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Научная статья

𝐺-перестановочные подгруппы в группе PSL2(𝑞) и наслед-
ственно 𝐺-перестановочные подгруппы в группе PSU3(𝑞)
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Аннотация: Понятие 𝑋-перестановочной подгруппы, введенное А. Н. Скибой, обоб-
щает классическое понятие перестановочной подгруппы. Многие классы конечных
групп удалось охарактеризовать в терминах 𝑋-перестановочных подгрупп. В част-
ности, В. Го, А. Н. Скиба и К. П. Шам получили характеризацию классов разре-
шимых, сверхразрешимых и нильпотентных групп. Тем не менее дальнейшее при-
менение данного понятия при решении различных задач теории групп осложняется
отсутствием информации о 𝐺-перестановочных и наследственно 𝐺-перестановочных
подгруппах, находящихся в композиционных факторах групп. В связи с этим в «Ко-
уровской тетради» под номером 17.112 были записаны следующие проблемы: какие
конечные неабелевы простые группы 𝐺 обладают собственной 𝐺-перестановочной
подгруппой и собственной наследственно 𝐺-перестановочной подгруппой? В данной
работе получен ответ на первый вопрос для простых линейных групп размерности
два и на второй — для простых унитарных групп размерности три.

Ключевые слова: простая линейная группа, простая унитарная группа, 𝐺-пере-
становочная подгруппа, наследственно 𝐺-перестановочная подгруппа
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1. Introduction

A subgroup 𝐴 of a group 𝐺 is permutable with a subgroup 𝐵 if 𝐴𝐵 = 𝐵𝐴.
If 𝐴 is permutable with every subgroup of𝐺 then 𝐴 is called a permutable [4]
or quasinormal [16] subgroup of 𝐺.

The study of permutable subgroups goes back to Ore’s work [16], where
he proved that each permutable subgroup of a finite group is subnormal.
Since then, his result has been generalized in different directions (see [11;
13;17]).

Given two subgroups 𝐴 and 𝐵 of a group 𝐺, a common situation is that
𝐴𝐵 ̸= 𝐵𝐴 but there exists an element 𝑥 ∈ 𝐺 such that 𝐴𝐵𝑥 = 𝐵𝑥𝐴. A
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minimal example of this case is the symmetric group S3 with two different
subgroups of order 2 in S3. The examples of this situation were presented
in [8; 9] and led to the following notions.

Definition. Let 𝐴,𝐵 be subgroups of a group 𝐺 and ∅ ≠ 𝑋 ⊆ 𝐺. Then
(1) 𝐴 is called 𝑋-permutable with 𝐵 if there exists an element 𝑥 ∈ 𝑋 such
that 𝐴𝐵𝑥 = 𝐵𝑥𝐴;
(2) 𝐴 is called hereditarily 𝑋-permutable with 𝐵 if 𝐴𝐵𝑥 = 𝐵𝑥𝐴 for some
𝑥 ∈ 𝑋 ∩ ⟨𝐴,𝐵⟩;
(3) 𝐴 is called (hereditarily) 𝑋-permutable in 𝐺 if 𝐴 is (hereditarily) 𝑋-
permutable with all subgroups of 𝐺.

The solvable, supersolvable and nilpotent groups were characterized in
terms of 𝑋-permutable subgroups in [8]. In the Kourovka Notebook the
following question was posed.

Problem [14, 17.112] Which finite non-abelian simple groups 𝐺 possess
(a) a non-trivial 𝐺-permutable subgroup?
(b) a non-trivial hereditarily 𝐺-permutable subgroup?

A.N. Skiba, V.N.Tyutyanov

There are examples of finite non-abelian simple groups both containing
and not containing proper 𝐺-permutable subgroups. However, the au-
thors do not know of any finite non-abelian simple group with a proper
hereditarily 𝐺-permutable subgroup.

