmanm, Ha3bIBaeMON (DyHKIMEH CXKUMAEMOTO HAIPSIZKEHUsI. DTa 3a4a49a CTPOUTCS
KaK MaTeMaTHdecKas MOJEsb, ONMCHIBAIONIAs JIBMKEHNUS 3aMKHYTBIX YIPYTHUX KPHBBIX
ma R? B nameii npenpiaymeii pabore. VI3BeCTHO, YTO SHEPIHs, MONYIECHHAS U3 CHCTEMBI,
coxpansieTcst. J[jist 9T0it 3aa49n yKe NOKa3aHO CYIIEeCTBOBAHUE U €IMHCTBEHHOCTD CJIaOBIX
pettennii. Takyke 1OTyYeHbl Pe3yJIbTATHI O CYIIECTBOBAHUM U €JIMHCTBEHHOCTHU CUJIBHBIX
pertennit 3a71a9u ¢ BA3KOCTHBIM djieHOM. llesib mammO# paboThl — HE TOJIBKO YCTAHOBUTH
CYyIIIECTBOBAHUE M €JUHCTBEHHOCTH CUJIBHOT'O PelleHus JaHHOU 3aJavd, HO U CXOIMMOCTDH
peleHnii 3a/1a4n ¢ BA3KOCTHBIM 9YJIEHOM IIPU CTPEMJICHHM KOI(MPUIMEHTa BA3ZKOCTU K
0. Kiroa K 3TOMYy J10Ka3aTeJIbCTBY — pABHOMEpPHAas OIEHKA YeTBEPTON ITPOU3BOIHOMN
OTHOCUTEJIbHO TPOCTPAHCTBA PEIIeHU.

Kuaro4yeBbie ciioBa: ypaBHeHue OaJIKu, HeJIMHeHas gedopMalius, cxkuMaeMasi yIpyrast
KpUBasi, SHEPreTUIECKUI MEeTOT

Ccoiaka ajs nuruposaHus: Kosugi C. Existence of Strong Solutions for Compressible
Elastic Curves in the Energy Conservation System // Ussectusi pkyTckoro rocymap-
crBernoro yuusepcurera. Cepusi Maremaruka. 2025. T. 53. C. 85-101.
https://doi.org/10.26516/1997-7670.2025.53.85

1. Introduction

In this paper, we consider the following initial and boundary value prob-
lem for the beam equation describing shrinking and stretching motions of
elastic curves on R%. In our model, an unknown function u from the domain
Q(T) := (0,T) x (0,1) to R%, T > 0, is representing the position of x € [0, 1]
at time ¢ (see Figure 1) and satisfies

9%u *u B 0 ou ou
(f( >) o=

—1on Q(T), (1.1)

Por ot Mawa? T ar !V an O

g o'
8xiu(0) = (%Uiu(l) on (0,7) for any i = 0,1,2,3, (1.2)

0
’U,(O) = Uo, &u(o) = Up on (07 1)7 (13)
where % = (8;;;1, a;t%?) and so on, p > 0 is the density, v > 0 and
p > 0 are constants, and | - | is the Euclidian norm in R?, namely, %} =

2 2
‘% + ‘% , where u = (u1,u2). We call the constant p the viscosity

coeflicient, since it is concerned with the energy decay rate. Also, ug and
vg are initial position and initial velocity, respectively. In our model, since
we suppose that the elastic material is connected at x = 0, 1, smoothly, we
choose the periodic boundary condition (1.2). Here, we note that ¢ and
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EXISTENCE OF STRONG SOLUTIONS FOR COMPRESSIBLE ELASTIC CURVES 87

f(e)uy represent strain and stress, respectively, where the function f: (—1,
o0) — R is given by

K 1
=—|1- 77— f > —1 14
10 =5 (1= gt ) fore> L (1.4
and k is a positive constant. In our model, we call f(e) the compress-
ible stress function. For simplicity, the system (1.1)-(1.3) is denoted by
P (o, vo, f) for > 0.

