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Научная статья

Четырехэлементные порождающие множества с шириной
блоков не более двух в решетках разбиений

Г. Цедли1B

1 Сегедский университет, Институт Бойяи, Сегед, Венгрия
B czedli@math.u-szeged.hu

Аннотация: Разбиения конечного множества образуют так называемую решет-
ку разбиений. Хенрик Штриец доказал, что эта решетка имеет четырехэлементное
порождающее множество; его статья была продолжена дюжиной других. Две недав-
ние статьи автора показывают, что малые порождающие множества этих решеток
могут быть применены в криптографии. Количество блоков разбиения — это ко-
личество его блоков. Дано четырехэлементное множество разбиений, перечислите
количество блоков его элементов в порядке возрастания. Затем вычтите первое (т.
е. наименьшее) количество блоков из всех четырех, чтобы получить компоненты
четырехмерного вектора. Этот вектор и его последний компонент называются ти-
пом количества блоков и шириной количества блоков данного четырехэлементного
множества. Существует ровно десять типов количества блоков шириной не более
двух. В данном исследовании доказывается, что для любой решетки разбиений над
конечным базовым множеством, содержащим не менее восьми элементов, каждый из
десяти типов количества блоков шириной не более двух является типом количества
блоков четырехэлементного порождающего множества решетки разбиений; более
того, дается нижняя граница числа этих порождающих множеств.

Ключевые слова: решётка эквивалентностей, четырёхэлементное порождающее
множество, решётка разбиений, множество малых порождающих множеств
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Dedication

This paper is dedicated to Professor Sándor Radeleczki, an esteemed
coauthor of mine, on his sixty-fifth birthday.

1. Introduction

The present writing is intended to be self-contained modulo an average
MSc curriculum. Even though this introductory section can contain some
concepts known only by experts, the notions needed in the statements and
their proofs will be defined in due course.
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Recent developments show that some lattices like partition lattices could
have applications in (the algebraic methods of) computer science and infor-
mation processing, namely, in cryptography; see [2] and mainly [3]. Even
though [3] would probably need further development and analysis before
implementation, it is an important constituent of our motivation.

The second part of the motivation for this paper lies in the rich literature
on the topic, which is worth continuing. By an old result of Strietz [6],
finite partition lattices with at least five elements can be generated by four
of their elements. His result has been followed by more than half a dozen
papers devoted to four-element generating sets of partition lattices and also
by half a dozen papers devoted to the closely related topic of four-element
(or small) generating sets of quasiorder lattices. To keep the size of the
References section limited, here we mention only Zádori’s pioneering 1986
paper [7] and Kulin [5], as their methods influenced many other papers.
The rest of the literature is surveyed in [1], [3], and [4] (with overlappings).

We know from [4] that many four-element generating sets of a given par-
tition lattice can be constructed feasibly; let𝑋 denote the collection of these
four-element generating sets. However, the statistical analysis presented
in [4] shows with high confidence level (but does not prove rigorously) that
the collection of four-element generating sets is much larger than 𝑋. Since
the cryptographic applicability depends on the size of 𝑋, any argument
that increases 𝑋 makes sense; this idea also belongs to our motivation.

Next, we fix some notations and recall some well-known concepts.

Notations. As it is usual in lattice theory, 𝑋 ⊂ 𝑌 denotes that 𝑋 is a
proper subset of 𝑌 , that is, 𝑋 ⊆ 𝑌 and 𝑋 ̸= 𝑌 .

For a set 𝐴, let Part(𝐴) stand for the collection of all partitions of 𝐴.
That is, 𝐵 ∈ Part(𝐴) if and only if 𝐵 is a set of pairwise disjoint nonempty
subsets of 𝐴 such that 𝐴 is the union of the members of 𝐵.

For a natural number 𝑛 ∈ N+ := {1, 2, 3, . . . }, let [𝑛] := {1, 2, . . . , 𝑛}.
Instead of Part([𝑛]), we will often write Part(𝑛).

Let {𝑆𝑖 : 𝑖 ∈ 𝐾} be a finite collection of nonempty sets. We say that⋃︀
𝑖∈𝐾 𝑆𝑖 is a connected overlapping union if either |𝐾| = 1, or |𝐾| > 1 and

the following two conditions hold:

1) for each 𝑖 ∈ 𝐾, there is a 𝑗 ∈ 𝐾 ∖ {𝑖} such that 𝑆𝑖 ∩ 𝑆𝑗 ̸= ∅, and

2) there is no nonempty proper subset 𝐼 of 𝐾 such that 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for
every 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐾 ∖ 𝐼.