Problem 1(b) was answered in the negative for the alternating groups,
sporadic groups, and exceptional groups of Lie type in [19], [18], and [6]
respectively. Based on these results, it was conjectured in [6] that a finite
group 𝐺 is simple if and only if 𝐺 has no proper hereditarily 𝐺-permutable
subgroups.

Problem 1(a) was solved for sporadic groups [5], Suzuki groups 2B2(𝑞)
[6], and alternating groups of sufficiently large degree [20].

In this paper, we give an answer to Problem(a) for simple groups PSL2(𝑞)
and to Problem(b) for simple groups PSU3(𝑞).

Theorem 1. Let 𝐺 ∼= PSL2(𝑞), where 𝑞 = 𝑝𝑛 > 4. Then 𝐺 has no proper
𝐺-permutable subgroups if and only if 𝑞 and (𝑞 − 1)/2 are odd. Moreover,
if 𝐹 is a proper 𝐺-permutable subgroup of 𝐺, then |𝐹 | = 2.

Theorem 2. Let 𝐺 ∼= PSU3(𝑞), where 𝑞 = 𝑝𝑛 > 3. Then 𝐺 has no proper
hereditarily 𝐺-permutable subgroups.

2. Notation and preliminary results

Our notation is standard and mainly follows [2]. In particular, by 𝐴 :𝐵,
𝐴˙𝐵 and 𝐴.𝐵 we denote a split, nonsplit and arbitrary extension of 𝐴 by
𝐵, respectively. Symmetric, alternating, and dihedral groups are denoted
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by S𝑛, A𝑛, and D2𝑛, respectively. A cyclic group of order 𝑛 is denoted by 𝑛.
By Syl𝑝(𝐺) we denote the set of all Sylow 𝑝-subgroups of 𝐺. The greatest
common divisor of the integers 𝑛1, . . . , 𝑛𝑘 is denoted by (𝑛1, . . . , 𝑛𝑘).

In the sequel, we will need the following statements.

Lemma 1. [5, Lemma 1] Let 𝑇 < 𝐺 be a maximal subgroup of a group 𝐺
and 𝐺 ̸= 𝑇𝑅 for every subgroup 𝑅 < 𝐺. If 𝐹 is a 𝐺-permutable subgroup
in 𝐺 then 𝐹 𝑔 6 𝑇 for some 𝑔 ∈ 𝐺. In particular, |𝐹 | divides |𝑇 |.

Lemma 2. [5, Lemma 2] Let 𝐺 be a finite group without factorizations
and 𝐹 be a 𝐺-permutable subgroup in 𝐺. Then |𝐹 | divides (|𝑀1|, . . . , |𝑀𝑘|),
where 𝑀𝑖 are representatives of all classes of maximal subgroups of 𝐺.

Lemma 3. The following statements hold:
(𝑎) (𝑞 − 1, 𝑞 + 1) ∈ {1, 2};
(𝑏) (𝑞 − 1, 𝑞2 − 𝑞 + 1) = 1;
(𝑐) (𝑞 + 1, 𝑞2 − 𝑞 + 1) ∈ {1, 3};
(𝑑) if (3, 𝑞 + 1) = 3 then 𝑞2 − 𝑞 + 1 = 3𝑙, where (3, 𝑙) = 1.

Proof. The statements (a)-(c) are trivial. For (d) we have 𝑞 + 1 = 3𝑚 and
𝑞 = 3𝑚− 1. Then 𝑞2− 𝑞+1 = 3(3(𝑚2−𝑚)+1) = 3𝑙, where (3, 𝑙) = 1.

Lemma 4. Let 𝐺 = 𝐴 :𝐹 , where 𝐴 is an elementary abelian 2-group and
3 ∼= 𝐹 is a hereditarily 𝐺-permutable subgroup. Then 𝐺 = 𝐴× 𝐹 .