Connected smoothly
u(t,x) € R?

f(&

0 Natural length

Figure 2. Compressible stress function f
Figure 1. Unknown function u

Here, we list features of the present model.

(Beam equation) The equation uy + Ugzer = 0 is often called the beam
equation and is known as one of mathematical representation for elastic
material motions. In [16;18;19] the nonlinear beam equation was already
investigated. From mathematical point of view, by the fourth derivative
term, we can easily deal with the equation. On the other hand, for the
elastic curves its physical meaning is not clear. One of our research aims
is to clarify it. Here, we note that in [15] there is an other approach on
dynamics of the elastic closed curve on RZ.

(The unknown function u) In usual cases, the unknown function for
elastic material model is the displacement. However, in our model, the di-
mension of the domain and the range of u are 1-dimension and 2-dimension,
respectively (see Figure 1). Therefore, we define the unknown function u
as the position of elastic curve on R?. Accordingly, as mentioned in [11],
the strain ¢ is defined by ¢ = |u,| — 1. Clearly, the strain ¢ is nonlinear and
not smooth with respect to u,.

(Compressible stress function f) In general, the strain is given as the
linear function of the stress by Hooke’s law. However, in our model, we
define the function f by (1.4). Accordingly, f(e) tends to —oco as —1
(see Figure 2). The idea for introducing this kind of functions is based
on the assumption that when an elastic material is highly compressed,
the magnitude of the stress should become very large. Similar functions
were already studied in [5;7;8;13;14;17] from engineering point of view
and considered numerically. For example in [17], they studied the stress
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function whose primitive is given by

% (+1? —1-2l0g(= +1).

Moreover, to present the validity of our function f we give some numerical
results for Pg(ug, vo, f) with ug(z) = Ro(cos(2rz),sin(27x)), vo(z) = (0,0)
for z € [0,1]. In this case, by putting u(t,z) = R(t)(cos(2nrz),sin(27x)) for
(t,z) € Q(T), u is the solution of Py(ug, vo, f) where R is the function on
[0,T] and satisfies the following ordinary differential equation.

R" + (2m)yR + (2m)2f (2w R(t) — 1)R(t) = 0, R(0) = |uol|, R'(0) = 0.

We note that ¢ = 2rR—1. As mentioned later, we can show that € > —1 on
Q(T), theoretically, namely, 2r R > 0. Since R is the radius of the circle, the
positivity of R should be expected. In Figures 3 and 5, the graphs indicate

. € . .. .
the value of R, if f(e) = n|— where k is a positive constant, that is, the
Uy

stress is linear. As shown in Figure 5, the radius takes negative values for
large initial strain. On the other hand, by adopting the our function f, in
the numerical results, Figures 4 and 6, the radius are always positive, even
if the initial large strain. Thus, we emphasize that our function is very
useful for representing behaviors of elastic materials.

In our model, not only the numerical results but also thanks to Lemma
1, we obtain the lower boundedness of the strain ¢, for instance (3.3). This
guarantees that the length of the elastic material never vanishes. This is
a unique feature of our model that is not obtained by any other models.
We note that the generalization of the stress function is very important.
However, we do not consider it in this paper, since we aim to clarify what
can be shown in our present model. Of course, the generalization is our
next issue to be addressed.

0.8 08
0.6 1 06
0.4 04
0.2 L ; 1 o2y ]
0 ] 0
-0.2 1 -02
04 0.5 1 15 2 4 05 1 15 2
Figure 3. f: linear, small initial strain Figure 4. f: nonlinear, small initial strain

Next, we recall our previous results concerned with solvability of
P/J,(”Ov /UO7 f)
(ODE model) In [1;11], we constructed an approximation model for elastic
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EXISTENCE OF STRONG SOLUTIONS FOR COMPRESSIBLE ELASTIC CURVES 89

curves. In this model, we regarded the elastic curve as a polygon having
N vertices, and derived N-dimensional second-order ordinary differential
equations. In order to apply the structure preserving numerical method
[6] to this model, we define the stress function similar to (1.4). For this
model, we have proved existence and uniqueness of solutions in [1] and
have shown existence of time-periodic solutions under appropriate initial
conditions in [11]. Furthermore, in [1] we constructed a numerical scheme
by the structure-preserving numerical method and showed existence and
uniqueness of numerical solutions. We also have proved the sequence of
the numerical solutions converges to the solution of the ODE model and
compared numerical results by the structure-preserving numerical method
with those by the multi-steps method in [11].