For example, {1, 2} ∪ {2, 3} ∪ {3, 4} is a connected overlapping union but
{1, 2}∪{2, 3}∪{4, 5}∪{5, 6} is not. The forthcoming description of the join
in a partition lattice might look unusual but it has the advantage of showing
how one can compute it. Hence, for those familiar with other definitions,
it is trivial that our definition is equivalent to the standard ones.
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Definition 1. For 𝐵 ∈ Part(𝐴), the members of 𝐵 are called the blocks
of 𝐵. For 𝑋,𝑌, 𝑈, 𝑉 ∈ Part(𝐴),

𝑋 ≤ 𝑌
def⇐⇒ each block of 𝑋 is a subset of some block of 𝑌 ;

𝑈 = 𝑋 ∧ 𝑌 def⇐⇒ the blocks of 𝑈 are exactly the nonempty 𝐸 ∩ 𝐹
where 𝐸 is a block of 𝑋 and 𝐹 is a block of 𝑌 ;

𝑉 = 𝑋 ∨ 𝑌 def⇐⇒ the blocks of 𝑉 are exactly the maximal connected

overlapping unions of sets belonging to 𝑋 ∪ 𝑌.

Then ∧ and ∨ are operations on Part(𝐴), and the structure (Part(𝐴),∧,∨)
is the partition lattice of 𝐴. As usual, we write Part(𝐴) rather than writing
(Part(𝐴),∧,∨). In particular, if 𝑛 ∈ N+ and 𝐴 = [𝑛], then Part(𝑛) :=
Part([𝑛]) stands for the partition lattice of {1, . . . , 𝑛}.

Definition 2. For a set 𝐴, a nonempty subset 𝑆 of Part(𝐴) is a sublattice
of Part(𝐴) if for any 𝑋,𝑌 ∈ 𝑆, both 𝑋∧𝑌 and 𝑋∨𝑌 are in 𝑆. A subset 𝐺
of Part(𝐴) is a generating set of Part(𝐴) or, in other words, 𝐺 generates
Part(𝐴) if there is no proper sublattice 𝑆 of Part(𝐴) such that 𝐺 ⊆ 𝑆. For
𝑘 ∈ N+, Part(𝐴) is 𝑘-generated if it is generated by a 𝑘-element subset.

With reference to Strietz [6], we have already mentioned that for 3 ≤ 𝑛 ∈
N+, Part(𝑛) is four-generated. Note that Strietz also proved that Part(𝑛)
is not three-generated for 3 ≤ 𝑛 ∈ N+.

2. Methods

In addition to using or developing some lemmas proved in earlier papers,
an integral part of our method is the following notation of the elements of
Part(𝐴) and (in particular) Part(𝑛) for a finite set 𝐴 and 𝑛 ∈ N+. Namely,
for 𝑋 ∈ Part(𝐴), we denote 𝑋 by listing its non-singleton blocks and
the elements of these blocks in the lexicographic order. We separate the
blocks by semicolons. Within a block, we can separate the elements by
commas; these commas are often dropped when no ambiguity threatens.
For example,

pt(𝑏𝑑) = {{𝑎}, {𝑏, 𝑑}, {𝑐}} ∈ Part({𝑎, 𝑏, 𝑐, 𝑑}), (2.1)

pt(𝑏𝑑) = {{𝑎}, {𝑏, 𝑑}, {𝑐}, {𝑒}} ∈ Part({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}), (2.2)

pt(𝑏𝑒; 𝑐𝑑) = {{𝑎}, {𝑏, 𝑒}, {𝑐, 𝑑}} ∈ Part({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}),
pt(11, 14; 12, 13) = {{11, 14}, {12, 13}} ∈ Part({11, 12, 13, 14}),

pt() = {{1}, {2}, {3}, {4}, {5}, {6}} ∈ Part(6).
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The acronym pt in the notation comes from partition; we can add 𝐴 or 𝑛,
rather than [𝑛], to it as a subscript. The advantage of our notation is that
for any 𝑛 ∈ N+,

if 𝐴 ⊆ 𝐵, then Part(𝐴) is a sublattice of Part(𝐵) (2.3)

in the natural way exemplified by (2.1) and (2.2). For 𝑋 ⊆ Part(𝑛), the
sublattice generated by 𝑋 consists of those partitions that can be obtained
from the members of 𝑋 by using meets and joins in a finite number of
steps. The following easy lemma is Lemma 2.5 from [4].

Lemma 1 (“Circle Principle”). For 2 ≤ 𝑛 ∈ N+ and an 𝑛-element set 𝐴,
and let 𝑎1, 𝑎2, . . . , 𝑎𝑛 be the elements of 𝐴. If each of pt(𝑎1𝑎2), pt(𝑎2𝑎3),
pt(𝑎3𝑎4), . . . , pt(𝑎𝑛−1𝑎𝑛), and pt(𝑎𝑛𝑎1) belongs to the sublattice generated
by 𝑋, then 𝑋 generates Part(𝐴).