Proof. Induction by |𝐴|. If |𝐴| = 2, then it is clear that 𝐺 = 𝐴 × 𝐹 . Let
|𝐴| > 2. Consider a subgroup ⟨𝑎⟩ ⊂ 𝐴 of order 2. By our assumption there
exists 𝑔 ∈ 𝐺 such that ⟨𝑎⟩𝑔𝐹 = 𝐹 ⟨𝑎⟩𝑔. It is clear that ⟨𝑎⟩𝑔𝐹 = ⟨𝑎⟩𝑔 × 𝐹
and 𝐶𝐴(𝐹 ) ̸= 1. Since 𝐴 = [𝐴,𝐹 ] × 𝐶𝐴(𝐹 ) and |[𝐴,𝐹 ]| < |𝐴|, then by
inductive hypothesis we have [[𝐴,𝐹 ], 𝐹 ] = 1 and 𝐺 = 𝐴× 𝐹 .

We notice the following property of 𝐺-permutable subgroups, that can
be checked straightforward.

Lemma 5. Let 𝐺 be a group, 𝐻, 𝑇 , 𝐾 are subgroups of 𝐺, and 𝐾 is
normal in 𝐺. If 𝐾 ⊆ 𝑇 and 𝐻 is 𝐺-permutable with 𝑇 , then 𝐻𝐾/𝐾 is
𝐺/𝐾-permutable with 𝑇/𝐾. In particular, if 𝐻 is hereditarily 𝐺-permutable
in 𝐺, then 𝐻𝐾/𝐾 is hereditarily 𝐺/𝐾-permutable in 𝐺/𝐾.

3. Proof of Theorem 1

The subgroup structure of PSL2(𝑞), where 𝑞 = 𝑝𝑛, was determined by
Dickson [3] and well known. Further we will use this information without
any additional references. Remind that

|𝐺| = 1

(2, 𝑞 − 1)
𝑞(𝑞2 − 1) =

1

(2, 𝑞 − 1)
𝑞(𝑞 − 1)(𝑞 + 1).
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(a) Let 𝑝 = 2. The group 𝐺 has a maximal subgroup 𝑀 ∼= D2(𝑞−1). This
subgroup is not a factor in any factorization of 𝐺 [12]. By Lemma 1 we
have |𝐹 | divides 2(𝑞 − 1). The group 𝐺 has a cyclic subgroup 𝑇 ∼= 𝑞 + 1.
Hence, there exists 𝑔 ∈ 𝐺 such that 𝐹𝑇 𝑔 is a subgroup. It is possible only
if |𝐹 | = 2. Since all involutions of 𝐺 are conjugate, for every subgroup 𝐿
of even order there exists 𝑔 ∈ 𝐺 such that 𝐹 𝑔 6 𝐿.

Let 𝐿 < 𝐺 and |𝐿| be an odd number. Each subgroup of 𝐺 of odd order
is contained in a cyclic subgroup 𝑆 ∼= 𝑞−1 or in a cyclic subgroup 𝑇 ∼= 𝑞+1.
Assume that 𝐿 6 𝑆. Since 𝑆 < 𝑆 : 𝐹 𝑔 ∼= D2(𝑞−1) for some 𝑔 ∈ 𝐺, there

exists the subgroup 𝑆𝑔
−1
𝐹 . Since 𝑆 is cyclic, there exists the subgroup

𝐿𝑔
−1
𝐹 . The case 𝐿 6 𝑇 can be considered in a similar way. Thus, 𝐹 is

𝐺-permutable in 𝐺.
(b) Let 𝑝 > 3. At first, consider the case 𝑞 > 11. A subgroup𝑀 ∼= D(𝑞−1) is
maximal in 𝐺. As in the case 𝑝 = 2 we have |𝐹 | divides |𝑀 | and 𝐹 6 𝑀𝑔

for some 𝑔 ∈ 𝐺. A subgroup 𝑇 ∼= D(𝑞+1) is maximal in 𝐺 and by our

assumption there exists a subgroup 𝐹𝑇 ℎ for some ℎ ∈ 𝐺. It is clear that
𝐹𝑇 ℎ ̸= 𝐺, therefore |𝐹 | divides |𝑇 ℎ| and 𝐹 6 𝑇 ℎ. Since (𝑞 − 1, 𝑞 + 1) = 2,
we have |𝐹 | = 2.