0.8 T 2

0.6

0.4} / ] |
0.2 AR \'\‘ IR \,“ \

N \“ ot N
0 , Y1 S L O A T A

\ K
~0.2 V4 WV, / i [ | A |

-0.4
0 0.5 1 1.5 2

Figure 5. f: linear, large initial strain Figure 6. f: nonlinear, large initial strain
(Partial differential equation models) From the ODE model, we ob-
tained the quasilinear wave equation which is (1.1) in case v = 0 and p = 0.
However, by the singularity of the stress function, it is not easy to deal with
the differential equation, theoretically. In order to overcome this difficulty,
we approximate it by adding the fourth derivative term ~yu;zz,. Thus,
we arrived at the beam equation and propose the mathematical model
representing motions of the elastic curve by (1.1)-(1.3) in [11].

Our first result for the system (1.1)-(1.3) is concerned with existence and
uniqueness of weak solutions to Po(ug, vo, f), where f : R — R is Lipschitz
continuous, monotone increasing and f(0) = 0. The proof of the uniqueness
was based on the method applying the dual problem given in [12].

Next, in [9], for p > 0 we showed existence and uniqueness of weak
solutions to P, (ug, vo, f) with the compressible stress function f defined by
(1.4). Moreover, we proved existence of strong solutions. In this problem,
since the energy is dissipated, we could consider the stationary problem.
Actually, we showed existence of a subsequence {t,} such that the solution
u(tn) of P, (ug,vo, f) tends to the stationary solution as n — oco. Also, we
succeeded in improving the regularity of the strong solution to P, (ug, vo, f)
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in [3]. However, since rotating and translating stationary solutions are also
stationary solutions, the uniqueness of the stationary solutions has not been
proved yet.

Furthermore, we proved existence and uniqueness of weak solutions to
Po(uo, vo, f) with the compressible stress function f in [10]. In the proof
of the uniqueness, by extending f to the function on R, we can apply the
result in [2] to this problem.

The aim of this paper is to prove existence of the strong solution to
Po(uo, vo, f) with the compressible stress function f given by (1.4).
Throughout this paper, we put Hilbert spaces by H = (L?(0,1))?,

= {2 € (H'(0,1))*|2(0) = 2(1)},

Hy = {z € (H2(0,1))2]aaxiz(0) = 8iﬂ.z(l) for i =0, 1},

o' o4 . .
Hy {z e (H*0,1))? ’(") -2(0) = o -2(1) for i =0, 1,2,3} with the stan-
dard norm denoted by |- i = |- |20y |- i = |- [ oo |-l =
L2002 |+ o = [ -] H4(0 1))2, and standard inner products represented
as follows : (u,v)yg = fo u-vdx for u,v € H, (u,v)y, = Z;ZO(%,%)H
for u,v € H;, i = 1,2,4, where u - v = ujv1 + ugvy for u = (ug,u2),v =
(Ul,vz) € R2.

We remark definitions of the weakly* convergence. If a sequence {u,} C
L*>(0,T; Hy) satisfies the following convergence, we represent "u, — u
weaklyx in L>°(0,T; Hy)”:

/(un, H4dt—>/ ©)g,dt asn — oo for any ¢ € LY(0,T; H).
0

Also, if a sequence {uy, } C W(0,T; Hy) satisfies the following convergence,
we represent "u, — u weakly* in W1H>°(0, T; Hy)”:

T T T T
/ (Unt,@)Hth — / (Ut,QD)Hth, / (UTMSO)Hth — / (’LL, SO)Htha
0 0 0 0

as n — oo for any ¢ € L'(0,T; Hy).

