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Hayunas crarbs

3angaga ¢ MpensaTCTBUEM OJis1 Pa3pPbIBHOM
CTUJITHECOBCKOIl CTPYHBI

M. B. 3sepenal!?™

L Boponexckunit rocyrapcrBennbiit yuusepcurer, Boponex, Poccuiickast ®ejeparius

2 Boponexcknit rocygapcTBEeHHBIN Iiearoruvdeckuil yuuBepcuter, Boponex, Poccwii-
ckast Peqepariyst

= margzQrambler.ru

Awnnoranusi: PaccmarpuBaerca KpaeBasi 3a/lada C HEJUHEWHBIM KPAaeBBIM YCJIOBHEM H
Pa3pBIBHBIMU PEIIEHUSIMU. DTa 3a/a9a MOJEJIUPYeT Tporece aedopMalnii pa3pbIBHOMN
CTHJITHECOBCKOIN CTPYHBI (IENOYKH U3 CTHUJITHECOBCKUX CTPYH, COCINHEHHBIX MEXKIY CO-
6oif TIpy>KMHAMU) TIOJ BO3AEHCTBIEM BHEIIHEH Harpy3ku. @opma CTPYyHBI ONUCHLIBAETCS
nHTErpo-auddepeHnnaIbHbIM yPABHEHNEM C IPOM3BOJHBIME II0 Mepe U 00OOIIEHHBIM
uaTerpasiom Ctunrbeca. Takoe mpecTaB/ieHrEe TO3BOJISIET TPOBOIUTEH MOTOUYETHBIA aHA~
JIN3 KaK pelleHnil, Tak u cooTHoIneHui. [Ipenmnosaraercs, 9To Ha JIeBOM KOHIE CTPYHHOM
IIETIOYKU YCTAHOBJIEHO MPENSITCTBUE HA IepeMelnenrne. B 3aBUCMMOCTH OT MPUIIOXKEHHOMN
BHEITHEH CUJIBI COOTBETCTBYIOIIMI KOHEI[ IEMOYKH JINOO CONMPUKOCHETCSI C TPAHUIHBIMU
TOYKAMU TIPEISITCTBUSA, JUOO OCTAHETCS CBOOOIHBIM. DTO MOPOXKIAET HEJMHEHHOE Kpa-
€BOe yCJIOBHUE, ITOCKOJIBKY 3apaHee HEM3BECTHO, Kak IoBeJeT cebs pemienue. Jlokaszamsbr
TEOpEeMBI CYIIeCTBOBAHUS M €IMHCTBEHHOCTU PEIeHUs], ToJIydeHa (GopMysIa IIpeICTaBIIe-
HUS peIleHus, HailleHbl Harpy3KH, IPU KOTOPBIX IIPOMCXOIUT COIPUKOCHOBEHHE KOHIIA
[ENOYKN C I'DAHUYHBIMU TOYKAMU IPENATCTBUSA, U U3yUYeHA 3aBUCHUMOCTH PEIIeHHs] OT
pa3Mepa IpensaTCTBHS.

KuroueBrble ciioBa: 3ajada C MPENsATCTBHEM, Bapualusi, Mepa, nHTerpas Cruarbeca,
HeJINHEHOe KPAaeBoe YCJIOBUE

BaaromapaocTu: Pabora Beinosinena npu puHaHCOBOH Mmojiepkke MuHnucrepcTBa mpo-
ceemenns Poccniickoit @efeparninu B paMKax BBITOJTHEHUsS TOCYJAPCTBEHHOTO 3a/IaHUsI B
cepe vayku (HOMep Tembl OTGE-2024-0002).

Ccouika ais nutupoBanusi: Zvereva M. Obstacle Problem for a Discontinuous Stieltjes
String // Wssecrus Mpkyrckoro rocynapcrsenHoro yuusepcurera. Cepust MaremaTuka.
2025. T. 53. C. 35-50.

https://doi.org/10.26516 /1997-7670.2025.53.35

1. Introduction

In recent years, special attention has been given to the study of mathe-
matical models of string systems, because they are relevant in many areas
of science and technology. Note that the term ”string” has a purely mathe-
matical character. The string deformations equation can be used to model
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processes in quantum mechanics, electric circuits, acoustic tubes, nerve
fibers, various waveguides, etc. (see, for example, [1;2]).

