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Hayunasa crarnsa

YeThIpexajieMeHTHBIE TOPOXKIAIOIINE MHOXKECTBA C IITUPUHOIM
0J10KOB He OoJiee IByX B pellleTKax pa30oueHmii

I. enau'™

L Cerenckuit yunsepcurer, Uncruryr Boitsin, Cerexn, Benrpust
= czedli@math.u-szeged.hu

AnHoranus: Pa30uennsi KOHEYHOrO MHOXKECTBA OOpa3ylOT TakK HAa3bIBAEMYIO pPEULeN-
Ky padbuenut. Xeapux LTpuer; mokazaji, 4TO 9Ta pelieTka UMeeT YeThIPeX3JIeMEHTHOe
MIOPOXK TAIOIIEe MHOKECTBO; €r0 CTaThsl ObLia POIOJI?KEHa JI0KUHOM npyrux. /IBe Henas-
HHME CTATbU aBTOPAa MOKA3BIBAIOT, YTO MAaJIble IMOPOXKIAIONINE MHOXKECTBA STUX PEIIETOK
MOTYT OBITH TIPUMEHEHBI B kpunmozpapuu. Koauvecmeo 6.a0k06 pa3bueHust — 3TO KO-
JITYECTBO ero OJI0KOB. J/laHO 4YeThIpex3/ieMeHTHOEe MHOXKECTBO Pa30MeHUil, IepeduncInTe
KOJIMIECTBO GJIOKOB €r0 JIEMEHTOB B MOPSJIKE BO3PACTAHUS. 34TEM BBIYTUTE MEpBoe (T.
€. HauMeHbIIlee) KOJIMYECTBO GJIOKOB M3 BCEX YETLIPEX, YTOOBI MOJIYYUTh KOMIIOHEHTHI
YeTBIPEXMEPHOTO BEKTOPA. DTOT BEKTOD U €r0 MOCJECIHWI KOMIIOHEHT HA3LIBAIOTCS M-
NOM KOAUHECNEA BA0K08 U WUPUHOT KOAUMECTNEG BA0KOE JTAHHOTO YEThIPEXIJIEMEHTHOTO
muoxkecTBa. CyIIecTByeT POBHO JECATh THIIOB KOJUYIECTBA OJIOKOB IMUPHUHON He GoJiee
AByX. B maHHOM UCC/I€I0BAHUNT JIOKA3BIBACTCS, ITO IJis JII0OOH pemerku pasbueHuii nas
KOHEYHBIM 6a30BbIM MHOKECTBOM, COAEPKAIIUM HE MEHEE BOCHMU 3JIEMEHTOB, KayK bl 13
JECATU TUIIOB KOJIMYECTBa OJIOKOB IUPUHON He 6oJiee NBYX SABJISAETCS TUIIOM KOJUIECTBA
OJIOKOB YETBIPEXIIEMEHTHOTO NOPOHCIGIOULE20 MHONMCECMEA, PEIIeTKN pas3bueHuii; GoJiee
TOrO, JAETCA HUXKHSIS MPAHUIA YUCJIA ITUX TOPOKIAIONUX MHOXKECTB.

KuaroueBbie cjioBa: peméTKa dKBUBAJTEHTHOCTEHN, YETHIPEXIIEMEHTHOE MOPOXKIAOIIEE
MHOXKECTBO, PENIETKa pa3bueHmil, MHOKECTBO MAJIbIX ITOPOXKIAIOIIINX MHOXKECTB

Buiaromapuoctu: PaGora Boinosinena npu gunancosoit nomuepkke OTKA K 138892,
Benrpusa

Ccouika aasi nurupoBanmsi: CzédliG.  Four-element Generating Sets with Block
Count Widths at Most Two in Partition Lattices // WsBecruss Upkyrckoro rocyunap-
crBenHoro yuuBepcurera. Cepust Maremaruka. 2025. T. 53. C. 141-155.
https://doi.org/10.26516/1997-7670.2025.53.141

Dedication

This paper is dedicated to Professor SAandor Radeleczki, an esteemed
coauthor of mine, on his sixty-fifth birthday.