First, we define a strong solution of P, (ug, vo, f) for pn > 0.
Definition 1. Let ¢ > 0. A function u from Q(T) to R? is called a
strong solution of Py, (ug, vo, f) on [0,T] if u satisfies u € W22(0,T, Hy) N
W17OO(07 T7 HQ)m WLQ(Ov T7 (H3(07 1))2) n LOO(O7 Ta H4)7 |u$’ >0 on Q(T)
and satisfying (1.1)-(1.3) in a usual sense.

The next theorem guarantees existence and uniqueness of the strong
solution to P, (ug, vo, f) for pn > 0.
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Theorem 1. (Kosugi [9]) Let y1 >0 and T > 0. If ug € Hy, |uoz| >0 on
[0,1] and vy € Ha, then P,(ug,vo, f) has one and only one strong solution
on [0,T]. Moreover, the following (1.5), (1.6) and (1.7) hold:

NI

t
) + Jluna O+ 0 [ Juralr)r
0

1
K 2 1 P 2 Y 2
. z(t ——d =3 s X
+8(|u<>\H+/O - ) 2ol -+ L o
1 1
. - __dz) =C te0,7], (1.5
+5 (o + [ —de ) = G for any 1 € 071, (19

OO\E

and

t
P v
i‘utm(tﬂl%l + §|uwﬂcm(t)’12ﬁl + U/ ’Umw(T)’%{dT
0
v
S g|z}0a:mﬁ—[ + *|u0mazw$|?—1

/ |(f(e)ug)za( )]%{dT for any t € [0,T7, (1.6)

16C2 [
|uz| > ,/nybe_ig on Q(T). (1.7)

In our proof of this theorem, by using the first estimate (1.5) and the
following lemma, we can obtain the third estimate (1.7).

Lemma 1. (¢f. Aiki, Kroger and Muntean, [{, Lemma 3.2]) Let z €
(H?(0,1))? and K1, Ky > 0. If

1
1
/ de<K17 |me’H §K27
|2z ]
then
Ko k2
Zz| 2> —=e 7172 on 0,1
2l > 2 0.1
In Section 2 we give a theorem concerning existence of solutions to
Po(ugp, vo, f) and prove it in Section 4. In its proof, we consider the asymp-
totic behavior of strong solutions w,, to P, (ug,vo, f) obtained by Theorem
1 for p > 0, when p tends to 0. A key lemma for the proof is provided in
Section 3.

2. Main result

First, we define a strong solution of Pg(ug,vo, f).
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Definition 2. A function u from Q(T) to R? is called a strong solu-
tion of Py(ug,vo, f) on [0,T] if u satisfies the following properties: u €
W22(0,T; HYNW1>(0,T; Hy) N L>(0,T; Hy), there exists 6 > 0 such that
luz| >0 a.e. on Q(T') and satisfying (1.1)-(1.3) in a usual sense.

The main result of this paper is as follows:

Theorem 2. LetT > 0 and > 0. Ifug € Hy, |upz| > 0 on [0, 1], vg € Ho
and u, be a strong solution of P, (ug,vo, f) on [0,T], then there exists u €
W22(0,T; H)NWhH(0,T; Hy) N L>®(0,T; Hy) such that u, — u weakly in
W22(0,T; H), weaklyx in W1°(0, T; Hy), weaklyx in L>(0,T; Hy), stron-
gly in C(Q(T)), upe — ug strongly in C(Q(T)), Upzx — Ugza Strongly in
C(Q(T)) as i — 0 and u is a strong solution of Py(uo,vo, f) on [0,T].

Here, we note that we have already proved existence and uniqueness of
weak solutions to Po(uo, vo, f) in [10].

3. Key lemma

We note that the estimate obtained by (1.6) depends on x> 0. Hence, in
order to prove Theorem 1, we show a new inequality to obtain the uniform
estimate for |ugyz.q(t)|g as follows:

Lemma 2. Let T > 0, u > 0, ug € Hy, |ugz| > 0 on [0,1] and vy € Hy. If
u s a strong solution of P, (uo, vo, f) on [0,T], then the following inequality
holds:

t
Dl () + Y tnane O + 11 [ Titrawa (1)
0

vCo

1 1,20
<Ci+ ( + 2> C1T6(P+ 22)T
p

=:C3 foranyte|0,T],(3.1)

where C1 and Cy are positive constants independent of p > 0.