The presence of singularities (elastic supports, concentrated external
effects, discontinuities in the solutions) in such models can lead to difficult
problems due to loss of smoothness. This fact excludes the possibility of
using ordinary derivatives in modeling and analysis.

In this paper, we will not apply the theory of generalized functions. We
will use the pointwise approach with the Stieltjes integral. This approach
has been applied in works of M. G. Krein, F. R. Gantmakher, O. Kellogg
(see comments in [2]), Yu. V. Pokornyi [8;9], S. A. Shabrov [12], R. Ch.
Kulaev [6], M. Tverdy [7;15]. It allows studying qualitative properties of
the solutions that are important for applications, such as the number of
zeros, extrema, sign changes, etc. (see, for example, [9;10]), since solutions
are determined at each point. Following this approach, in works [4;11;16]
problems, modeling deformations of elastic systems with localized singu-
larities and nonlinearities have been studied. However, the boundary value
problem with discontinuous solutions, which is the subject of this paper,
has not been investigated until now.

Obstacle problems have been studied by many scientists (see, for ex-
ample, [3;13;14]). In such works, mainly the questions of existence and
uniqueness of solutions are discussed, and algorithms for finding approxi-
mate solutions are developed. However, the formulas for the representation
of exact solutions are not given explicitly.

In this paper, a formula for the exact solution of the boundary value
problem

() (@) + (pu,)(0) + [ ud[Q] = F(x) — F(0),

PO (0) = 11u(0) + fy € N (u(0))
p(yu, (1) + ou(l) = fo

is obtained in explicit form, the uniqueness of the solution is proved, and

properties of the solution are studied. Here the set N|_, ,j(u(0)) denotes

the outward normal cone to [~m,m] at point u(0); uj, is the derivative

with respect to the measure generated by a strictly increasing function
xT

p(x) on the segment [0,/]. The integral [ud[Q] is understood in the

0
extended sense according to Stieltjes. To emphasize that we are talking
about the generalized Stieltjes integral, we will enclose the function under
the differential sign in square brackets.

2. Preliminaries

In this section, we recall some notions and facts (see [5;8;9;11]) that we
will need in the sequel.
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Outward normal cone. Let H be a Hilbert space, and G C H be a
nonempty closed convex set. For x € GG, the set

Ng(x)={({ € H:{({,c—z) <0, YVce G}

denotes the outward normal cone to G at x.

Jumps of BV functions. Let BV[0,!] denote the set of functions of
bounded variation on the segment [0, []. By a simple jump of u(x) at a point
x = &, we mean the value Au(§) = u(§+0) —u({—0). By the left jump u(x)
at the point x = £, we mean the value A~ u(&) = u(§)—u(£—0). By the right
jump u(z) at the point x = £, we mean the value At u(€) = u(€+0) —u(§).

p—absolute continuity. Suppose the function u(x) is strictly increas-
ing on the segment [0,{]. From the Radon-Nikodym theorem [5] it follows
that the function u(x) is u—absolutely continuous if and only if u(8)—u(a) =

B
[ fdu, «a,B € [0,1], where the integral is understood in the Lebesgue-

(6%
Stieltjes sense. The function f is called the pu derivative of u with respect
to the measure y and is denoted by u;,.

Let

E = {u : u is p-absolutely continuous on [0,1] and u,, € BV[0,1]}.

The generalized Stieltjes integral. The generalized Stieltjes integral
]
J ud[v] was first introduced by Yu. V. Pokornyi in [8]. According to [8],

67

B
the integral [ ud[v] can be written as
«

B B
/ud[v] = /udvc+ Z u(s —0)A™v(s) + Z u(s + 0)ATv(s),

o a<s<f a<s<f
where u(z) and v(z) are bounded variation functions, v, is the continuous

B

part of v, and the integral [udv. is understood in the Lebesgue—Stieltjes
«

sense (see [5]). For the generalized Stieltjes integral, we have (see [8], [9])

B B
Judil =u@(s) - ul@yote) - [ v,

[0

where the integral [v du is understood in the Lebesgue-Stieltjes sense.
«

Note that the main difference between the classical Stieltjes integral [ udv
(03
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B
and the generalized integral [ ud[v] is the following. In the classical integral,

(03

to each point s of discontinuity of the function v(x) there corresponds a term
of the form u(s)Av(s), where the jump Av(s) determines the measure of the
point s. In this case, the value of the function u at the point s is important.
In the generalized Stieltjes integral, the measure of any point s of the
discontinuity of the function v is split into two components determined by
the left A~v(s) and right ATwv(s) jumps, respectively. In this case, only
the limits u(s — 0) and u(s + 0) of the function u(x) are considered at the
point s.