To find the generating sets occurring in Lemmas 4–23, we used a variant
of the mini-package ‘‘equ2024p’’ of programs developed by the author; it is
available from the author’s website1. (This explains how the components
of 𝛼⃗ in Lemmas 4–23 will be listed.) On the other hand, finding computer-
free and humanly readable proofs of the fact that the four-element sets in
these lemmas are generating sets required to add a lot of human effort.
This fact can be (and has been) verified in two independent ways. First,
‘‘equp2024reduced.exe’’ in the mini-package can be used to verify whether
a four-element subset of Part(𝑛), for 𝑛 ≤ 9, is a generating set. Second,
even though the humanly readable proofs that we present are long and
technical, it is substantially faster to verify them than to find a rigorous
verification of the correctness of the computer program.

3. Our theorem

For 𝜇 ∈ Part(𝑛), let nbl(𝜇) denote the number of blocks of 𝜇. For
example, nbl(prt7(25, 367)) = 4 and nbl(prt8(25, 367)) = 5.

Definition 3. For a finite set 𝐴, let 𝑋 be a four-element subset of Part(𝐴).
Denote the elements of 𝑋 so that 𝑋 = {𝛼1, 𝛼2, 𝛼3, 𝛼4} and the inequalities
nbl(𝛼1) ≤ nbl(𝛼2) ≤ nbl(𝛼3) ≤ nbl(𝛼4) hold. Then the block count type of
𝑋, denoted by bctyp(𝑋), is defined to be the following vector:

bctyp(𝑋) :=
(︀
0,nbl(𝛼2)− nbl(𝛼1), nbl(𝛼3)− nbl(𝛼1), nbl(𝛼4)− nbl(𝛼1)

)︀
.

The block count width of 𝑋 is nbl(𝛼4) − nbl(𝛼1). If 𝑋 = {𝛽1, . . . , 𝛽4}
(without assuming any inequalities among the nbl(𝛽𝑖)s) generates Part(𝐴),

then 𝛽 is called a generating vector and bctyp(𝛽) is defined to be bctyp(𝑋).

1 https://tinyurl.com/g-czedli/
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The components of bctyp(𝑋) above are in N := {0}∪N+ = {0, 1, 2, . . . }.
If 𝑋 is of block count width at most 𝑘, then bctyp(𝑋) = (0, 𝑖2, 𝑖3, 𝑖4) such
that 0 ≤ 𝑖2 ≤ 𝑖3 ≤ 𝑖4 ≤ 𝑘. For 𝑘 = 2, we will prove the converse: if
(0, 𝑖2, 𝑖3, 𝑖4) satisfies these inequalities, then it is of the form bctyp(𝑋);
furthermore, this is witnessed by very many four-element generating sets
𝑋 of Part(𝑛). To be more precise, we formulate the result of the paper as
follows; the lower integer part of a real number 𝑥 will be denoted by ⌊𝑥⌋.

Theorem 1. Whenever 𝑖2, 𝑖3, 𝑖4 ∈ N such that 𝑖2 ≤ 𝑖3 ≤ 𝑖4 ≤ 2 and
8 ≤ 𝑛 ∈ N+, then Part(𝑛) has a four-element generating set 𝑋 with block
count type (0, 𝑖2, 𝑖3, 𝑖4). Furthermore, if 𝑛 ≥ 10, then Part(𝑛) has at least

22⌊(𝑛−8)/2⌋−3 · (2⌊(𝑛− 8)/2⌋ − 1)!

3 · (2⌊(𝑛− 8)/2⌋+ 1)
(3.1)

four-element generating sets 𝑋 such that bctyp(𝑋) = (0, 𝑖2, 𝑖3, 𝑖4).

Remark 1. If 𝑚 denotes the largest even integer such that 𝑚 ≤ 𝑛 − 8,
then (3.1) turns into 2(𝑚−3) · (𝑚 − 1)!/(3𝑚 + 3). This is a huge number.
For example, for 𝑛 = 20 and 𝑛 = 100, (3.1) is 524 035 939 and (rounded to
three decimal places in its exponential form) 2.999 · 10164, respectively.

4. A lemma to support induction

The proof of Theorem 1 requires several lemmas. Although the present
paper does not rely on the author’s preprint https://tinyurl.com/czg-h4gen,
we borrow the following concept from this preprint and the subsequent
Lemma 2 is a slight generalization of a lemma in the preprint. The proof of
Lemma 2 here is shorter than its precursor in the preprint. For a set 𝐴 and
𝑢0 ̸= 𝑢1 ∈ 𝐴, we denote the least element of Part(𝐴), the greatest element
of Part(𝐴), and the partition with {𝑢0, 𝑢1} as the only non-singleton block
by 0Part(𝐴), 1Part(𝐴), and pt(𝑢0, 𝑢1) or pt(𝑢0𝑢1), respectively.

