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Hayunasa crarnsa

(G-nepecranoBoYHbBIE noarpynnst B rpynmne PSL,(¢) u Hacien-
crBeHHO (G-TlepecTaHOBO4YHBbIe moArpynibl B rpymnmne PSU;(q)

A. A.Tampr'®, B. H. TrorsiHOB?

I Mucruryr maremaruxn um. C. JI. CoGosesa CO PAH, Hosocubupcek, Poccuiickas @e-
Jepanust

2 Tomensckuii dbuman Mexxysapogsoro yausepcurera « MATCO», Tomens, Benapycs
= galt84@gmail.com

Awnnorauus: [loustre X-nepecranoBounoii noarpymst, BBegentoe A. H. Ckuboii, 0606-
AeT KJIACCUYECKOe TOHSITHE MEePEeCTAHOBOYHOMN MOArpynnbl. MHOrne KJiacChl KOHEYHBIX
TPYII yIAJI0Ch OXapaKTEPU30BATh B TepMUHAX X -II€PECTAHOBOYHBIX HMOArPyHI. B wact-
voctu, B. o, A. H. Ckuba u K. II. IIlam momyunin xapakKTepus3aluio KJIACCOB pa3pe-
MIAMBIX, CBEPXPA3PEIINMbIX U HUJIBIIOTEHTHBIX I'pyni. TeM He MeHee JajbHellee mMpu-
MeHeHVe JJAHHOTO MTOHSITUsSI TIPU PEIIEHNN PA3INIHBIX 33129 TEOPUH IPYIIIT OCIOKHSIETCST
orcyrcrBreM nHdopmaluu o G-1epecTaHOBOYHbBIX U HACJIEICTBEHHO (G-11epECTAHOBOYHBIX
MOTrPYIIIAaX, HAXOIAIIUXCST B KOMITO3UITHOHHBIX pakTopax rpymi. B cBsasu ¢ stum B «Ko-
YPOBCKOIT TeTpaauy 1mox HoMepoM 17.112 6bLIH 3amICcaHbl CIeAyOmue IPO0IeMbl: KaKue
KOHeYHbIe HeabesleBbl MpoCThie Tpymmbl G 06/1a1a10T cOOCTBeHHOM (G-TIepecTaHOBOYHOMN
MO/ITPYIIIION U COBCTBEHHOI HacCeACTBEeHHO (G-TIepecTaHOBOYHOM moarpynnoii? B manHoi
paboTe TOTyYeH OTBET Ha MEPBBIM BOMPOC JJIsi MPOCTHIX JMHEHHBIX IPYIIT Pa3MEPHOCTH
J[Ba M Ha BTOPOI — JIJIsl IPOCTBIX YHUTAPHBIX IPYII PA3MEPHOCTH TPH.

KuroueBsbie cioBa: mpocrasl JIMHEWHas TPYIIa, IpocTasi YHUTapHasi rpymmna, G-mnepe-
CTAHOBOYHAS IIOJIMPYIINA, HACJIEICTBEHHO (G-IIepecTaHOBOYHAS [IO/IPYIIIa

Baaromapuoctu: VccienoBanust mepBoro aBTopa BBIMOJHEHBI B PAMKAX TOCYJIapPCTBEH-
voro 3ajanusa UM CO PAH, rema FWNF-2022-0002. VccienoBanusi BTOporo aBTopa
BBINIOJIHEHBI IPU (PUHAHCOBOI MOIIepKKe bestopycckoro pecnybankanckoro dhouaa GyH-
JaMEHTaJIbHBIX HCClefoBaHuil B paMkKax npoekra O23PH®-237.

Ccoinka aiasi qurupoBanms: Galt A. A.) Tyutyanov V. N. G-permutable Subgroups in
PSL2(q) and Hereditarily G-permutable Subgroups in PSU3(q) // Wssectna Upkyrckoro
rocynapcrsernroro yunsepcurera. Cepusi Maremaruka. 2025. T. 53. C. 156-164.
https://doi.org/10.26516/1997-7670.2025.53.156

1. Introduction

A subgroup A of a group G is permutable with a subgroup B if AB = BA.
If A is permutable with every subgroup of G then A is called a permutable [4]
or quasinormal [16] subgroup of G.