Our proof of this lemma is rather long, since by applying time discretiza-
tion to the problem we show (3.1). Thus, we omit the detail of the proof.
Instead, we show (3.1) by the following formal calculation. For p > 0, let
u be a strong solution of P, (ug,vo, f) on [0,7]. By multiplying (1.1) with
Utzzer and integrating it on (0, 1) with respect to z, we have

1 1
/0/ Utt * UtzrerdT + ’Y/ Ugzar - UtreredT
0 0

1 1
—,u/ Utzr * UtzrrsdT —/ (f(e)uz), - Utgazadr =0 a.e. on (0,7).
0 0
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Thanks to integration by parts, it is easy to see that

o (Blonse O+ uassay 1 [ et

1
= / (f(e)Uz) yyy - Utazdx for ae. t € (0,T),
0

and

t
Dl )l + Y tnane O + 11 [ Jutena(r) s
0
P 2 7 2 e 2
< Blinseli + Jluoweell + 5 [ 1(©0)re (D)

1 t
+2/ Uy (T)|%dT for any t € [0,T).
0
In the third term of the right hand side, we see that
(f(E) )y = (f(€)) gy Uz + 3 ([(€))y Uawa + 3 (F(€)) g Uaw + (&) Uaazas

and

[(£(€)) gz Uz + 3 (£(€))y Uaaa + 3 (f(€)) 4 Uarw + f(g)umm,2
< () s sl + 9 (D) el + O 1(F)) gt + £ Ntsl?}

Accordingly, we have

/| )y (73

9 / | (F())y thnea () By + /0 1 tanea (M df}

) for any ¢ € [0,T7. (3.2)

”M’”

For I3, by the definition of e, we see that (f(¢)), = r—— a.e. on Q(7),

xT

and

t |u:m:|2 |uzx:p|2

I3(t) < 9k2
3()—"{ 0 ‘U:p|10

dxdr  for any t € [0, T].

Now, Theorem 1 (1.7) implies existence of § > 0 independent of x> 0 such
that

|uz| > 9 ae. on Q(T), (3.3)
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2C)
and by (1.5) |ugs(t)|%; < = for any t € [0, T] holds. Thus, we have

s / / thge Ptk Pl

35 [ aaalr) s (o

I3(t)

IN

IN

1852C
< ’y5100/0 ’u$$$(7—)‘?L°°(0,1))2d7_ for any ¢ € [0,T].

Here, we note that

|Z|(Loo(071))2 < |Z|H + ’Zm|H for z € (Hl((),l))g, (3.4)

1
‘uxwx‘%{ S ‘u$$’H|ua¢xm$‘H S 5’“;&6‘121[ + iluwxxa:’%[ for any u S H4- (35)

Therefore, by (3.4), (1.5) and (3.5), we obtain

18k2C t t
h@)é%Wﬂ(/|%m<mﬂr+/|%ma>Hw)

18K2C

18x2Co QCOT
57510 < 5 +3/0 ’umm(T)thm') for any t € [0, 7.

2 2
6(u - :
For 12 we see that (f(g))xx =k <"Ufac.r|6 B (ua: Ugl‘) Uy UaémﬂC)

Q(T). By (3.3), (1.5), (3.4) and (3.5), we have

2
L) <9 dxd
2(t) < O // <|Uac|6 |ug | * |uz|? e
1 6 1 4
< 2757 <// ||““|”1‘2d dr +36// ||“"”T1’2d dr
o Jo Uz Ug
d d
u// 1z 10 T)
<

1 t 1
271> <612/0/0 g |CdadT + 512// || ddr

1
+510/0 ‘Umﬁ{|Uxm‘?Loo(o,1))2dT>
for any t € [0,T].  (3.6)
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Here the following inequality holds.
1 1 1 9
|2(2)| < V20z|3|2f + |2lu for any z € (H'(0,1))%. (3.7)