Definition 4. For a finite set 𝐴, 𝛼0,0, 𝛼0,1, 𝛼1,1, 𝛼1,0 ∈ Part(𝐴), and
𝑢0, 𝑢1 ∈ 𝐴, we say that A = (𝐴;𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1;𝑢0, 𝑢1) is an eligible
system if it satisfies the following conditions:

{𝛼0,0, 𝛼0,1, 𝛼1,1, 𝛼1,0} is a four-element generating set of Part(𝐴), (4.1)

𝛼0,0 ∨ 𝛼0,1 = 1Part(𝐴), 𝛼0,0 ∧ 𝛼0,1 = 0Part(𝐴), (4.2)

𝛼1,𝑖 ∧
(︀
𝛼1,1−𝑖 ∨ pt(𝑢0, 𝑢1)

)︀
= 0Part(𝐴) for 𝑖 ∈ {0, 1}, and (4.3)

𝛼1,0 ∨ 𝛼1,1 ∨ pt(𝑢0, 𝑢1) = 1Part(𝐴). (4.4)

With the vector 𝛼⃗ := (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1), we often denote A also by
(𝐴; 𝛼⃗;𝑢0, 𝑢1). The vector 𝛼⃗, the set {𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1}, its block count
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type, and 𝐴 are called the partition vector, the partition set, the block
count type, and the base set of A, respectively.

By definition, the base sets of eligible systems are finite. The following
lemma benefits from (2.3).

Lemma 2. Let A = (𝐴;𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1;𝑢0, 𝑢1) be an eligible system,
and let 𝑘 ∈ {0, 1}. Let 𝑎′ be an element outside 𝐴, and let 𝐴′ := 𝐴 ∪ {𝑎′}.
For 𝑖 ∈ {0, 1}, we define

𝛼′
0,𝑖 := 𝛼1,𝑖 ∨ pt(𝑢𝑖, 𝑎

′) ∈ Part(𝐴′) and 𝛼′
1,𝑖 := 𝛼0,𝑖 ∈ Part(𝐴′), (4.5)

and let 𝑢′𝑘 := 𝑢𝑘 and 𝑢′1−𝑘 = 𝑎′. Then

A′ = (𝐴′;𝛼′
0,0, 𝛼

′
0,1, 𝛼

′
1,0, 𝛼

′
1,1;𝑢

′
0, 𝑢

′
1)

is also an eligible system.

Proof of Lemma 2. Let 𝑆 denote the sublattice of Part(𝐴′) generated by
{𝛼′

𝑖,𝑗 : 𝑖, 𝑗 ∈ {0, 1}}. Then (4.2) applied to Part(𝐴) and the fact that

Part(𝐴) is a sublattice of Part(𝐴′) yield that

1Part(𝐴) = 𝛼0,0 ∨ 𝛼0,1 = 𝛼′
1,0 ∨ 𝛼′

1,1 ∈ 𝑆. (4.6)

Hence, using Definition 1, we obtain that 𝛼𝑖,𝑗 = 1Part(𝐴) ∧ 𝛼′
1−𝑖,𝑗 ∈ 𝑆

for all 𝑖, 𝑗 ∈ {0, 1}. Thus, (4.1) implies that Part(𝐴) ⊆ 𝑆; in particular,
pt(𝑢0, 𝑢1) ∈ 𝑆. For 𝑖 ∈ {0, 1}, we claim that

pt(𝑢𝑖, 𝑎
′) = 𝛼′

0,𝑖 ∧
(︀
𝛼′
0,1−𝑖 ∨ pt(𝑢0, 𝑢1)

)︀
∈ 𝑆. (4.7)

It suffices to deal with the equality in (4.7). For 𝑖 ∈ {0, 1}, let 𝑈𝑖 ⊆ 𝐴
be the (unique) 𝛼1,𝑖-block of 𝑢𝑖; see Figure 1. (Note that |𝑈𝑖| = 1 is not
excluded.) By Definition 1 and (4.5), 𝑈 ′

𝑖 := 𝑈𝑖∪{𝑎′} is the 𝛼′
0,𝑖-block of 𝑢𝑖;

see the figure. We claim that 𝑈0 ∩ 𝑈1 = ∅. Suppose the contrary, and let
𝑥 ∈ 𝑈0 ∩ 𝑈1. Then (𝑥, 𝑢𝑖) ∈ 𝛼1,𝑖 ∧

(︀
𝛼1,1−𝑖 ∨ pt(𝑢0, 𝑢1)

)︀
, and so (4.3) yields

that 𝑥 = 𝑢𝑖 for both 𝑖 ∈ {0, 1}. This contradicts that 𝑢0 ̸= 𝑢1, and we
conclude that 𝑈0 ∩𝑈1 = ∅. Thus, the figure visualizes the relation between
𝑈0 and 𝑈1 correctly, and so (4.7) follows by Definition 1.