The group 𝐺 has a Borel subgroup 𝐵 = 𝑈 : 𝐻 ∼= 𝑞 : ( 𝑞−1
2 ), which is

maximal in 𝐺. If 𝑞−1
2 is odd, then 𝐹𝐵𝑔 ̸= 𝐵𝑔𝐹 for every 𝑔 ∈ 𝐺. Therefore,

𝐹 is not 𝐺-permutable in 𝐺.
Let 𝑞−1

2 be an even number. Without loss of generality, we can assume
that 𝐹 < 𝐵. Let 𝐿 be an arbitrary subgroup of 𝐵 of odd order. If |𝐿|
divides 𝑞− 1, then it was shown that there exists a subgroup 𝐹𝐿𝑔 for some
𝑔 ∈ 𝐺.

Consider the case 𝑝 divides |𝐿|. At first, assume that |𝐿| = 𝑝𝑚. Since
𝐵 is the Frobenious group, for every subgroup ⟨𝑢⟩ ⊆ 𝑈 with |⟨𝑢⟩| = 𝑝 and
for every involution 𝜏 ∈ 𝐵 we have the equality ⟨𝑢⟩𝜏 = ⟨𝑢⟩. Indeed, if
⟨𝑢⟩𝜏 = ⟨𝑢1⟩ ≠ ⟨𝑢⟩, then we can assume that 𝑢𝜏 = 𝑢1 and 𝑢 = 𝑢𝜏1 . It follows
from here that (𝑢𝑢1)

𝜏 = 𝑢𝜏𝑢𝜏1 = 𝑢1𝑢 = 𝑢𝑢1. The latter is impossible in the
Frobenius group. Therefore, 𝐿𝜏 = 𝐿 or ⟨𝜏⟩𝐿 = 𝐿⟨𝜏⟩. Since all involutions
of 𝐺 are conjugate, there exists a subgroup 𝐹𝐿𝑔 for some 𝑔 ∈ 𝐺. Let
𝐿 = 𝐸 : ⟨𝑡⟩, where 𝐸 is an elementary abelian group of order 𝑝𝑚, 𝑚 > 1
and ⟨𝑡⟩ is a cyclic subgroup of odd order dividing 𝑞−1. There exists a cyclic
subgroup ⟨̃︀𝑡⟩ ⊆ 𝐵 such that ⟨𝑡⟩ ⊂ ⟨̃︀𝑡⟩ and |⟨̃︀𝑡⟩ :⟨𝑡⟩| = 2. Since ⟨̃︀𝑡⟩ = ⟨𝑡⟩×⟨𝜏⟩
for some involution 𝜏 ∈ 𝐵, it follows that ⟨𝜏⟩ normalizes 𝐸 and there exists
a subgroup 𝐸 : ⟨̃︀𝑡⟩ = 𝐿 : ⟨𝜏⟩. All involutions of 𝐺 are conjugate, therefore
there exists a subgroup 𝐹𝐿𝑔 for some 𝑔 ∈ 𝐺. Hence, 𝐹 is 𝐺-permutable in
𝐺.