The study of permutable subgroups goes back to Ore’s work [16], where
he proved that each permutable subgroup of a finite group is subnormal.
Since then, his result has been generalized in different directions (see [11;
13;17)).

Given two subgroups A and B of a group G, a common situation is that
AB # BA but there exists an element z € GG such that AB* = B*A. A
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minimal example of this case is the symmetric group Ss with two different
subgroups of order 2 in S3. The examples of this situation were presented
in [8;9] and led to the following notions.

Definition. Let A, B be subgroups of a group G and () # X C G. Then
(1) A is called X -permutable with B if there exists an element z € X such
that AB* = B A;

(2) A is called hereditarily X -permutable with B if AB* = B* A for some
x € XN(A, B);

(3) A is called (hereditarily) X -permutable in G if A is (hereditarily) X-
permutable with all subgroups of G.

The solvable, supersolvable and nilpotent groups were characterized in
terms of X-permutable subgroups in [8]. In the Kourovka Notebook the
following question was posed.

Problem [14, 17.112] Which finite non-abelian simple groups G possess

(a) a non-trivial G-permutable subgroup?

(b) a non-trivial hereditarily G-permutable subgroup?

A.N. Skiba, V.N. Tyutyanov

There are examples of finite non-abelian simple groups both containing
and not containing proper G-permutable subgroups. However, the au-
thors do not know of any finite non-abelian simple group with a proper
hereditarily G-permutable subgroup.

Problem 1(b) was answered in the negative for the alternating groups,
sporadic groups, and exceptional groups of Lie type in [19], [18], and [6]
respectively. Based on these results, it was conjectured in [6] that a finite
group G is simple if and only if G has no proper hereditarily G-permutable
subgroups.

Problem 1(a) was solved for sporadic groups [5], Suzuki groups 2By(q)
[6], and alternating groups of sufficiently large degree [20)].

In this paper, we give an answer to Problem(a) for simple groups PSLa(q)
and to Problem(b) for simple groups PSU3(q).

Theorem 1. Let G = PSLy(q), where ¢ = p"™ > 4. Then G has no proper
G-permutable subgroups if and only if ¢ and (¢ — 1)/2 are odd. Moreover,
if F'is a proper G-permutable subgroup of G, then |F| = 2.

Theorem 2. Let G = PSU3(q), where g = p™ > 3. Then G has no proper
hereditarily G-permutable subgroups.

2. Notation and preliminary results

Our notation is standard and mainly follows [2]. In particular, by A: B,
A'B and A.B we denote a split, nonsplit and arbitrary extension of A by
B, respectively. Symmetric, alternating, and dihedral groups are denoted

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
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by S,, Ay, and Da,, respectively. A cyclic group of order n is denoted by n.
By Syl,(G) we denote the set of all Sylow p-subgroups of G. The greatest
common divisor of the integers ny,...,ny is denoted by (ni,...,ng).

In the sequel, we will need the following statements.

Lemma 1. [5, Lemma 1] Let T < G be a maximal subgroup of a group G
and G # TR for every subgroup R < G. If F' is a G-permutable subgroup
in G then F9 < T for some g € G. In particular, |F| divides |T)|.

Lemma 2. [5, Lemma 2] Let G be a finite group without factorizations
and F be a G-permutable subgroup in G. Then |F| divides (|Mu], ..., |Mgl|),
where M; are representatives of all classes of maximal subgroups of G.

Lemma 3. The following statements hold:
(a) (q—1,¢q+1) € {1,2};
b) (¢—1,¢* —q+1) =1,
(c) (q+1,¢*—q+1) €{1,3}
(d) if (3,q+1) =3 then ¢*> — q+ 1 = 31, where (3,1) = 1.

Proof. The statements (a)-(c) are trivial. For (d) we have ¢ + 1 = 3m and
q=3m—1. Then ¢> —q+1 = 3(3(m? —m) +1) = 3l, where (3,1) = 1. O

Lemma 4. Let G = A: F, where A is an elementary abelian 2-group and
3= F is a hereditarily G-permutable subgroup. Then G = A x F.