1. Introduction

The present writing is intended to be self-contained modulo an average
MSc curriculum. Even though this introductory section can contain some
concepts known only by experts, the notions needed in the statements and
their proofs will be defined in due course.
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Recent developments show that some lattices like partition lattices could
have applications in (the algebraic methods of) computer science and infor-
mation processing, namely, in cryptography; see [2] and mainly [3]. Even
though [3] would probably need further development and analysis before
implementation, it is an important constituent of our motivation.

The second part of the motivation for this paper lies in the rich literature
on the topic, which is worth continuing. By an old result of Strietz [6],
finite partition lattices with at least five elements can be generated by four
of their elements. His result has been followed by more than half a dozen
papers devoted to four-element generating sets of partition lattices and also
by half a dozen papers devoted to the closely related topic of four-element
(or small) generating sets of quasiorder lattices. To keep the size of the
References section limited, here we mention only Zadori’s pioneering 1986
paper [7] and Kulin [5], as their methods influenced many other papers.
The rest of the literature is surveyed in [1], [3], and [4] (with overlappings).

We know from [4] that many four-element generating sets of a given par-
tition lattice can be constructed feasibly; let X denote the collection of these
four-element generating sets. However, the statistical analysis presented
in [4] shows with high confidence level (but does not prove rigorously) that
the collection of four-element generating sets is much larger than X. Since
the cryptographic applicability depends on the size of X, any argument
that increases X makes sense; this idea also belongs to our motivation.

Next, we fix some notations and recall some well-known concepts.

Notations. As it is usual in lattice theory, X C Y denotes that X is a
proper subset of Y, thatis, X CY and X #Y.

For a set A, let Part(A) stand for the collection of all partitions of A.
That is, B € Part(A) if and only if B is a set of pairwise disjoint nonempty
subsets of A such that A is the union of the members of B.

For a natural number n € NT := {1,2,3,...}, let [n] := {1,2,...,n}.
Instead of Part([n]), we will often write Part(n).

Let {S; : i € K} be a finite collection of nonempty sets. We say that
Uick Si is a connected overlapping union if either |K| =1, or [K| > 1 and
the following two conditions hold:

1) for each i € K, there is a j € K \ {i} such that S; N.S; # 0, and

2) there is no nonempty proper subset I of K such that S;N.S; = () for
everyi € [ and j € K\ I.

For example, {1,2} U {2,3} U {3,4} is a connected overlapping union but
{1,2}U{2,3}U{4,5}U{5,6} is not. The forthcoming description of the join
in a partition lattice might look unusual but it has the advantage of showing
how one can compute it. Hence, for those familiar with other definitions,
it is trivial that our definition is equivalent to the standard ones.
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Definition 1. For B € Part(A), the members of B are called the blocks
of B. For X,Y,U,V € Part(4),

X<Y b each block of X is a subset of some block of Y;

U=XAY €% the blocks of U are exactly the nonempty ENF
where E is a block of X and F is a block of Y

V=XVvY €L the blocks of V are exactly the mazximal connected
overlapping unions of sets belonging to X UY.

Then A and \/ are operations on Part(A), and the structure (Part(A), A, V)
is the partition lattice of A. As usual, we write Part(A) rather than writing
(Part(A),A,V). In particular, if n € NT and A = [n], then Part(n) :=
Part([n]) stands for the partition lattice of {1,...,n}.

Definition 2. For a set A, a nonempty subset S of Part(A) is a sublattice
of Part(A) if for any X,Y € S, both X \Y and X VY arein S. A subset G
of Part(A) is a generating set of Part(A) or, in other words, G generates
Part(A) if there is no proper sublattice S of Part(A) such that G C S. For
k € NT, Part(A) is k-generated if it is generated by a k-element subset.

With reference to Strietz [6], we have already mentioned that for 3 < n €
NT, Part(n) is four-generated. Note that Strietz also proved that Part(n)
is not three-generated for 3 <n € N¥.