Next, the inclusion Part(𝐴) ⊆ 𝑆, (4.7), and Lemma 1 imply that 𝑆 =
Part(𝐴′), that is, A′ satisfies (4.1). Let 𝑖 ∈ {0, 1}. As (4.3) holds for A,
𝛼1,0 ∧ 𝛼1,1 = 0Part(𝐴). Since the blocks of 𝛼′

0,𝑖 are those of 𝛼1,𝑖 except

that 𝑈 ′
𝑖 replaces 𝑈𝑖, the just-mentioned equality, the already established

𝑈0 ∩ 𝑈1 = ∅, and Definition 1 imply that the second half of (4.2) holds for
A′. The first half of (4.2) follows similarly from {𝑢0, 𝑢1} ⊆ 𝑈 ′

0 ∪𝑈 ′
1 and the

property (4.4) of A. The blocks of 𝛼′
1,𝑖 are those of 𝛼0,𝑖 and the singleton

block {𝑎′}. Hence, the property (4.2) of A and Definition 1 imply that A′

satisfies (4.3). Similarly, as every block of 𝛼0,𝑖 is a block of 𝛼′
1,𝑖, (4.4) for A

′

follows from the property (4.2) of A, completing the proof of Lemma 2.
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Figure 1. Illustrating the proof of the equality in (4.7)

Lemma 3. Assume that the base set of an eligible system A′ has at least
three elements. Then there exists at most one eligible system A and at
most one 𝑘 ∈ {0, 1} such that A′ is obtained from A in the way described
by Lemma 2.

Proof. Assume that A′ is obtained from A and the notations used in Lemma
2 are in effect. It follows from (4.6) and the sentence right after (4.6) that
A′ determines 1Part(𝐴) and the 𝛼𝑖,𝑗s. As 1Part(𝐴) dSuppose the contraryeter-
mines 𝐴 and 𝑎′, so does A′. Finally, 𝑘 is determined by the condition that
𝑢′𝑘 ∈ 𝐴.

5. Twenty more lemmas

The possible triplets of (𝑖2, 𝑖3, 𝑖4) ∈ N3 with 𝑖2 ≤ 𝑖3 ≤ 𝑖4 ≤ 2 are the
following:

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
(0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2).

(5.1)

The corresponding cases for the “smallest” possible even values and odd
values of 𝑛 will be taken care of by consecutive pairs of the following
twenty lemmas; their order corresponds to (5.1). Here “smallest” means
that “the smallest we have found and probably the smallest”. In some
cases, simple arguments show that “smallest” is indeed the smallest, but
we do not include these arguments in the paper. The twenty proofs are
so similar that reading all of them would be boring; furthermore, space
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considerations do not allow us to include all of them in the journal ver-
sion of the paper. Hence, only one of the twenty lemmas is proved in
the present section. The remaining ones are proved in the Appendix of
the extended version of the paper; see https://tinyurl.com/czg-4gw2 or
https://www.arxiv.org/. Note that the first two lemmas out of the twenty
could be replaced by similar lemmas occurring in the already-mentioned
preprint https://tinyurl.com/czg-h4gen. The components of 𝛼⃗ will be dis-
played so that the 𝛼0,𝑖s are listed from northwest to southeast and the 𝛼1,𝑖s
from northeast to southwest.

Lemma 4. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(14; 37; 56), 𝛼1,0 = pt(15; 23; 46),

𝛼1,1 = pt(12; 367), and 𝛼0,1 = pt(26; 457).

Then ([7]; 𝛼⃗; 1, 4) is an eligible system with block count type (0, 0, 0, 0).

Lemma 5. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(168; 237), 𝛼1,0 = pt(178; 345),

𝛼1,1 = pt(12; 467; 58), and 𝛼0,1 = pt(135; 26; 47).

Then ([8]; 𝛼⃗; 2, 3) is an eligible system with block count type (0, 0, 0, 0).

Lemma 6. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(16; 234), 𝛼1,0 = pt(12; 45),

𝛼1,1 = pt(134; 56), and 𝛼0,1 = pt(14; 26; 35).

Then ([6]; 𝛼⃗; 2, 6) is an eligible system with block count type (0, 0, 0, 1).

Lemma 7. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(146; 27; 35), 𝛼1,0 = pt(26; 34; 57),

𝛼1,1 = pt(15; 247; 36), and 𝛼0,1 = pt(123; 47; 56).

Then ([7]; 𝛼⃗; 1, 3) is an eligible system with block count type (0, 0, 0, 1).

Lemma 8. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(123; 45), 𝛼1,0 = pt(35),

𝛼1,1 = pt(15; 246), and 𝛼0,1 = pt(14; 25; 36).

Then ([6]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 0, 0, 2).

Lemma 9. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(12; 37; 456), 𝛼1,0 = pt(13; 67),

𝛼1,1 = pt(156; 23; 47), and 𝛼0,1 = pt(157; 234).

Then ([7]; 𝛼⃗; 2, 4) is an eligible system with block count type (0, 0, 0, 2).
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Lemma 10. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(12; 34; 56), 𝛼1,0 = pt(13; 26),

𝛼1,1 = pt(24; 56), and 𝛼0,1 = pt(146; 35).

Then ([6]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 0, 1, 1).

Lemma 11. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(124; 37; 56), 𝛼1,0 = pt(237; 46),

𝛼1,1 = pt(256; 34), and 𝛼0,1 = pt(13; 25; 467).

Then ([7]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 0, 1, 1).