Consider the remaining cases for odd 𝑞 6 11. The cases PSL2(5) ∼= A5

and PSL2(9) ∼= A6 were mentioned in [5].
Assume that 𝐺 ∼= PSL2(7). The group PSL2(7) has a maximal subgroup

isomorphic to 7 : 3. Let 𝐹 ⊆ 𝐻 ∼= 7 : 3. If 𝐹 ∼= 7, then there exists
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a subgroup 𝐹𝑆𝑔, where 𝑆 is a Sylow 2-subgroup of 𝐺 and 𝑔 ∈ 𝐺. This
situation is impossible in 𝐺. Let 𝐹 ∼= 3. The group 𝐺 has a cyclic subgroup
𝑇 ∼= 4 and therefore 𝐺 has a subgroup 𝐹𝑇 𝑔 for some 𝑔 ∈ 𝐺. However, 𝐺
has no such groups. Let 𝐹 = 𝐻. In this case there exists a subgroup 𝐹𝑈𝑔,
where 𝑈 is a subgroup of 𝐺 of order 2 and 𝑔 ∈ 𝐺. It is impossible because
𝐹 is maximal in 𝐺.

Suppose that 𝐹 * 𝐻. Since𝐻 is maximal in𝐺, it follows that 𝐹𝐻𝑔 = 𝐺.
Hence, 𝐹 has a Sylow 2-subgroup 𝑆 of 𝐺. If 𝐹 = 𝑆 then there exists a
subgroup 𝐹𝑅𝑔 for some 𝑔 ∈ 𝐺, where 𝑅 ∈ Syl7(𝐺), which is impossible.
Therefore, 𝐹 ∼= S4. The group 𝐺 has two conjugacy classes of subgroups
isomorphic to S4. Let 𝑇 be a subgroup of 𝐺 isomorphic to S4 which is not
conjugate to 𝐹 . Then there exists a subgroup 𝐹𝑇 𝑔 for some 𝑔 ∈ 𝐺. The
latter is impossible because 𝐹 and 𝑇 are maximal in 𝐺. Thus, 𝐺 has no
proper 𝐺-permutable subgroups.
𝐺 ∼= PSL2(11). The group PSL2(11) has a maximal subgroup isomorphic

to 11 : 5. Suppose that 𝐹 ⊆ 𝐻 ∼= 11 : 5. If 𝐹 ∼= 11, then there exists
a subgroup 𝐹𝑆𝑔 for some 𝑔 ∈ 𝐺 and a Sylow 2-subgroup 𝑆, which is
impossible. Let 𝐹 ∼= 5. Then there exist 𝑇 ∈ Syl3(𝐺) and 𝑔 ∈ 𝐺 such that
𝐹𝑇 𝑔 is a subgroup of 𝐺, which is impossible. Finally, let 𝐹 = 𝐻. In this
case, there exists a subgroup 𝑈 of order 2 and 𝑔 ∈ 𝐺 such that 𝐹𝑈𝑔 is a
subgroup. Since 𝐹 is maximal, the latter is also impossible.

Assume that 𝐹 * 𝐻. Since 𝐻 is maximal, there exists 𝑔 ∈ 𝐺 such that
𝐹𝐻𝑔 = 𝐺. Therefore, |𝐹 | is divisible by 12 and 𝐹 ∈ {A4,A5,D12}. Let
𝐹 ∼= A5. The group 𝐺 has two conjugacy classes of subgroups isomorphic
to A5. Let 𝑇 be a subgroup of 𝐺 isomorphic to A5 which is not conjugate
to 𝐹 . Then there exists a subgroup 𝐹𝑇 𝑔 for some 𝑔 ∈ 𝐺. The latter is
impossible because 𝐹 and 𝑇 are maximal in 𝐺.

If 𝐹 ∼= A4, then there exist 𝑅 ∈ Syl11(𝐺) and 𝑔 ∈ 𝐺 such that 𝐹𝑅𝑔 is a
proper subgroup of 𝐺, which is impossible. The case 𝐹 ∼= D12 is considered
as the previous one.

4. Proof of Theorem 2

The subgroup structure of PSU3(𝑞) is well known and can be found
in [1, Table 8.5]. Further we will use this information without any additional
references.

Notice that

|𝐺| = 1

(3, 𝑞 + 1)
𝑞3(𝑞2 − 1)(𝑞3 + 1) =

1

(3, 𝑞 + 1)
𝑞3(𝑞 − 1)(𝑞 + 1)2(𝑞2 − 𝑞 + 1).