2. Methods

In addition to using or developing some lemmas proved in earlier papers,
an integral part of our method is the following notation of the elements of
Part(A) and (in particular) Part(n) for a finite set A and n € N*. Namely,
for X € Part(A), we denote X by listing its non-singleton blocks and
the elements of these blocks in the lexicographic order. We separate the
blocks by semicolons. Within a block, we can separate the elements by
commas; these commas are often dropped when no ambiguity threatens.
For example,

pt(bd) = {{a}, {b,d},{c}} € Part({a,b,c,d}), (2.1)
pt(bd) = {{a},{b,d},{c},{e}} € Part({a,b,c,d,e}), (2.2)
pt(be; cd) = {{a},{b,e},{c,d}} € Part({a,b,c,d,e}),
pt(11,14;12,13) = {{11,14}, {12,13}} € Part({11, 12, 13, 14}),
)=

pt() = {{1}, {2}, {3}, {4}, {5}, {6}} € Part(6)
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The acronym pt in the notation comes from partition; we can add A or n,
rather than [n], to it as a subscript. The advantage of our notation is that
for any n € NT,

if A C B, then Part(A) is a sublattice of Part(B) (2.3)

in the natural way exemplified by (2.1) and (2.2). For X C Part(n), the
sublattice generated by X consists of those partitions that can be obtained
from the members of X by using meets and joins in a finite number of
steps. The following easy lemma is Lemma 2.5 from [4].

Lemma 1 (“Circle Principle”). For 2 <n € N and an n-element set A,
and let ay,aqg,...,a, be the elements of A. If each of pt(aiaz), pt(azas),
pt(asas), ..., pt(an—1ay), and pt(anar) belongs to the sublattice generated
by X, then X generates Part(A).

To find the generating sets occurring in Lemmas 4-23, we used a variant
of the mini-package “‘equ2024p’’ of programs developed by the author; it is
available from the author’s website!. (This explains how the components
of @ in Lemmas 4-23 will be listed.) On the other hand, finding computer-
free and humanly readable proofs of the fact that the four-element sets in
these lemmas are generating sets required to add a lot of human effort.
This fact can be (and has been) verified in two independent ways. First,
“equp2024reduced.exe’ in the mini-package can be used to verify whether
a four-element subset of Part(n), for n < 9, is a generating set. Second,
even though the humanly readable proofs that we present are long and
technical, it is substantially faster to verify them than to find a rigorous
verification of the correctness of the computer program.

3. Our theorem

For p € Part(n), let nbl(u) denote the mumber of blocks of p. For
example, nbl(prt,(25,367)) = 4 and nbl(prtg(25,367)) = 5.

Definition 3. For a finite set A, let X be a four-element subset of Part(A).
Denote the elements of X so that X = {1, as, a3, a4} and the inequalities
nbl(a1) < nbl(az) < nbl(as) < nbl(ay) hold. Then the block count type of
X, denoted by betyp(X), is defined to be the following vector:

betyp(X) := (0,nbl(az) — nbl(as), nbl(ag) — nbl(aq), nbl(cw) — nbl(ay)).
The block count width of X is nbl(ay) — nbl(ay). If X = {51,..., 04}

(without assuming any inequalities among the nbl(f3;)s) generates Part(A),
then (3 is called a generating vector and betyp(3) is defined to be betyp(X).

! https://tinyurl.com/g-czedli/
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The components of betyp(X) above are in N := {0}UNT = {0,1,2,...}.
If X is of block count width at most k, then betyp(X) = (0,142, i3,44) such
that 0 < ip < i3 < 44 < k. For k = 2, we will prove the converse: if
(0,1i2,13,14) satisfies these inequalities, then it is of the form betyp(X);
furthermore, this is witnessed by very many four-element generating sets
X of Part(n). To be more precise, we formulate the result of the paper as
follows; the lower integer part of a real number = will be denoted by |x].

Theorem 1. Whenever is,i3,14 € N such that i < i3 < iy < 2 and
8 < n € NT, then Part(n) has a four-element generating set X with block
count type (0,1i9,13,14). Furthermore, if n > 10, then Part(n) has at least
22L(n=8)/21=3 . (2| (n — 8)/2| — 1)!
3-(2[(n—8)/2] +1)

four-element generating sets X such that betyp(X) = (0,49, i3, 14).