Proof. Induction by |A|. If |A| = 2, then it is clear that G = A x F. Let
|A] > 2. Consider a subgroup (a) C A of order 2. By our assumption there
exists g € G such that (a)9F = F(a)9. It is clear that (a)9F = (a) x F
and C4(F) # 1. Since A = [A, F] x C4(F) and |[A, F]| < |A|, then by
inductive hypothesis we have [[A, F]|,F|] =1and G= A x F. O

We notice the following property of G-permutable subgroups, that can
be checked straightforward.

Lemma 5. Let G be a group, H, T, K are subgroups of G, and K is
normal in G. If K C T and H is G-permutable with T, then HK/K is
G/ K -permutable with T/ K . In particular, if H is hereditarily G-permutable
in G, then HK/K is hereditarily G/ K -permutable in G/ K.

3. Proof of Theorem 1

The subgroup structure of PSLs(q), where ¢ = p™, was determined by
Dickson [3] and well known. Further we will use this information without
any additional references. Remind that

G| =

)q(q2—1)= ( qlg—1)(g+1).

(27q_1 2,(]_]-)
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(a) Let p = 2. The group G has a maximal subgroup M = Dy(,_1). This
subgroup is not a factor in any factorization of G [12]. By Lemma 1 we
have |F| divides 2(¢ — 1). The group G has a cyclic subgroup 7" = ¢ + 1.
Hence, there exists g € G such that F'TY is a subgroup. It is possible only
if |F| = 2. Since all involutions of G are conjugate, for every subgroup L
of even order there exists g € G such that F9 < L.

Let L < G and |L| be an odd number. Each subgroup of G of odd order
is contained in a cyclic subgroup S = ¢—1 or in a cyclic subgroup 7" = g+1.
Assume that L < S. Since S < S: FY = Dy,_y) for some g € G, there

exists the subgroup S97'F. Since S is cyclic, there exists the subgroup
L9 'F. The case L < T can be considered in a similar way. Thus, F is
G-permutable in G.

(b) Let p > 3. At first, consider the case ¢ > 11. A subgroup M = D(g—1) is
maximal in G. As in the case p = 2 we have |F| divides |M| and F < MY
for some g € G. A subgroup 7' = D(441) is maximal in G and by our

assumption there exists a subgroup FT" for some h € G. It is clear that
FT" # G, therefore |F| divides |T"| and F < T". Since (¢ —1,q+ 1) = 2,
we have |F| = 2.

The group G has a Borel subgroup B = U : H £ ¢ : (q;Ql), which is
maximal in G. If % is odd, then F'BY # BYIF for every g € G. Therefore,
F' is not G-permutable in G.

Let % be an even number. Without loss of generality, we can assume
that ' < B. Let L be an arbitrary subgroup of B of odd order. If ||
divides ¢ — 1, then it was shown that there exists a subgroup F'LY for some
geaqG.

Consider the case p divides |L|. At first, assume that |L| = p™. Since
B is the Frobenious group, for every subgroup (u) C U with |(u)| = p and
for every involution 7 € B we have the equality (u)” = (u). Indeed, if
(u)™ = (u1) # (u), then we can assume that «” = u; and v = uJ. It follows
from here that (uu1)” = " u] = uju = wuy. The latter is impossible in the
Frobenius group. Therefore, L™ = L or (1)L = L(7). Since all involutions
of G are conjugate, there exists a subgroup FLY for some g € G. Let
L = E:(t), where E is an elementary abelian group of order p™, m > 1
and (t) is a cyclic subgroup of odd order dividing ¢—1. There exists a cyclic
subgroup (t) C B such that (t) C (t) and |(t): (t)| = 2. Since () = (t) x (1)
for some involution 7 € B, it follows that (7) normalizes E and there exists
a subgroup F: (t) = L:(r). All involutions of G are conjugate, therefore
there exists a subgroup F'LY for some g € G. Hence, F' is G-permutable in
G.