Lemma 12. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(15; 234; 67), 𝛼1,0 = pt(36; 45),

𝛼1,1 = pt(12; 47; 56), and 𝛼0,1 = pt(126; 35; 47).

Then ([7]; 𝛼⃗; 1, 3) is an eligible system with block count type (0, 0, 1, 2).

Lemma 13. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(138; 246; 57), 𝛼1,0 = pt(235; 46),

𝛼1,1 = pt(26; 37; 458), and 𝛼0,1 = pt(12; 356; 478).

Then ([8]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 0, 1, 2).

Lemma 14. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(167; 234; 58), 𝛼1,0 = pt(12; 36; 57),

𝛼1,1 = pt(267; 45), and 𝛼0,1 = pt(148; 26; 357).

Then ([8]; 𝛼⃗; 1, 8) is an eligible system with block count type (0, 0, 2, 2).

Lemma 15. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(125; 346; 789), 𝛼1,0 = pt(267; 34; 89),

𝛼1,1 = pt(158; 239), and 𝛼0,1 = pt(147; 238; 569).

Then ([9]; 𝛼⃗; 1, 4) is an eligible system with block count type (0, 0, 2, 2).

Lemma 16. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(26; 35), 𝛼1,0 = pt(15; 24),

𝛼1,1 = pt(23; 45), and 𝛼0,1 = pt(12; 346).

Then ([6]; 𝛼⃗; 1, 6) is an eligible system with block count type (0, 1, 1, 1).

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 53. С. 141–155



FOUR-ELEMENT GENERATING SETS OF PARTITION LATTICES 151

Lemma 17. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(145; 36), 𝛼1,0 = pt(16; 245),

𝛼1,1 = pt(17; 26; 35), and 𝛼0,1 = pt(13; 257; 46).

Then ([7]; 𝛼⃗; 1, 3) is an eligible system with block count type (0, 1, 1, 1).

Lemma 18. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(16; 24; 35), 𝛼1,0 = pt(14; 35),

𝛼1,1 = pt(16; 23; 45), and 𝛼0,1 = pt(125; 346).

Then ([6]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 1, 1, 2).

Lemma 19. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(36; 45), 𝛼1,0 = pt(126; 57),

𝛼1,1 = pt(17; 24; 35), and 𝛼0,1 = pt(15; 23; 467).

Then ([7]; 𝛼⃗; 2, 3) is an eligible system with block count type (0, 1, 1, 2).

Lemma 20. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(16; 45), 𝛼1,0 = pt(16; 24),

𝛼1,1 = pt(12; 36; 45), and 𝛼0,1 = pt(134; 256).

Then ([6]; 𝛼⃗; 3, 4) is an eligible system with block count type (0, 1, 2, 2).

Lemma 21. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(13; 57), 𝛼1,0 = pt(12; 34),

𝛼1,1 = pt(156; 47), and 𝛼0,1 = pt(17; 236; 45).

Then ([7]; 𝛼⃗; 1, 3) is an eligible system with block count type (0, 1, 2, 2).

Lemma 22. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(12; 36), 𝛼1,0 = pt(13; 46),

𝛼1,1 = pt(14; 56), and 𝛼0,1 = pt(16; 2345).

Then ([6]; 𝛼⃗; 1, 2) is an eligible system with block count type (0, 2, 2, 2).

Proof of Lemma 22. It is easy to see that (4.2)–(4.4) hold; so we present
an argument only for (4.1). That is, we show that {𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1}
generates Part(6). Let 𝑆 denote the sublattice generated by this four-
element subset of Part(6). Then the following partitions are all in 𝑆:

𝛼0,0 = pt(12; 36), as it is one of the generators, (5.2)
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𝛼1,0 = pt(13; 46), as it is one of the generators, (5.3)

𝛼1,1 = pt(14; 56), as it is one of the generators, (5.4)

𝛼0,1 = pt(16; 2345), as it is one of the generators, (5.5)

pt(12346) = pt(12; 36) ∨ pt(13; 46) by (5.2) and (5.3), (5.6)

pt(124; 356) = pt(12; 36) ∨ pt(14; 56) by (5.2) and (5.4), (5.7)

pt(13456) = pt(13; 46) ∨ pt(14; 56) by (5.3) and (5.4), (5.8)

pt(36) = pt(12; 36) ∧ pt(13456) by (5.2) and (5.8), (5.9)

pt(14) = pt(14; 56) ∧ pt(12346) by (5.4) and (5.6), (5.10)

pt(24; 35) = pt(16; 2345) ∧ pt(124; 356) by (5.5) and (5.7), (5.11)

pt(24; 356) = pt(36) ∨ pt(24; 35) by (5.9) and (5.11), (5.12)

pt(124; 35) = pt(14) ∨ pt(24; 35) by (5.10) and (5.11), (5.13)

pt(12) = pt(12; 36) ∧ pt(124; 35) by (5.2) and (5.13), (5.14)

pt(56) = pt(14; 56) ∧ pt(24; 356) by (5.4) and (5.12), (5.15)

pt(123; 46) = pt(13; 46) ∨ pt(12) by (5.3) and (5.14), (5.16)

pt(13; 456) = pt(13; 46) ∨ pt(56) by (5.3) and (5.15), (5.17)

pt(23) = pt(16; 2345) ∧ pt(123; 46) by (5.5) and (5.16), (5.18)

pt(45) = pt(16; 2345) ∧ pt(13; 456) by (5.5) and (5.17). (5.19)