(3.1)

Remark 1. If m denotes the largest even integer such that m < n — 8,
then (3.1) turns into 20™=3) . (m — 1)!/(3m + 3). This is a huge number.
For example, for n = 20 and n = 100, (3.1) is 524035939 and (rounded to
three decimal places in its exponential form) 2.999 - 10164, respectively.

4. A lemma to support induction

The proof of Theorem 1 requires several lemmas. Although the present
paper does not rely on the author’s preprint https://tinyurl.com/czg-h4gen,
we borrow the following concept from this preprint and the subsequent
Lemma 2 is a slight generalization of a lemma in the preprint. The proof of
Lemma 2 here is shorter than its precursor in the preprint. For a set A and
ug # u1 € A, we denote the least element of Part(A), the greatest element
of Part(A), and the partition with {ug, u;} as the only non-singleton block

by Opart(4)s Lpart(a), and pt(ug, u1) or pt(uouy), respectively.

Definition 4. For a finite set A, apo, 01,011,010 € Part(A), and
up, u1 € A, we say that A = (A;a0,0,00,1,01,0,01,1; U0, u1) is an eligible
system if it satisfies the following conditions:

{a0,0, 201,011,210} is a four-element generating set of Part(A), (4.1)
20,0 V @01 = Lpare(a), 0,0 A 0,1 = Oparg(a), (4.2)
a1 A (11— V pt(uo, u1)) = Oparg(a) forie{0,1}, and (4.3)
1,0V ar1 V pt(ug, u1) = Ipar(a)- (4.4)
With the vector & := (app,a0,1,01,0,01,1), we often denote A also by

(A;d;up,ur). The vector &, the set {0, 01, 1,0,01,1}, its block count
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type, and A are called the partition vector, the partition set, the block
count type, and the base set of 2, respectively.

By definition, the base sets of eligible systems are finite. The following
lemma benefits from (2.3).

Lemma 2. Let A = (A;ap0, 0,1, 1,0, 01,15 %0, u1) be an eligible system,
and let k € {0,1}. Let a’ be an element outside A, and let A" := AU {d'}.
Fori € {0,1}, we define

og; = o1V pt(u,a’) € Part(A’)  and  af,; = ag,; € Part(4’), (4.5)
and let u) = uy and u}_, =a’. Then
A = (A/; 066’0, 04671, O/l,Ov O/l,l; U6, ull)
1s also an eligible system.

Proof of Lemma 2. Let S denote the sublattice of Part(A’) generated by
{ai; 4,5 € {0,1}}. Then (4.2) applied to Part(A) and the fact that
Part(A) is a sublattice of Part(A’) yield that

Ipart(a) = @00 V a1 = 0/1,0 \ 0/1,1 es. (4.6)

Hence, using Definition 1, we obtain that a;; = lputa) Ay ; € S
for all 4,5 € {0,1}. Thus, (4.1) implies that Part(A4) C S; in particular,
pt(ug,u1) € S. For i € {0,1}, we claim that

pt(us, a’) = af; A (agy_; V pt(ug, u1)) € S. (4.7)

It suffices to deal with the equality in (4.7). For ¢ € {0,1}, let U; C A
be the (unique) oy ;-block of u;; see Figure 1. (Note that |U;| = 1 is not
excluded.) By Definition 1 and (4.5), U] := U; U{a'} is the oy ;-block of u;;
see the figure. We claim that Uy N U; = (. Suppose the contrary, and let
z € UgNU. Then (z,u;) € ar; A (e1,1— V pt(uo, u1)), and so (4.3) yields
that x = w; for both ¢ € {0,1}. This contradicts that ug # w1, and we
conclude that UyNU; = (). Thus, the figure visualizes the relation between
Uy and U; correctly, and so (4.7) follows by Definition 1.