Consider the remaining cases for odd ¢ < 11. The cases PSLy(5) = Aj
and PSL2(9) = Ag were mentioned in [5].

Assume that G = PSLy(7). The group PSLy(7) has a maximal subgroup
isomorphic to 7:3. Let ¥ C H =2 7:3. If ' = 7, then there exists
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a subgroup F'SY9, where S is a Sylow 2-subgroup of G and ¢ € G. This
situation is impossible in G. Let F' = 3. The group G has a cyclic subgroup
T = 4 and therefore G has a subgroup F7TY for some g € G. However, GG
has no such groups. Let F' = H. In this case there exists a subgroup FU9Y,
where U is a subgroup of G of order 2 and g € G. It is impossible because
F' is maximal in G.

Suppose that ' ¢ H. Since H is maximal in G, it follows that FHY = G.
Hence, F' has a Sylow 2-subgroup S of G. If F = S then there exists a
subgroup F'RY for some g € G, where R € Syl;(G), which is impossible.
Therefore, F' = S4. The group G has two conjugacy classes of subgroups
isomorphic to S4. Let T be a subgroup of GG isomorphic to S4 which is not
conjugate to F'. Then there exists a subgroup F7TY for some g € G. The
latter is impossible because F' and T" are maximal in G. Thus, G has no
proper G-permutable subgroups.

G = PSLy(11). The group PSL2(11) has a maximal subgroup isomorphic
to 11 : 5. Suppose that FF C H = 11:5. If F = 11, then there exists
a subgroup F'SY9 for some g € G and a Sylow 2-subgroup .S, which is
impossible. Let F' = 5. Then there exist T' € Syl;(G) and g € G such that
FTY is a subgroup of GG, which is impossible. Finally, let F' = H. In this
case, there exists a subgroup U of order 2 and g € G such that FUY is a
subgroup. Since F' is maximal, the latter is also impossible.

Assume that F' ¢ H. Since H is maximal, there exists g € G such that
FHY = G. Therefore, |F| is divisible by 12 and F' € {A4, A5,D12}. Let
F = As. The group G has two conjugacy classes of subgroups isomorphic
to As. Let T be a subgroup of GG isomorphic to As which is not conjugate
to F. Then there exists a subgroup FTY for some g € G. The latter is
impossible because F' and T are maximal in G.

If F'= Ay, then there exist R € Syl;;(G) and ¢g € G such that FRY is a
proper subgroup of G, which is impossible. The case F' 22 Dy is considered
as the previous one.

4. Proof of Theorem 2

The subgroup structure of PSUs(q) is well known and can be found
in [1, Table 8.5]. Further we will use this information without any additional
references.

Notice that

1
G| = mqg(ff - (@ +1) = GatD

At first, consider the cases G € {PSU3(3),PSU3(5)}.
Let G = PSU3(3). Then | PSU3(3)| = 2°-33.7 and its maximal subgroups
are isomorphic to one of the following groups: 3?2 : 8, PSLy(7), 4'Sy,

la—1)(a+1)*(¢ —q+1).



162 A. A. GALT, V. N. TYUTYANOV

42:S3 [2, p. 14]. The group PSU3(3) has only one factorization into maximal
subgroups: PSU3(3) = PSLy(7)(3172:8) [15, Table 3].
Since [4'S4| = 2° - 3, Lemma 1 implies that |F| divides 2° - 3. We have

| PSU3(3): PSLy(7)| = 2% - 3% and | PSU3(3): (311%:8)| = 22 - 7.

If F' is not contained in a subgroup isomorphic to PSLy(7), then |F| is
divisible by 32. It is in contradiction with |F| divides 2° - 3. Hence, F is
contained in a subgroup isomorphic to PSLs(7). However, PSL2(7) has no
proper hereditarily G-permutable subgroups [6, Proposition 1].

Let G = PSU3(5). Then |PSU3(5)| = 2 -32-5% .7 and its maximal
subgroups are isomorphic to one of the following groups: 5?2 1 8, Ar,
Ay 23, 2S5 [2, p. 34]. The group PSUs(5) has only one factorization into
maximal subgroups: PSU;(5) = A7(51t%:8) [15, Table 3].