At first, consider the cases 𝐺 ∈ {PSU3(3),PSU3(5)}.
Let𝐺 ∼= PSU3(3). Then |PSU3(3)| = 25·33·7 and its maximal subgroups

are isomorphic to one of the following groups: 31+2
+ : 8, PSL2(7), 4· S4,
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42 :S3 [2, p. 14]. The group PSU3(3) has only one factorization into maximal
subgroups: PSU3(3) = PSL2(7)(3

1+2
+ :8) [15, Table 3].

Since |4· S4 | = 25 · 3, Lemma 1 implies that |𝐹 | divides 25 · 3. We have

|PSU3(3) :PSL2(7)| = 22 · 32 and |PSU3(3) : (3
1+2
+ :8)| = 22 · 7.

If 𝐹 is not contained in a subgroup isomorphic to PSL2(7), then |𝐹 | is
divisible by 32. It is in contradiction with |𝐹 | divides 25 · 3. Hence, 𝐹 is
contained in a subgroup isomorphic to PSL2(7). However, PSL2(7) has no
proper hereditarily 𝐺-permutable subgroups [6, Proposition 1].

Let 𝐺 ∼= PSU3(5). Then |PSU3(5)| = 24 · 32 · 53 · 7 and its maximal
subgroups are isomorphic to one of the following groups: 51+2

+ : 8, A7,
A·

6 23, 2 S5 [2, p. 34]. The group PSU3(5) has only one factorization into
maximal subgroups: PSU3(5) = A7(5

1+2
+ :8) [15, Table 3].

Since |2 S5 | = 24 · 3 · 5, Lemma 1 implies that |𝐹 | divides 24 · 3 · 5. We
have |PSU3(5) : A7 | = 2 · 52 and |PSU3(5) : (5

1+2
+ : 8)| = 2 · 32 · 7. If 𝐹 is

not contained in a subgroup isomorphic to A7, then |𝐹 | is divisible by 52.
It is in contradiction with |𝐹 | divides 24 · 3 · 5. If 𝐹 is not contained in a
subgroup isomorphic to 51+2

+ :8, then |𝐹 | is divisible by 7. Since |𝐹 | divides
24 · 3 · 5, we get a contradiction.

Therefore, 𝐺 = 𝐴𝐵 ∼= A7(5
1+2
+ : 8) and 𝐹 ⊆ 𝐴, 𝐹 ⊆ 𝐵. It follows from

the equality 24 ·32 ·53 ·7 = 3·4·5·6·7·53·23
|𝐴∩𝐵| that |𝐴∩𝐵| = 22 ·5 and |𝐹 | divides

22 · 5. Choose 𝑇 ∈ Syl7(𝐺) and 𝑔 ∈ 𝐺. The group 𝐺 has no subgroups
𝐹𝑇 𝑔, which is a contradiction.

In the remaining cases 𝐺 does not have factorizations [15, Tables 1, 3].
We will show that |𝐹 | = 3. Since 𝐺 has no factorizations, Lemma 2

implies that |𝐹 | divides (|𝑀1|, . . . , |𝑀𝑘|), where 𝑀𝑖 are representatives of
maximal subgroups of 𝐺. The group 𝐺 has a maximal subgroup of order

1
(3,𝑞+1)(𝑞

2 − 𝑞 + 1) · 3. Therefore, |𝐹 | is odd.
Let (3, 𝑞 + 1) = 1. It follows from [1, Table 8.5] that 𝐺 has maximal

subgroups 𝑀1
∼= (𝑞 + 1)2 : S3 and 𝑀2

∼= (𝑞2 − 𝑞 + 1) : 3. It is clear that
(|𝑀1|, |𝑀2|) = 3. By Lemma 1 we have |𝐹 | = 3.

