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Научная статья

Эволюционные алгоритмы для задачи составления
расписаний выполнения заказов клиентов
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Аннотация: Исследуется задача составления расписаний выполнения заказов кли-
ентов. Заказ клиента состоит из нескольких продуктов. Рассматривается случай с
одной машиной и случай с несколькими машинами. В первом случае, когда машина
переключается с одного продукта на другой, возникает переналадка. Во втором
случае используются специализированные машины для производства продуктов без
переналадок. Изучается критерий суммарного времени завершения. Предложены
генетический алгоритм с оптимизированными операторами и гибридный алгоритм
итеративного локального поиска в сочетании с подходом «Иди с победителями».
Результаты экспериментального исследования анализируются на серии тестовых
примеров и сравниваются с современными метаэвристиками.
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алгоритм
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1. Introduction

We consider the problem of servicing 𝑛 customers. Orders of customers
include subsets of 𝑚 different products. Denote by 𝐼 the set of customers
and by 𝐽 the set of products. The duration of producing product 𝑗 in
the order of customer 𝑖 is denoted by 𝑝𝑖𝑗 ≥ 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 . We take
criterion of the minimization of the sum of the order completion times.
Let 𝐶𝑖 be the completion time of producing the last product of customer
𝑖 ∈ 𝐼. Then the criterion is equal to the sum

∑︀𝑛
𝑖=1𝐶𝑖. The criterion

has real-world interpretation as the total cost of a resource occupied by
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all orders independently during servicing. Such problems arise in chemical
production, pharmacy and service systems [5; 18;20].

We consider two variants of the problem: when one production unit
(machine) is used for manufacturing all products, and when each product
is manufactured exactly by a dedicated machine [11;14].

In the case of one machine, when the production is switched from prod-
uct 𝑗 to product 𝑗′, a setup time 𝑠𝑗𝑗′ ≥ 0 is required, 𝑗, 𝑗′ ∈ 𝐽, 𝑗 ̸= 𝑗′. When
a product 𝑗 is the first one on the machine, then the initial setup 𝑠′𝑗 , 𝑗 ∈ 𝐽
must be applied. We define an operation as a pair of customer and product
(𝑖, 𝑗), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 . Operations should be scheduled without preemptions.
A set of feasible solutions consists of all permutations of operations. The
problem with one machine is NP-hard even in the case when setup times
are sequence independent, as proven in [7].

In the case of 𝑚 dedicated machines products are also manufactured
without preemptions. Each machine produces a unique product. A machine
can service at most one customer at a time and the products in an order
can be processed by multiple machines simultaneously. Setup times are
absent. Solutions are encoded by permutations of orders. This variant of
the problem is NP-hard even in the case of two machines [15].

The metaheuristics (ant colony optimization, tabu search, simulated
annealing, genetic algorithm) were experimentally tested for the single-
machine problem in [11]. The mixed integer programming model (MIP) and
complexity analysis were provided in [7]. The customer order scheduling
problem with a job-based processing approach (the same products from
different customer orders form a product lot and are processed successively
without being intermingled with other products) has been investigated
in [5]. Mixed integer programming models and a tabu search algorithm
were proposed and experimentally tested. The fuzzy statement of the
problem and approaches for solving them were given in [14]. Heuristics
for the statement with scenario-dependent processing times were proposed
in [20].

The version of the problem with dedicated machines was investigated
in [3; 10; 17–19]. The computational complexity was analyzed, as well as
constructive approximation algorithms, metaheuristics and matheuristics
were proposed. The Earliest Completion Time heuristic and heuristic based
on a look-ahead mechanism are often used as fast constructive heuristic. A
tabu search algorithm and a greedy search algorithm with problem-specific
neighborhoods were proposed [10]. A learning-based two-stage optimization
method consisting of a learned dispatching rule in the first stage and an
adaptive local search in the second stage was provided in [18]. Note that
this approach has complex structure, where initial solutions are constructed
by the learned dispatching rule and improved by an adaptive local search.

The total weighted completion time criterion is analyzed in [17; 19]. A
mixed integer programming model, a hybrid nested partitions algorithm,
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and an approximation algorithm based on the linear programming relax-
ation with approximation guarantees were obtained. A more complex
real-world problem with multiple stages, loading constraints, production
recipes and processing rates is considered in [3]. A hybrid algorithm com-
bining a decomposition approach, a genetic algorithm and a constructive
MILP-based heuristic were developed and experimentally tested.

Genetic algorithms and evolutionary strategies were successfully applied
for scheduling problems on permutations [2–4; 23]. In this paper we pro-
pose new evolutionary algorithms for the considered problem, carry out
a computational experiment and analyze the convergence of algorithms.
Our preliminary results have been presented on the conference MOTOR-
2024 [22], where we propose the basic version of the genetic algorithm with
optimized operators. Here we provide an improved version of the genetic
algorithm with optimized crossover and propose “Go with the winners”
algorithm using GPU based techniques. Experimental evaluation shows
that our algorithms demonstrate competitive results.