Next, the inclusion Part(A) C S, (4.7), and Lemma 1 imply that S =
Part(A’), that is, 2’ satisfies (4.1). Let ¢ € {0,1}. As (4.3) holds for 2,
a0 A a1 = Oparg(a)- Since the blocks of 0‘6,i are those of aq; except
that U/ replaces U;, the just-mentioned equality, the already established
Up NU; = 0, and Definition 1 imply that the second half of (4.2) holds for
2'. The first half of (4.2) follows similarly from {ug,u;} C U,UU] and the
property (4.4) of 2. The blocks of O/M are those of o ; and the singleton
block {a'}. Hence, the property (4.2) of 2 and Definition 1 imply that A’
satisfies (4.3). Similarly, as every block of ay; is a block of o ;, (4.4) for A’
follows from the property (4.2) of 2, completing the proof of Lemma 2. [
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Ui_;, the al’l,i—block of ui—; X \k\A

~

Ui_,, the a{)’l_i-block of ui_; T TTTT—

the non-singleton block of prt(ug, u1) \/\:
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......... o . b 4
U], the «f, ;-block of u; s 2oo-d S
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Ui, the ay 4-block of u;
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Figure 1. Tlustrating the proof of the equality in (4.7)

Lemma 3. Assume that the base set of an eligible system A has at least
three elements. Then there exists at most one eligible system A and at
most one k € {0,1} such that A’ is obtained from 2 in the way described
by Lemma 2.

Proof. Assume that 21’ is obtained from 2( and the notations used in Lemma

2 are in effect. It follows from (4.6) and the sentence right after (4.6) that

A’ determines Ipart(a) and the a; js. As 1p,.4(4) dSuppose the contraryeter-

mines A and @, so does 2’. Finally, k is determined by the condition that
/

uy, € A. O

5. Twenty more lemmas

The possible triplets of (ia,43,74) € N? with i < i3 < iy < 2 are the
following;:

72)7
; (5.1)

The corresponding cases for the “smallest” possible even values and odd
values of n will be taken care of by consecutive pairs of the following
twenty lemmas; their order corresponds to (5.1). Here “smallest” means
that “the smallest we have found and probably the smallest”. In some
cases, simple arguments show that “smallest” is indeed the smallest, but
we do not include these arguments in the paper. The twenty proofs are
so similar that reading all of them would be boring; furthermore, space
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considerations do not allow us to include all of them in the journal ver-
sion of the paper. Hence, only one of the twenty lemmas is proved in
the present section. The remaining ones are proved in the Appendix of
the extended version of the paper; see https://tinyurl.com/czg-4gw2 or
https://www.arxiv.org/. Note that the first two lemmas out of the twenty
could be replaced by similar lemmas occurring in the already-mentioned
preprint https://tinyurl.com/czg-h4gen. The components of & will be dis-
played so that the ag s are listed from northwest to southeast and the aq ;s
from northeast to southwest.

Lemma 4. Letad = (Oz(),(), ag,1, 1,0, 04171) be given by

ap,o = pt(14;37;56), a1,0 = pt(15;23;46),
a1 = pt(12;367), and ap1 = pt(26;457).

Then ([7]; @;1,4) is an eligible system with block count type (0,0,0,0).
Lemma 5. Let & = (g, 0,1, 1,0, 01,1) be given by

apo = pt(168;237), a1 = pt(178;345),
aj1 = pt(12;467;58), and ap1 = pt(135;26;47).

Then ([8]; @;2,3) is an eligible system with block count type (0,0,0,0).
Lemma 6. Let @ = (app,a0,1,01,0,01,1) be given by

Qo0 = pt(16; 234), Qo= pt(12; 45),
a1, = pt(134;56), and ap,1 = pt(14;26; 35).

Then ([6]; d;2,6) is an eligible system with block count type (0,0,0,1).
Lemma 7. Let @ = (app,a0,1,01,0,01,1) be given by

ao,0 = pt(146;27; 35), 1,0 = pt(26; 34; 57),
a1, = pt(15;247;36), and ap1 = pt(123;47;56).

Then ([7]; @;1,3) is an eligible system with block count type (0,0,0,1).
Lemma 8. Let @ = (app,a0,1,01,0,01,1) be given by

Q0,0 = pt(123;45), alo = pt(35),
a1, = pt(15;246), and o1 = pt(14;25; 36).

Then ([6]; @;1,2) is an eligible system with block count type (0,0,0,2).
Lemma 9. Let @ = (app,a0,1,01,0,01,1) be given by

apo = pt(12;37;456), aj o = pt(13;67),
a1, = pt(156;23;47), and ap1 = pt(157;234).