Definition 1. By a zero point of the function u(z), we mean a point
s €10,1] such that u(s — 0)u(s + 0) < 0.

Suppose the function p(x) has bounded variation on [0, ] and igllf p(z) >

)

0; the function Q(z) is non-decreasing on the segment [0, ] and continuous
at the points = 0 and x = [; the function pu(z) is strictly increasing and
continuous at the points z = 0 and x = [. Consider the homogeneous
equation

x

(o) () + / ud(Q) = — () (0), (2.1)

0

where u € F.

Definition 2. We say that Equation (2.1) is non-oscillating on [0,1] if
every non-trivial solution of (2.1) has no more than one zero point on [0,].

For the non-oscillation of Equation (2.1) on [0,], it is sufficient that the
function Q(z) is monotonically non-decreasing on the segment [0, {](Theo-
rem 2.4 in [11]).

Lemma 1. Let p1(z) be a non-trivial solution of the homogeneous equation
(2.1) and satisfy the condition p(1)p1},(1) +7201(1) = 0, where v2 > 0. Then
the function p1(x) does not have zero points on the segment [0,1].

Proof. Assume ¢1(l) = 0. Thus, we have ¢1,(I) = 0, and according to
Theorem 1 in [9], we obtain ¢;(z) = 0. Hence, ¢1(1) # 0. For definiteness,
let p1(l) > 0. Let & be the zero point of the function ¢;(z) closest to z = .
Thus, ¢1(x) > 0 for all x € (,1]. Let us consider the case where at point &
at least one of the functions p, @), F', i has the discontinuity. If x > £ we

have
xT

(et () + (porl,) (€ +0) + / 21d[Q] = 0. (2.2)
&+0
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If the function () is continuous at the point £, then ¢1(£) = 0, ¢1;,(§ +
0) > 0. From (2.2) it follows that ¢1),(z) > 0 for all z > ¢, which contra-
dicts p(I)¢1,(1) = —2¢1(1) < 0. If the function ¢1(x) is discontinuous at
the point £, then Agp;(€) > 0. From Equation (2.1) we have

A
PO 22 e 0 +0) + e +0)AYQE) =0
Ap()
Hence, ¢1,,(§ +0) > 0 and 1), (z) > 0, where 2 > &, but this contradicts
¢1,(I) < 0. Other cases can be considered similarly. O

The following lemma can be proved in a similar way.

Lemma 2. Let ps(z) be a non-trivial solution of the homogeneous equation
(2.1) and satisfy the condition —p(0)¢pay,(0) +v192(0) = 0, where y1 > 0.
Then the function p2(x) does not have zero points on the segment [0,1].

3. The statement of the problem

By discontinuous Stieltjes string, we mean a chain of strings connected
by springs. Further, we assume that elastic supports can be attached to
the string at an arbitrary set of points (but not more than countable). Let
the discontinuous Stieltjes string be stretched along the segment [0,!] of
the Ox axis. This position is called the equilibrium position. Under the
action of an external force, the string deviates from its equilibrium position
and takes on the shape determined by the function u(z), where = € [0,].
We assume that there exists a strictly increasing function p(z) such that
the function u(z) is p - absolutely continuous, and w,(x) is a function
of bounded variation on [0,1]. Suppose the function of bounded variation
p(zx), where %515 p(z) > 0, characterizes the local tension of our physical

system; the non-decreasing function Q(z) describes the elasticity of the
external environment, where z € (0,1); the function of bounded variation
F(z) characterizes the external force, where x € (0,1). Let 73 > 0 and
v9 > 0 denote the elasticities of the springs attached at the points z = 0
and x = [. Suppose f1 and f5 are the forces concentrated at points x = 0
and x = [, respectively. Moreover, at the point x = 0 we have the obstacle
[-m,m] on the deviation of the elastically fixed end of the string. The
condition of the obstacle is |u(0)] < m. Using [9], the potential energy
functional for our physical system has the form

2

O/ZPZ +O/lu22 ) ’Y2 O/lUd 0) f1—u(l) fa.