By using (3.7) and (3.5) for first and second terms of the right hand side
in (3.6), we have

// | | dadr

IN
)

A
)
3%
=)
VRS +
o /‘\A
Is m
N—— Do
N[ 9
S— \_/
+ ~
—~ [—
—_ N
+ g
_ 8
g B
8 m
8
8
m
& w
S 9
S~
+ w
/\ ~——__
vl \2 o 3..
S~
w
\_/

A\

[\
[
D
——
VN
7N
‘l\')
K
N———
[V}
N
2|8
N——
w
v
A
) l\D
Q
N—————
e &+
=

8

8

8
8

o
QU

\‘
——

for any ¢ € 0,71,

t 1
/ / || ddr
0 JO

t
0

40, <2CO>2
8/ Ugpr — dr
0 < v i + vy

32Cy (1 [* CoT
0

IA

~
2 T, r

< 32C0 (CO / ’U:cacxz|Hd7'+ Co > for any t € [O’T]’
~ Y

and

! 2 2 200 ! 2
. ‘Ux:p’H|Um:m‘(Loo(071))2d7' < T ‘Uxxx’(Loo(OJ)pdT <

2Cy [* 200
0

20 C T
< =0 ( 0 / \umm|HdT> for any t € [0, 7.
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From these inequalities we infer that

t t
9/ ‘(f({-:))zz Uxx(T)ﬁ{ dr < Cp + 02/ |uxxx:v‘%{d7— for any t € [O,T],
0 0

where C; and Cs are positive constants independent of @ > 0. Similarly,
for I; and I, we have

-5 rk)
(f(&)zaz

|Ux’6 - |Ux|8 ’u:ﬂ|8

|2 10 |1z ] |uz[®

t

L = 0 |(f(€))xa:z ( )|Hd7-

< 6,€2{512 / / etz PdT + 1 / / (g | T

144

42
+;’4// || S ddT
0 JO

1 t 1
+512/ / ([t [taze| + [t [trzae])? dudr
0o Jo

T / / - \uMdedT}

6’%2 {(512 / ‘ux:cm‘ (Le=(0, 1))2’umz‘Hd7_

36 + 482 + 288

288
514 |U:v’(L°°01 ‘umx’(Loo(o1 |Um‘HdT

512/ ’um|H/ [rp— da:dT}

IN

B N t
< Cs3+ 04/ ‘u:r:p:vx(T)h%IdTa
0
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¢ , ot
I, = / | f(&)Uazaa (T)| 7y dT < C4/ |umm(7)\%{d7 for any t € [0, 7],
0 0

where C5 and Cy are positive constants independent of > 0. Therefore,
we can get

t
2 boesa0)y + a1 [ Jutraaalr) By
0

1 C t t
0

2 0
for any ¢ € 0,71,

where C and C5 are positive constant independent of u > 0. By Gronwall’s
lemma, we obtain (3.1).

Thus, we can obtain the uniform estimate for |ugzp.] L>(0,T;H) indepen-
dent of p > 0.

4. Existence of solutions

In this section, we prove existence of strong solutions of Py (ug, vg, f) on
[0,T7].

Proof of Existence. Let T > 0, u > 0, ug € Hy, |ug,| > 0 on [0, 1], v € Ha,
and u,, be a strong solution of P, (uo, vo, f) on [0,T]. By (1.5) and Lemma
1 we have

t
p g
DOl + Jles O+ [ Toursr)iydr) = Co

for any t € [0,7T7], (4.1)

16032
] 2 [ 2 on QU (4.2)

where Cj is a positive constant given by (1.5). We note that Cj is inde-
pendent of > 0. In the similar way to that of [10, Section 4], we obtain

[2C,
lu(®) | < T 70+|u0’H for any ¢ € [0, 7.