Then ([7); @;2,4) is an eligible system with block count type (0,0,0,2).
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Lemma 10. Let & = (a0, 20,1, 1,0,1,1) be given by

apo = pt(12;34; 56), a1,0 = pt(13;26),
a1,1 = pt(24;56), and ap1 = pt(146; 35).

Then ([6]; @;1,2) is an eligible system with block count type (0,0,1,1).
Lemma 11. Let & = (a0, 20,1, 1,0, 1,1) be given by

o0 = pt(124; 37;56), 1,0 = pt(237;46),
a1 = pt(256;34), and ap,1 = pt(13;25;467).

Then ([7]; @;1,2) is an eligible system with block count type (0,0,1,1).
Lemma 12. Let & = (a,0, 0,1, 01,0, 1,1) be given by

ap,0 = pt(15;234;67), a1 = pt(36;45),
a1 = pt(12;47;56), and ap1 = pt(126;35;47).

Then ([7]; @;1,3) is an eligible system with block count type (0,0,1,2).
Lemma 13. Let & = (a0, 20,1, 1,0,a1,1) be given by

ap,o = pt(138;246;57), a1 = pt(235;46),
a1, = pt(26;37;458), and ap1 = pt(12;356;478).

Then ([8];@;1,2) is an eligible system with block count type (0,0,1,2).
Lemma 14. Let & = (a0, 20,1, 1,0,1,1) be given by

a0o = pt(167; 234; 58), a1 = pt(12;36; 57),
ai1 = pt(267;45), and ap1 = pt(148;26; 357).

Then ([8]; @;1,8) is an eligible system with block count type (0,0,2,2).
Lemma 15. Let & = (a,0, 0,1, 01,0, 1,1) be given by

apo = pt(125; 346; 789), a1 = pt(267;34;89),
a11 = pt(158;239), and ap1 = pt(147;238; 569).

Then ([9]; @;1,4) is an eligible system with block count type (0,0,2,2).
Lemma 16. Let & = (a0, 20,1, 1,0,a1,1) be given by

Qo = pt(26; 35), Qo= pt(15; 24),
a1, = pt(23;45), and ap,1 = pt(12;346).

Then ([6]; @;1,6) is an eligible system with block count type (0,1,1,1).
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Lemma 17. Let & = (a0, 20,1, 1,0,1,1) be given by

ap,0 = pt(145; 36), a1 = pt(16;245),
a1 = pt(17;26;35), and ap1 = pt(13;257;46).

Then ([7]; @;1,3) is an eligible system with block count type (0,1,1,1).
Lemma 18. Let & = (a0, 20,1, 1,0, 1,1) be given by

apo = pt(16;24; 35), a1, = pt(14; 35),
a11 = pt(16;23;45), and ap1 = pt(125; 346).

Then ([6]; @;1,2) is an eligible system with block count type (0,1,1,2).
Lemma 19. Let & = (a0, 20,1, 1,0, 1,1) be given by

0,0 = pt(36;45), a1,0 = pt(126;57),
a1, = pt(17;24;35), and ap1 = pt(15;23;467).

Then ([7); @;2,3) is an eligible system with block count type (0,1,1,2).
Lemma 20. Let & = (a0, 20,1, 1,0,1,1) be given by

Qo0 = pt(16; 45), Qo = pt(lﬁ; 24),
a1 = pt(12;36;45), and ap,1 = pt(134;256).

Then ([6]; @;3,4) is an eligible system with block count type (0,1,2,2).
Lemma 21. Let & = (ao,0, 20,1, 01,0, 21,1) be given by

Qo0 = pt(13; 57), Qo = pt<12; 34),
ay1 = pt(156;47), and ap1 = pt(17;236;45).

Then ([7]; @;1,3) is an eligible system with block count type (0,1,2,2).
Lemma 22. Let d = (a0, 0,1, 01,0, 1,1) be given by

ap = pt(12; 36), a1, = pt(13;46),

a1, = pt(14;56), and ap1 = pt(16;2345).
Then ([6]; @;1,2) is an eligible system with block count type (0,2,2,2).