(3.1)
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In (3.1), the first integral is understood in the classical sense and defines
the work of the string tension force. The second and third integrals are
understood in the generalized sense and define the work of the elastic force
of the external environment and the work of the external force, respectively.
Generalized integrals make it possible to take into account the forces that
are concentrated at the ends of the strings attached to a spring and the
presence of additional springs attached to these ends. The functions u € F
and satisfy the condition

[u(0)] < m, (3.2)
the functions u(x), Q(x), F(x) are continuous at the points z = 0 and = = [.
Note that the function u(z) can only be discontinuous at points where u(x)
is discontinuous. The functions ), F' can be singular with respect to the
measure fi.

According to the Hamilton-Lagrange principle, the real form ug(z) of the
string minimizes the functional ® with condition (3.2). Consider functions
u € E such that u(z) = ug(z) + Ah(x), where A € R, h € E and h(0) =
h(l) = 0. Since the function up(z) is a minimum point of the functional
®, we have ®(ug) < ®(up + A\h). Having fixed h, consider the function
Yp(N) = ®(ug + Ah), where X € R. So we have ¢, (0) < ¢ ()), and we get

awh()\)\ A=0 = 0. Considering the conditions on h(x), the last equality has

the form
l l !

/ Pl b dp+ / uphd|Q) — / hd[F] = 0.

0 0 0
Integrating the second and third integrals by parts, and considering the
properties of the function h(z), we obtain

T

l
/ (puy () — / uod[Q) + F(x)) s = 0. (3.3)
0 0

Applying Lemma 3.1 in [11], we have

T

(pug,,)(x) — /uod[Q] + F(z) = const, (3.4)

0

e, —(pub,) (%) + Ofud[@] — F(x) — F(0) - (pul,)(0).

Consider functions h € E such that h(0) = 0. Similar to the previous
case, we obtain %1, (A)|x=0 = 0, i.e.,

l T l

/ puoM /uod[Q] + F(x))dh + h(l /uod —h(l)F()+ (3.5)

0 0
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Y2uo(Dh(l) = fah(l) =0
Equality (3.4) can be represented as

T l

(M@X@—/QMWHJWMZPW%AD—/wﬂ@+F@-

0 0

Substituting this representation into (3.5), we obtain

(p(1)ufy, (1) + v2uo(l) — f2) h(1) = 0

Since h(l) is arbitrary, we have p(l)ug, (1) +y2uo(l) = fo.

Fix any ¢ € [—m,m] and consider functions h € E satisfying the con-
ditions h(0) = ¢ — up(0), h(l) = 0. Let u(z) = up(z) + Ah(x), where
A € [0,1]. Note that u € E, |u(0)] < m. With h fixed, consider the function
Ur(A) = ®(ug + Ah). Then ¥ (0) < ¥p(A). Hence, the right derivative at
A = 0 satisfies %1%()\)\)\:0 >0, ie.,

l T
[ (@i /QMW] F(2)dh + h(O)F0)+  (3.6)
0
Y1uo(0)R(0) — f1h(0) = 0.
Thus, we obtain (—p(O)uE)M(O) + yuo(0) — f1) h(0) > 0 and for all ¢ €

[—m, m|, with respect to h(0) = ¢ — up(0), we have

(P(0)ug, (0) = 71u0(0) + f1)(c = uo(0)) <0,

- p(0)1,(0) — 1110(0) + fi € Ny (10(0)).

We have just proved the following theorem.

Theorem 1. Assume the function ug(x) is a minimum point of the func-
tional ®(u), where w € E and |u(0)| < m. Then uo(x) is a solution to the
problem

(o) (@) + (pu,)(0) + [ ud[Q) = F(x) — F(0),

p(0)u, (0) — 7()+ﬁ%M%mW®%
Pt (1) + you(l) = fo.