Next, by Lemma 3.1, we also have
t
s O + 3 rmsa )+ 1 [ Jturawn (P < Cy
0
for any t € [0,T], (4.3)

and
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where C5 > 0 independent of u > 0. By (4.1),

, and (
‘u,uzzm “ Co :2/_ Cs ’U,utz \ [ ———— Co + CS for any t € [0 T]

From these estimates, we see that {u,} and {u,} are bounded in
L>(0,T; Hy) and L*°(0,T; Ha), respectively. Moreover, {uy} is bounded
in L>°(0,T; H). In fact, by (1.1) and (4.3), we see that for any p > 0,

3.5), we obtain

[t ()| 1
= ; {V‘UMMM(MH + | (flep)uuz),, ()| a + ,u|uutm(t)|H}

2C
<{\/2'703+ () upa), ()’H‘i‘ﬂ\/?} for a.e. t € (0,7),

where €, = |uuz| — 1 a.e. on Q(T). Now, (f(en)), = R% a.e.
Upz

on Q(T) and by (4.2) there exists ¢ > 0 independent of g > 0 such that

|upe| > 6 ae. on Q(T). Easily, we have
(flep)upe), = (fen), tpe + f(Ep)Upza

Uz | H( 1 )
K + =14+ |u
el T2\ gl ) !

< {514 4= 1 <1 + 54)} |u/wx| a.e. on Q(T).

[2C,
By (4.1) and |upga|a < =0 on [0,T], we have
Y

[P, Ol = w{ 55+ 5 (14 50 ) P lseelr

5 2C
K ((54 + 1> TO for a.e. t € (0,7).

Thus, for any u € [0,1), we obtain

! 5 2C 2C

lupee ()| < { 2fyC’3+7 7_’_1 04 3}
v p
2C 20

: { 50+ ] 54“ P pg}

= Oy for a.e. t € (0,7).
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Clearly, Cy is independent of u € [0,1). Therefore, {uu},e(0,1) is bounded
in L>(0,T; H).

From these estimates, we can take a subsequence {y;} C {u} and u €
W?2(0,T; H) N Wh*°(0,T; Hy) N L>(0,T; Hy) such that p; — 0,

uy,; — u weaklyx in W2(0,T; H), weaklyx in W1°(0, T'; Hs),
weakly= in L>°(0,T; Hy), (4.4)
Up; — Uy Upjze —> Uy Upzx — Uz, Ut — U in C(Q(T)) as j — oo.

Moreover, we can easily obtain (f(auj)uujx)gﬁ — (f(e)uy), in C(Q(T)) as
j — co. We note that for any j € Z-,

Pt + YUy zoar — (f(eﬂj)uu].m)m — stz = 0 a.e. on Q(T'). (4.5)

Let ¢ € C§°(Q(T))? and multiply both sides of (4.5) by . Then, we have
p/ Uy 10 - pdadt + fy/ Uy zaae - Pdrdt — / (f(Euj)qux)x - pdxdt

Q(T) Q(T) Q(T)

—,uj/ Uy tea - pdzdt =0 for any ¢ € C5e(Q(T))2.
Q(T)
It is obvious that
,uj/ Upita * pdxdt -0 as j — oo.
Q(T)

Hence, the convergences (4.4) imply
/Q o (1 sz = () it =0 for any ¢ & C(QUT)F

T

By the fundamental lemma of the calculus of variations, we obtain

Pt + Vigzer — (f(€)uz)r =0 a.e. on Q(T).

Therefore, u satisfies the third condition for Definition 2. By using (4.4),
we see that the second condition holds. Thus, the existence of strong
solutions to Pg(ug,vg, f) on [0,7] has been proved. Moreover, thanks to
the uniqueness guaranteed by [10, Section 3], for the whole sequence {u,}
the convergences (4.4) are true as u tends to 0. O
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5. Conclusion

In this paper, we have established existence and uniqueness of a strong
solution to the initial and boundary value problem for the beam equation
accompanying with the stress function having the singularity point. In
other words, we proved the convergence of solutions to the problem with
the viscosity term as the viscosity coefficient tends to 0.
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