Proof of Lemma 22. 1t is easy to see that (4.2)—(4.4) hold; so we present
an argument only for (4.1). That is, we show that {ago, ao1, o0, 1,1}
generates Part(6). Let S denote the sublattice generated by this four-
element subset of Part(6). Then the following partitions are all in .S:

apo = pt(12;36), as it is one of the generators, (5.2)
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a1 = pt(13;46), as it is one of the generators, (5.3)

a1, = pt(14;56), as it is one of the generators, (5.4)

ap,1 = pt(16;2345), as it is one of the generators, (5.5)
pt(12346) = pt(12;36) V pt(13; 46) by (5.2) and (5.3), (5.6)
pt(124; 356) = pt(12;36) V pt(14; 56) by (5.2) and (5.4), (5.7)
pt(13456) = pt(13;46) V pt(14; 56) by (5.3) an ( 1), (5.8)
£(36) = pt(12; 36) A pt(13456) by (5.2) and (5.8), (5.9)

( 4) = pt(14; 56) A pt(12346) by (5.4) and ( 6), (5.10)
pt(24 35) = pt(16; 2345) A pt(124; 356) by (5.5) and (5.7),  (5.11)
pt(24; 356) = pt(36) V pt(24;35) by (5.9) and (5.11), (5.12)
pt(124;35) = pt(14) V pt(24; 35) by (5.10) and (5.11), (5.13)
pt(12) = pt(12; 36) A pt(124; 35) by (5.2) and (5.13), (5.14)
pt(56) = pt(14; 56) A pt(24; 356) by (5.4) and (5.12), (5.15)
(123 46) = pt(13;46) V pt(12) by (5.3) and (5.14), (5.16)
pt(13;456) = pt(13;46) V pt(56) by (5.3) and (5.15), (5.17)
pt(23) = pt(16;2345) A pt(123;46) by (5.5) and (5.16),  (5.18)
pt(45) = pt(16; 2345) A pt(13;456) by (5.5) and (5.17).  (5.19)

In particular, pt(14) € S by (5.10), pt(45) € S by (5.19), pt(56) € S by
(5.15), pt(63) € S by (5.9), pt(32) € S by (5.18), and pt(21) € S by (5.14).
Consequently, Lemma 1 completes the proof. O

Lemma 23. Let d = (a0, 20,1, 01,0, 1,1) be given by
Qp,0 = pt(134; 2567), Q10 = pt(14; 36; 57),
a1, = pt(127;56), and ap,1 = pt(15;24;37).
Then ([7]; @;1,3) is an eligible system with block count type (0,2,2,2).

To conclude this section, note the following. The proof of Lemma 22
needed fourteen equations, (5.6)—(5.19). The proof of Lemma 14 needs
forty-eight. The number of equations that the proof of any other lemma in
this section needs is (strictly) between 14 and 48; the average is 26.5.

6. The rest of the proof of Theorem 1

Using our lemmas, now we can prove the theorem.

Proof of Theorem 1. Assume that (A; &;ug,u1) is an eligible system, a’ and
a” are distinct elements outside A, A’ := AU{d'}, and A" := A’U{a"}. Let
(A" a5 up,u)) and (A";a"; uo,ul) be the eligible systems obtained from
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(A; @;ug,up) and (A’; @’ up,uq) applying Lemma 2, respectively. (Their
dependence on the parameter k occurring in the lemma is irrelevant for
a while.) For the of ;s in (4.5), we have that nbl(a ;) = nbl(ay ;) and
nbl(a ;) = nbl(ao,;) —|— 1 for j € {0,1}. Applying (4. 5) to the primed as,
we obtain that nbl(aj ;) = nbl(a; ;) + 1 for all i, € {0,1}. Therefore,

|A”| = |A| 4+ 2 and betyp(A”; @"; u, uf) = betyp(A4; a@; ug, uy). (6.1)

For the rest of the proof, we fix a possible triplet (i2,i3,44) in the scope
of the theorem. Lemmas 4-23, (5.1), and (6.1) yield two eligible systems

Ao = ([8]; @5 uo, ur) and Bo = ([9]; @"; ug, u7)

of block count type (0,72,43,74). Depending on the parity of n, we start
from 2 or B depending on whether n is even or odd, respectively. The
repeated use of (6.1) gives that for any n > 8, Part(n) has a four-element
generating set X such that betyp(X) = (0,9, i3,i4). More effort is needed
to prove that there are many such X.