The equation in (3.7) is defined at each point of the special extension
of the segment [0,1], denoted by [0,]g. This set contains together with
each discontinuity point £ of the function u(z) the pair of points denoted
as {€ —0,& + 0}, and each point s, where the function p is continuous, but

(3.7)
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at least one of the functions p, @), F' is discontinuous is replaced by the
pair of points denoted as {s — 0, s+ 0}(see [8], [9], [11]). The values of the
functions at the points £ 0, s £ 0 coincide with the limit values. From the
equation in (3.7) it follows that at discontinuity points £ of the function
wu(x) the equalities

O o) €~ O (€~ 0) + uls ~0)ATQE) = AFO), (39
POZS) ~PE+OULE+0) 4 ule +0ATQO = ATFO.  (39)

hold, and at the points s, where the function p is continuous, but at least
one of the functions p, @, F' is discontinuous, the equality

—p(s+ O)uL(S +0)+p(s— O)UL(S —0) 4+ u(s)AQ(s) = AF(s)
holds.

4. Main results

Theorem 2. If a solution to Problem (3.7) exists, it is unique.

Proof. Suppose uj(z) and us(z) are solutions to Problem (3.7). Then
u(x) = ug(z) — ui(x) is a solution to Equation (2.1). Assume u(x) # 0.
Since w1 (z) and ug(x) are solutions to Problem (3.7), we have |u;(0)| <
lu2(0)| < m and

(p(0)u},(0) = y1u1(0) + f1)(c — u1(0)) <0, (4.1)

(p(0)us, (0) — Mu2(0) + f1)(c — uz(0)) <0 (4.2)
for all ¢ € [-m,m]. Putting in (4.1) ¢ = u2(0) and in (4.2) ¢ = u1(0), we
obtain

0
m7

(p(0)uy,(0) = y1u1(0) + f1)(u2(0) — u
(p(0)us,, (0) — y1u2(0) + f1)(u1(0) — u2(0)) <
Thus, we have

—_
—~

(=)
=
N
IN

(p(0)u,(0) — y1u(0))u(0) > 0. (4.3)
Since uj(x) and ug(x) are solutions to Problem (3.7), we have
p(D)uy, (1) +y2u(l) = 0. (4.4)

According to Lemma 1, the function u(x) does not have zero points on
the segment [0, []. Assume u(z) > 0 for all z € [0,!]. Thus, we have u(0) > 0
and according to (4.3), p(0)u},(0) —y1u(0) > 0, i.e., p(0)u;,(0) > y1u(0) > 0.
From Equation (2.1) we have p(x)u),(z) > 0. Hence, p(l)u;,(I) +~2u(l) > 0,
but this contradicts (4.4). Also the case u(z) < 0 is not possible. So
u(x) = 0. The theorem is proved. O
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Theorem 3. Let the functions p1(x) and p2(x) be solutions of Equation
(2.1) and satisfy the conditions

—p(0)¢1,(0) +71¢1(0) = 1, (1)@, (1) + y2¢1(1) = 0,
—p(0)3,,(0) +7192(0) = 0,p(1) 5, (1) + y292(1) = 1.

If ‘fol ©1d[F] + ¢1(0) f1 +cp2(0)f2‘ < m then the solution to Problem
(3.7) is
l

uw) = 25 [eadr @)+ 25 [ o@dE @]+ @i+ o) o
0

xT

(4.5)
If fol ©1d[F] 4+ ¢1(0) f1 + ©2(0) fo > m then the solution to Problem (3.7)
8
T l

) = P P [ a6+ 228 [ o1 (5l ()] + () -

21(0)  #2(0) ) #2(0) )
l
_pi(z) . o1 _ Pr@ei) fr
“ 0/ 1) (s)] - PO (16)

If fé ©1d[F] 4+ ©1(0) f1 + ¢2(0) fo < —m then the solution to Problem
(3.7) is

T l

)=~ X2 [on(o)dlr o)+ 28 [ o)l @) +ea(o) o
0

T

@) fe

©1(0) .7

/ o1(5)d[F ()]

0
Proof. Note that the problem

() (@) + () (0) + [ p1d]Q) = 0,

p(0)h,(0) + i (0) = 1,
Pl (1) + 7201 (1) = 0

(4.8)

has a unique solution. Let us represent ¢;(x) as ¢1(x) = ciuy(x) + coua(z),
where u;(z) and ua(z) are solutions of Equation (2.1), satisfying the initial
conditions u1(0) = 0, u},(0) = 1 and uz(0) = 1, uy,(0) = 0, respectively.
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Since the function Q(z) does not decrease on [0,[], Equation (2.1) is non-
oscillating on [0, /] and hence, the function u;(z) does not have any other
zero points, except x = 0. From the condition uj,(0) = 1 it follows