Let (3, 𝑞 + 1) = 3. By Lemma 3(d) we have 𝑞2 − 𝑞 + 1 = 3𝑙, where
(3, 𝑙) = 1. The group 𝐺 has a maximal subgroup 𝑀 ∼= 1

3(𝑞
2 − 𝑞 + 1) :3. It

is clear that |𝑀 | = 3𝑚, where (3,𝑚) = 1. The group 𝐺 also has a maximal
subgroup, isomorphic to 1

3𝐸𝑞
1+2 : (𝑞2 − 1). By Lemmas 1, 3 we obtain that

|𝐹 | = 3.
Suppose that 𝑞 is odd. Since 𝑞 > 7, the group 𝐺 has a maximal subgroup

𝑀 = 𝐴 :𝑇 ∼= PSL2(𝑞) : 2. Since |𝐹 | = 3, we get 𝐹 ⊂ 𝐴, which contradicts
to [6, Proposition 1].

Thus, 𝑞 is a power of 2. The group 𝐹 is contained in every maximal
subgroup of 𝐺. Consider a maximal subgroup

𝑀 = 𝐴× 𝐿 ∼=
1

(3, 𝑞 + 1)
(𝑞 + 1)× PSL2(𝑞) ∼=

1

(3, 𝑞 + 1)
GU2(𝑞).
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By [6, Proposition 1] 𝐹 is not contained in 𝐿 ∼= PSL2(𝑞). Then |𝐴| is
divisible by 3 and 𝐹 = ⟨𝑓⟩ = ⟨𝑎𝑙⟩, where 𝑎 ∈ 𝐴, 𝑙 ∈ 𝐿. If 𝑙 ̸= 1, Lemma 5
implies that 𝐹𝐴/𝐴 is a proper 𝑀𝐴/𝐴-permutable subgroup in 𝑀𝐴/𝐴.
Since 𝑀𝐴/𝐴 ∼= PSL2(𝑞), we have a contradiction with [6, Proposition 1].

Hence, 𝑓 = 𝑎 and 𝐶𝑀 (𝑓) = 𝑀 . Notice that 𝐶𝑀 (𝑓) has a subgroup
isomorphic to PSL2(𝑞). It follows from the structure of 𝐺 that 𝐶𝑀 (𝑓) is
not contained in 𝐶𝑀𝑖(𝑓) for all representatives 𝑀𝑖 of maximal subgroups
other than 𝑀 . Therefore, 𝐶𝐺(𝑓) =𝑀 .

The group 𝐺 has a maximal subgroup 𝑀1 = 𝐸𝑇 , where 𝐸 ∼= 𝐸1+2
𝑞 and

𝑇 ∼= 1
(3,𝑞+1)(𝑞

2− 1). The subgroup 𝐸 of order 𝑞3 has an elementary abelian

2-subgroup 𝑈 of order 𝑞. By Lemma 4 we have 𝑈 ⊆ 𝐶𝑀1(𝑓). Since 𝐸 is
a non-abelian 2-group, there exists an element 𝑥 ∈ 𝐸 such that |𝑥| = 4.
Without loss of generality, we can assume that there exists a subgroup
𝑇 = ⟨𝑥⟩ :𝐹 . According to [7, Chapter 5, Lemma 4.1] we get the equality
𝑇 = ⟨𝑥⟩ × 𝐹 . Hence, 𝑓 centralizes a 2-subgroup of order greater than 𝑞.
However, the order of Sylow 2-subgroup in 𝑀 is equal to 𝑞 and therefore
𝐶𝑀1(𝑓) is not contained in 𝐶𝑀 (𝑓) = 𝐶𝐺(𝑓). This contradiction completes
the proof of Theorem 2.

5. Conclusion

We obtain an answer to problem 17.112(a) from the Kourovka Note-
book for groups PSL2(𝑞) and to problem 17.112(b) for groups PSU3(𝑞).
In particular, we confirm the conjecture posed in [6] for unitary groups
PSU3(𝑞).
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