In particular, pt(14) ∈ 𝑆 by (5.10), pt(45) ∈ 𝑆 by (5.19), pt(56) ∈ 𝑆 by
(5.15), pt(63) ∈ 𝑆 by (5.9), pt(32) ∈ 𝑆 by (5.18), and pt(21) ∈ 𝑆 by (5.14).
Consequently, Lemma 1 completes the proof.

Lemma 23. Let 𝛼⃗ = (𝛼0,0, 𝛼0,1, 𝛼1,0, 𝛼1,1) be given by

𝛼0,0 = pt(134; 2567), 𝛼1,0 = pt(14; 36; 57),

𝛼1,1 = pt(127; 56), and 𝛼0,1 = pt(15; 24; 37).

Then ([7]; 𝛼⃗; 1, 3) is an eligible system with block count type (0, 2, 2, 2).

To conclude this section, note the following. The proof of Lemma 22
needed fourteen equations, (5.6)–(5.19). The proof of Lemma 14 needs
forty-eight. The number of equations that the proof of any other lemma in
this section needs is (strictly) between 14 and 48; the average is 26.5.

6. The rest of the proof of Theorem 1

Using our lemmas, now we can prove the theorem.

Proof of Theorem 1. Assume that (𝐴; 𝛼⃗;𝑢0, 𝑢1) is an eligible system, 𝑎′ and
𝑎′′ are distinct elements outside 𝐴, 𝐴′ := 𝐴∪{𝑎′}, and 𝐴′′ := 𝐴′∪{𝑎′′}. Let
(𝐴′; 𝛼⃗ ′;𝑢′0, 𝑢

′
1) and (𝐴′′; 𝛼⃗ ′′;𝑢′′0, 𝑢

′′
1) be the eligible systems obtained from
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(𝐴; 𝛼⃗;𝑢0, 𝑢1) and (𝐴′; 𝛼⃗ ′;𝑢0, 𝑢1) applying Lemma 2, respectively. (Their
dependence on the parameter 𝑘 occurring in the lemma is irrelevant for
a while.) For the 𝛼′

𝑖,𝑗s in (4.5), we have that nbl(𝛼′
0,𝑗) = nbl(𝛼1,𝑗) and

nbl(𝛼′
1,𝑗) = nbl(𝛼0,𝑗) + 1 for 𝑗 ∈ {0, 1}. Applying (4.5) to the primed 𝛼s,

we obtain that nbl(𝛼′′
𝑖,𝑗) = nbl(𝛼𝑖,𝑗) + 1 for all 𝑖, 𝑗 ∈ {0, 1}. Therefore,

|𝐴′′| = |𝐴|+ 2 and bctyp(𝐴′′; 𝛼⃗ ′′;𝑢′′0, 𝑢
′′
1) = bctyp(𝐴; 𝛼⃗;𝑢0, 𝑢1). (6.1)

For the rest of the proof, we fix a possible triplet (𝑖2, 𝑖3, 𝑖4) in the scope
of the theorem. Lemmas 4–23, (5.1), and (6.1) yield two eligible systems

A0 = ([8]; 𝛼⃗;𝑢0, 𝑢1) and B0 = ([9]; 𝛼⃗*;𝑢*0, 𝑢
*
1)

of block count type (0, 𝑖2, 𝑖3, 𝑖4). Depending on the parity of 𝑛, we start
from A or B depending on whether 𝑛 is even or odd, respectively. The
repeated use of (6.1) gives that for any 𝑛 ≥ 8, Part(𝑛) has a four-element
generating set 𝑋 such that bctyp(𝑋) = (0, 𝑖2, 𝑖3, 𝑖4). More effort is needed
to prove that there are many such 𝑋.

Let 𝑚 := 2⌊(𝑛−8)/2⌋. Observe that 𝑚 = 𝑛−8 for 𝑛 even and 𝑚 = 𝑛−9
for 𝑛 odd. Importantly, 𝑚 is even. We will give the details on how to use A0

for an even 𝑛, since B0 could be used similarly for an odd 𝑛. We are going
to construct 2𝑚 · 𝑚! eligible systems such that each of them is obtained
from A0 by using the constructive step offered by Lemma 2 𝑚 times and it
has [𝑛] as its base set.