Let m :=2|(n—8)/2]. Observe that m = n—8 for n even and m = n—9
for n odd. Importantly, m is even. We will give the details on how to use 2
for an even n, since Bg could be used similarly for an odd n. We are going
to construct 2™ - m! eligible systems such that each of them is obtained
from 2y by using the constructive step offered by Lemma 2 m times and it
has [n] as its base set.

So n > 10 is even. Pick an m-dimensional vector k = (ki,...,km)
in {0,1}". Let b = (by,...,by) be a permutation of the set [n] \ [8] =
{9,10,...,n}. So [n] = [8]U{(b1,...,bn}. Using ki, b1, and the (parenthe-
sized) superscript 1 instead of k, @/, and the prime symbol ', respectively,
Lemma 2 yields an eligible system 2(; = ([8] U {b1}; & u(()l), g )). In the
next step, we use ko, by, and the parenthesized 2. And so on we use k;, b;,
and (i) in the ith step to obtain A; = ([8] U {b1,...,b;}; & uo ,ug )) from
A;—1. The base set of 2, is [n]. Since we have made an even number of
steps to obtain 2, from 2y, Lemma 2 and (6.1) imply that the partition set
of 2, is a generating set of Part(n) of block count type (0, i2,i3,44). There
are 2™ - m! vectors (k,b). So we can construct 2™ - m! eligible systems in
this way; call them the constructed systems. To show that they are pairwise
distinct, it is sufficient to show that 2l,,, determines both k and b.

To do so, assume that 2, is given, and let B; denote the base set of 2;
for i € {0,...,m}; in particular, By = [8] and B,, = [n]. By Lemma 3,
An—1 and k,, are uniquely determined. Applying Lemma 3 to 2,,—2 and
A1, we obtain that 2A,,,_o and k,,—1 are uniquely determined, too. Next,
the same lemma applied to 2A,,,—3 and 2,,,_o yields that 2,,_3 and k,,_2
are uniquely determined. And so on; after m applications of Lemma 3, we
obtain that & and all the 2;, i € {0,...,m}, are uniquely determined. For
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i € [m], b; is the unique element that belongs to (the base set of) 2; but

not to 2;_1. Hence, b is uniquely determined, too.

Next, we give an upper estimate of how many constructed systems 2,
give rise to the same generating set. First, 24 = 4! different generating
vectors give the same four-element generating set. Second, we claim that
(uém), ugm)) can be chosen in at most m(m + 1) ways. (We have added ““at
most” since the generating set can exclude some choices.) Indeed, there are

(m) (m))

(at most) m(m — 1) pairs (uy ~,u; ) such that none of their components

is in [8]. If u(()m) € [8], then u((]m) = wuo and we can choose ugm) in (at
most) m ways, and similarly if ugm) € [8]. So the number of possible pairs

(uém), (ugm)) is at most m(m — 1) +m +m = m(m + 1), indeed.

Finally, if we divide the number 2™ -m/! of the constructed systems by the
just-obtained number 24m(m + 1), then we obtain a lower estimate of the
four-element generating sets of Part(n) with block count type (0, 42,143, 74).
Since this division results in the number given in (3.1), the proof of Theorem
1 is complete. O

7. Conclusion

We have discovered many new four-element generating sets of finite par-
tition lattices. These generating sets have specific properties; see Definition
3 and Theorem 1. According to the statistical analysis presented in [4],
it is highly probable that there are many more four-element generating
sets of finite partition lattices than those presented in this paper and
other papers. Therefore, it would be interesting to continue this research
to find many additional four-element generating sets. In particular, we
conjecture, though cannot currently prove, that the lower bound given in
(3.1), which is based only on the number of four-element generating sets we
have constructed, is far from being sharp. By exploring more four-element
generating sets, we could increase the likelihood that (the extensions of)
these sets will be applicable in cryptography. Another future task is to
extend the corresponding ideas given in [2] and [3] to meet the requirements
of modern cryptography.
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