ui(x) > 0 for all z € (0,1]. Since (puy,)(z) = (puy,)(0) + Ofuld[Q], we

obtain p(z)uj,(z) > 0. In particular, p(l)u}, (1) > 0 and p(l)uy,(l) +
v2u1(l) > 0. Let us show that the function us(z) does not have zero points
on [0,{]. Assume that & € (0,1) is the zero point of the function ug(z)
closest to = 0. Since u3(0) > 0, we obtain uz(z) > 0 and p(x)usy, (z) > 0
for all z < . Thus, ua(z) is not decreasing function for z < £. Since £ is the
zero point of the function uy(z) and ug(§ — 0) > 0, we have ug(§ +0) < 0.
Hence, Aug(€) < 0. But

Auy(§)
p(€
()AMQ
Hence, uz(x) > 0 for all z € [0,] and p(z)ugy,(z) > 0. In particular, we
obtain

= p(§ — 0)uh, (£ — 0) + uz(§ — 0)A~Q(E) = 0.

p(D)ug, (1) +v2ua(l) > 0. (4.9)
If £ = [, we obtain ug(x) > 0, where x € [0,1), and we also have (4.9). We
denote by lyur = p(l)uy,, (1) +y2ur(l) > 0, liug = p(l)us,, (1) + y2uz(l) > 0.
Substituting the representation for ¢1(x) into the boundary conditions of
Problem (4.8), we obtain
co = b and ¢ = —hus
27 yiliur + p(0)lus YT vl + p(0)lyun”

Similarly, there is a solution to the problem

—(ph, ) () + (g, )(0) + Ofxmd[Q] o0,
—p(0)5,,(0) + 7192(0) = 0,
(D), (1) + v202(1) = 1.

According to Lemma 1 and Lemma 2, the functions ¢;(z) and y2(x) do
not have zero points on [0,[]. Let us show that ¢;(x) > 0 and @a(x) > 0
for all z € [0,1]. Assume 1 (x) < 0. Hence, p(I)¢,,(1) = —72¢1(1) > 0 and

(4.10)

l

et @ = ()0~ [ 1dl@) >0,
So —p(0)¢},(0)+71¢1(0) < 0, but this contradicts —p(0)¢,(0)+71¢01(0) =

1. Thus, ¢1(x) > 0. Similarly, @a(z) > 0.
Since p(0)¢h, (0) = 7192(0), we have p(0)¢h,(0) > 0 and

() () = () (0) + / 2[Q] > 0,
0
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i.e., the function ¢ increases on [0,(]. Similarly, the function ¢; decreases
on [0,1].

Denote by W (x) = ¢1(x)pa), () — p2(z)p1),(x) the Wronskian for ¢; ()
and @o(x) (see [11]). According to Lemma 2.1 in [11],

p(O)W(0) = p(HW (1) = const,

and we obtain ¢1 (1) = ¢2(0).
Assume ‘fol ©1d[F] + ¢1(0) f1 —i—cpz(O)fg‘ < m. Let us show that the
function (4.5) is the solution to Problem (3.7). We need to verify that u €

E. Suppose o < . Since the functions ¢;(x) and pa(x) are p-absolutely
continuous and

u(B) - ula) =
1 A l
-~ |-t 0/ p2d[F] + (¢2(8) — 2(@)) B/mm .
1 B
+ 2@ /((801(04) — 01(5))@2(s) + (pa(s) — @a(a))e1(s))d[F(s)]+

[0}

+ (p1(8) — p1(a)) f1 + (p2(B) — p2()) fa,

we obtain that the function u(x) is p-absolutely continuous.
Note that

uy(2) =
_ Pl / pals)dlF(s)+ 22 /l P1(5)d[F (5)]+¢1 , (2) fr 05, (2) fo
©2(0) 4 #2(0) @ " ! '

(4.11)

Thus, u;, € BV[0,1], and we have u € E.
Let us show that Function (4.5) is a solution to the equation in (3.7).
Note that

T . = s
O/ HREI= 2 0/ o1() 0/ e )dF(]IQs))+
x l = .
=0 f ) / 1O (O1IQ(s))+ fi 0/ o1 ()[Q(s))+ fo 0/ p2()[Qs))-
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Changing the integration limits in the first term, we obtain with (2.1) that

sol<o>/ o1(s) / 2(t)d[F(D]A[Q(s)] =
0 0

/ (porl) (@) — (pr’,) ()d[E (D))

0

Changing the integration limits in the second term, we obtain with (2.1)
that

x !
)/901 Q(s)] =
N 9021(0) / P1(1) (p()p2,, () — p(0) 2y, (0))d[F(¢)]
0 1 l
PN0) / 1) (p(2) 2, () — p(0) ), (0)d[F (1)].