So 𝑛 ≥ 10 is even. Pick an 𝑚-dimensional vector 𝑘⃗ = (𝑘1, . . . , 𝑘𝑚)

in {0, 1}𝑚. Let 𝑏⃗ = (𝑏1, . . . , 𝑏𝑚) be a permutation of the set [𝑛] ∖ [8] =
{9, 10, . . . , 𝑛}. So [𝑛] = [8]∪{(𝑏1, . . . , 𝑏𝑚}. Using 𝑘1, 𝑏1, and the (parenthe-
sized) superscript 1 instead of 𝑘, 𝑎′, and the prime symbol ′, respectively,

Lemma 2 yields an eligible system A1 = ([8] ∪ {𝑏1}; 𝛼⃗(1);𝑢
(1)
0 , 𝑢

(1)
1 ). In the

next step, we use 𝑘2, 𝑏2, and the parenthesized 2. And so on; we use 𝑘𝑖, 𝑏𝑖,

and (𝑖) in the 𝑖th step to obtain A𝑖 = ([8]∪ {𝑏1, . . . , 𝑏𝑖}; 𝛼⃗(𝑖);𝑢
(𝑖)
0 , 𝑢

(𝑖)
1 ) from

A𝑖−1. The base set of A𝑚 is [𝑛]. Since we have made an even number of
steps to obtain A𝑚 from A0, Lemma 2 and (6.1) imply that the partition set
of A𝑚 is a generating set of Part(𝑛) of block count type (0, 𝑖2, 𝑖3, 𝑖4). There

are 2𝑚 ·𝑚! vectors (𝑘⃗, 𝑏⃗). So we can construct 2𝑚 ·𝑚! eligible systems in
this way; call them the constructed systems. To show that they are pairwise
distinct, it is sufficient to show that A𝑚 determines both 𝑘⃗ and 𝑏⃗.

To do so, assume that A𝑚 is given, and let 𝐵𝑖 denote the base set of A𝑖
for 𝑖 ∈ {0, . . . ,𝑚}; in particular, 𝐵0 = [8] and 𝐵𝑚 = [𝑛]. By Lemma 3,
A𝑚−1 and 𝑘𝑚 are uniquely determined. Applying Lemma 3 to A𝑚−2 and
A𝑚−1, we obtain that A𝑚−2 and 𝑘𝑚−1 are uniquely determined, too. Next,
the same lemma applied to A𝑚−3 and A𝑚−2 yields that A𝑚−3 and 𝑘𝑚−2

are uniquely determined. And so on; after 𝑚 applications of Lemma 3, we
obtain that 𝑘⃗ and all the A𝑖, 𝑖 ∈ {0, . . . ,𝑚}, are uniquely determined. For
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𝑖 ∈ [𝑚], 𝑏𝑖 is the unique element that belongs to (the base set of) A𝑖 but

not to A𝑖−1. Hence, 𝑏⃗ is uniquely determined, too.
Next, we give an upper estimate of how many constructed systems A𝑚

give rise to the same generating set. First, 24 = 4! different generating
vectors give the same four-element generating set. Second, we claim that

(𝑢
(𝑚)
0 , 𝑢

(𝑚)
1 ) can be chosen in at most 𝑚(𝑚+1) ways. (We have added ‘‘at

most’’ since the generating set can exclude some choices.) Indeed, there are

(at most) 𝑚(𝑚− 1) pairs (𝑢
(𝑚)
0 , 𝑢

(𝑚)
1 ) such that none of their components

is in [8]. If 𝑢
(𝑚)
0 ∈ [8], then 𝑢

(𝑚)
0 = 𝑢0 and we can choose 𝑢

(𝑚)
1 in (at

most) 𝑚 ways, and similarly if 𝑢
(𝑚)
1 ∈ [8]. So the number of possible pairs

(𝑢
(𝑚)
0 , (𝑢

(𝑚)
1 ) is at most 𝑚(𝑚− 1) +𝑚+𝑚 = 𝑚(𝑚+ 1), indeed.

Finally, if we divide the number 2𝑚 ·𝑚! of the constructed systems by the
just-obtained number 24𝑚(𝑚+ 1), then we obtain a lower estimate of the
four-element generating sets of Part(𝑛) with block count type (0, 𝑖2, 𝑖3, 𝑖4).
Since this division results in the number given in (3.1), the proof of Theorem
1 is complete.

7. Conclusion

We have discovered many new four-element generating sets of finite par-
tition lattices. These generating sets have specific properties; see Definition
3 and Theorem 1. According to the statistical analysis presented in [4],
it is highly probable that there are many more four-element generating
sets of finite partition lattices than those presented in this paper and
other papers. Therefore, it would be interesting to continue this research
to find many additional four-element generating sets. In particular, we
conjecture, though cannot currently prove, that the lower bound given in
(3.1), which is based only on the number of four-element generating sets we
have constructed, is far from being sharp. By exploring more four-element
generating sets, we could increase the likelihood that (the extensions of)
these sets will be applicable in cryptography. Another future task is to
extend the corresponding ideas given in [2] and [3] to meet the requirements
of modern cryptography.
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