Since |2S5| = 2% -3 -5, Lemma 1 implies that |F| divides 2 -3 -5. We
have |PSU3(5): A7| = 2- 5% and |PSU3(5): (5}7%:8) =2-32.7. If F is
not contained in a subgroup isomorphic to A7, then |F| is divisible by 52.
It is in contradiction with |F| divides 2% -3 - 5. If F' is not contained in a
subgroup isomorphic to 5}72:8, then |F| is divisible by 7. Since |F| divides
24.3.5, we get a contradiction.

Therefore, G = AB = A7(5}72:8) and F C A, F C B. It follows from

the equality 2-3%.5%.7 = % that |AN B| = 225 and |F| divides
22 .5. Choose T € Syl,(G) and g € G. The group G has no subgroups
FT9, which is a contradiction.

In the remaining cases G does not have factorizations [15, Tables 1, 3].

We will show that |F'| = 3. Since G has no factorizations, Lemma 2
implies that |F| divides (|Mi],...,|My|), where M; are representatives of
maximal subgroups of G. The group G has a maximal subgroup of order
m((f —q+1) - 3. Therefore, |F| is odd.

Let (3,¢ + 1) = 1. It follows from [1, Table 8.5] that G has maximal
subgroups Mj = (¢ +1)?:S3 and My = (¢? — ¢+ 1):3. It is clear that
(|Ma],|M2]) = 3. By Lemma 1 we have |F| = 3.

Let (3,¢+ 1) = 3. By Lemma 3(d) we have ¢> — ¢ + 1 = 3I, where
(3,1) = 1. The group G has a maximal subgroup M = %(q2 —q+1):3. It
is clear that | M| = 3m, where (3, m) = 1. The group G also has a maximal
subgroup, isomorphic to %EQHQ :(¢> —1). By Lemmas 1, 3 we obtain that
|F'| = 3.

Suppose that ¢ is odd. Since ¢ > 7, the group G has a maximal subgroup
M = A:T = PSLy(q):2. Since |F| = 3, we get F' C A, which contradicts
to [6, Proposition 1].

Thus, g is a power of 2. The group F' is contained in every maximal
subgroup of G. Consider a maximal subgroup

1

1
M:AxL%i(qul)><PSL2(q)gm

Gg 1) GU2(q).
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By [6, Proposition 1] F' is not contained in L = PSLy(¢q). Then |A] is
divisible by 3 and F' = (f) = (al), where a € A, l € L. If [ # 1, Lemma 5
implies that FFA/A is a proper M A/A-permutable subgroup in MA/A.
Since M A/A = PSLa(q), we have a contradiction with [6, Proposition 1].

Hence, f = a and Cp(f) = M. Notice that Cjp/(f) has a subgroup
isomorphic to PSLa(g). It follows from the structure of G that Cy/(f) is
not contained in Cyy, (f) for all representatives M; of maximal subgroups
other than M. Therefore, Cq(f) = M.

The group G has a maximal subgroup M; = ET, where F = E;“ and

T m(cf —1). The subgroup E of order ¢ has an elementary abelian

2-subgroup U of order ¢. By Lemma 4 we have U C Cyy, (f). Since E is
a non-abelian 2-group, there exists an element € E such that |z| = 4.
Without loss of generality, we can assume that there exists a subgroup
T = (z): F. According to [7, Chapter 5, Lemma 4.1] we get the equality
T = (x) x F. Hence, f centralizes a 2-subgroup of order greater than q.
However, the order of Sylow 2-subgroup in M is equal to ¢ and therefore
Chr, (f) is not contained in Cyr(f) = Ca(f). This contradiction completes
the proof of Theorem 2.

5. Conclusion

We obtain an answer to problem 17.112(a) from the Kourovka Note-
book for groups PSLa(¢q) and to problem 17.112(b) for groups PSUs(q).
In particular, we confirm the conjecture posed in [6] for unitary groups
PSU3(q).
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