T
T

Substituting the resulting representation for [ ud|[Q)] into the equation from

0
(3.7), and taking into account that p(t)W(t) = ¢2(0), we obtain the re-
quired equality. Note that

l
u(0) = /0 o1d[F] + 91(0) fi + 92(0) fo.

Thus, [u(0)] < m, and we have p(0)uy,(0) —y1u(0) + f1 = 0, p(Dw,(I) +
Y2u(l) = fa.

Assume fé ©1d[F]+ ¢1(0) f1 + p2(0) f2 > m. Note that Function (4.6) is
the solution to the equation from Problem (3.7), and p(1)u;, (1) +7y2u(l) = f2,
u(0) = m. Let us prove that p(0)u},(0) —y1u(0) + fi > 0. Using (4.11) and
the conditions on the functions 1 and @y, we obtain

f(f e1d[F] 4+ ©1(0) f1 + 2(0) f2 —m
©1(0)

The last case can be considered similarly. The theorem is proved. O

p(0)uy,(0) = v1u(0) + fr = > 0.

Corollary 1. Let the function F(z) be non-decreasing on the segment [0, 1]
and different from a constant, f1 > 0, fo > 0. Then the solution to Problem
(3.7) u(x) > 0 for all x € [0,1].
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Proof. 1f ’fé ©1d[F] + ¢1(0) f1 + ¢2(0)f2’ < m, then the solution to Prob-
lem (3.7) is

T l

u(w) = £ !m@ﬂﬁ@ﬂ+g%i/w@MW@HwM@h+m@M»

Since ¢1(x) > 0, pa(z) > 0, we obtain u(x) > 0 for all x € [0,].

If fol ©1d[F]+ v1(0) f1 + ©2(0) fo > m then the solution to Problem (3.7)
is

T l
_pi(@)m | pr() T
ue) = w@)+m®%/m 0/¢1 +eal@fa-
l
(z 1(x)p1(l) fo
0 O/<P1 ©1(0)

_ ai(@)m + £1(2) /(801(0)@(8) —¢1(5)92(0)) d[F(s)]+
0

)/l
)

p1(s)d[F(s)]+
01(x)p2(0

pa(2) — 1 (@)
p1(0) (0)

(p1(0)p2(x) — (0))f2

+

2(0
801(0)
Since the function @9 increases on [0,] and the function ¢; decreases
on [0,], we have v1(0)p2(z) — p1(x)p2(0) > 0 for all x € [0,!]. Hence,

u(x) > 0 for all x € [0,1]. The case fé P1d[F] 4+ ¢1(0) f1 + ¢2(0) fo < —m is
not possible, because fol 1d[F] + ¢1(0) f1 + 2(0) f2 > 0. O

Corollary 2. If m — 0, then the solution of Problem (3.7) tends to a
solution of the problem
{<mm@+mm@+IMMFwF@, .
0 :
u(0) =0, p(Duy,(l) +r2u(l) = fa

uniformly on [O’Z]u' If m — oo, then the solution of Problem (3.7) tends
to a solution of the problem

{<wmm+mmm+jMMFwF@,
() (0) + u(0) = fru p(Uy(1) +2u(l) = fo

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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uniformly on the set [0,1] ,. The set [0,1],, contains a pair of elements £ —0
and £+ 0 instead of any discontinuity point & of the function u(x) (see [9]).

Proof. Since m — 0, we have ]fol ©1d[F] + ©1(0) f1 + ©2(0) fo| > m. Let us
denote by

@) fe

!
p1(x) /
p1(s)d[F(s)]
¢1(0) ) ¢1(0)
Taking into account that ¢1 € E, we have |up(z) — z(x)| < ¢/m| — 0.
Thus, u;,(x) converges uniformly to z(z). Similar to Theorem 3, we can
verify that the function z(x) is a solution to Problem (4.12). The second

statement can be proved in a similar way. O
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