2. Genetic Algorithm with Optimal Recombination

Our genetic algorithm (GA) uses the steady state framework (see Algo-
rithm 1). Here, a solution of the problem is generated by natural evolution
techniques which are inheritance, mutation, selection and crossover [12;21].

Solutions are encoded by permutations of operations (or customers) 𝜋 =
(𝜋1, . . . , 𝜋𝑘), were 𝜋𝑖 is the 𝑖-th operation (customer) in the sequence and
𝑘 is the number of operations in the single-machine case or the number of
customers in the multi-machine case. We construct the initial population
by the method which aggregates two approaches, where some percent of
population is generated by the random technique and the rest one is formed
by the arbitrary insertion method [21]. We use the 𝑠-tournament selection,
which randomly chooses 𝑠 solutions from the current population and selects
the best one among them. The population size 𝑁 remains constant during
the execution of the algorithm.

We consider shift mutation [13] and the classic permutation-based cross-
over operator known as Cycle Crossover (CX). A cycle is a subset of
operations so that each operation always occurs paired with another ele-
ment of the same cycle when two parents are aligned [22]. Cycle Crossover
consists in picking some cycles from one parent and the remaining cycles
from the alternate parent. All the operations in the offspring occupy the
same positions in one of the two parents. We also tested other mutation op-
erations, in particular swap and (1,1)-EAs, and other crossover techniques,
in particular EX, OX, 1X, but the selected ones demonstrated the leading
results on the considered problem instances.

Известия Иркутского государственного университета.
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Algorithm 1 Genetic Algorithm 𝐺𝐴

1: Generate tentative solutions to form the initial population. Keep record
as the best solution of the initial population w.r.t. the objective
function.

2: Repeat until the stopping criterion is met.

2.1 Select two solutions from the current population.

2.2 Apply a mutation to parent solutions with probability 𝑃mut.

2.3 Build offspring by a recombination operator.

2.4 Replace the worst solution of the population by the offspring.
Update the record.

3: Return the best found solution.

We also apply the optimized crossover operators at Step 2.3, where the
optimal recombination problem (ORP) is solved. The definition of the
ORP is the following. Let we have two parent permutations 𝜋1 and 𝜋2. It
is required to find a permutation 𝜋′ such that:

1) 𝜋′𝑖 = 𝜋1𝑖 or 𝜋′𝑖 = 𝜋2𝑖 for all 𝑖 ∈ {1, . . . , 𝑘};

2) 𝜋′ has the optimum value of objective function among all permutations
that satisfy condition 1).

The ORP is solved in the crossover operator by enumeration of com-
binations of cycle assignments in the deterministic version of the Cycle
Crossover. For this purpose we construct the special bipartite graph 𝐺,
where vertices correspond to positions and operations (orders), and there
is an edge between parts if and only if the corresponding operation (or-
der) occupies the position in one of the parents. Perfect matchings of
the graph 𝐺 are enumerated by the algorithm from [9], feasible solutions
corresponding to them are constructed and the best one is selected as a
result of the ORP. We use a restricted version of the operator, in which the
maximum number of considered cycles is bounded.

Note that we firstly apply mutation to the selected parents and secondly
cross them (we try give new property for solutions and then use crossover
to recombine these properties). The previous research [6;23] confirms that
such technique may be used successfully for optimized crossover operators.

Now we analyze the convergence to the optimum of the proposed algo-
rithm and estimate the expected number of iterations. We will see that the
expected number of iterations is polynomial for the multi-machine problem
in the case of constant number of orders, selecting parameters 𝑁 and 1

𝑃mut

as polynomial functions of the number of products and machines.
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Theorem 1. The expected number of iterations of GA is bounded by

𝑂
(︁
𝑘4𝑘−3𝑁2𝑠𝑘−2𝑠

𝑃 4𝑘−4
mut

)︁
, where 𝑘 is the length of permutations using for encoding

of solutions.

Proof. The optimal solution of the problem can always be represented by
some permutation 𝜋*. Now we consider an arbitrary permutation 𝜋 ∈
Π0, where Π0 is the set of solutions that can be formed by the operator
of constructing solutions of the initial population. Let us estimate the
expected number of iterations to obtain 𝜋*, provided that 𝜋 is the first
solution in the initial population. Denote by 𝑑* := 𝑑(𝜋, 𝜋*) the distance
between 𝜋 and 𝜋*, i.e. the number of positions with different values in 𝜋
and 𝜋*.

Since 0 < 𝑃mut 6 1, it is possible to go from 𝜋 to 𝜋* in no more than
(𝑑* − 1) iterations only by means of mutation, where the distance between
the selected permutation and the optimal one is decreased at each iteration.

In order to move from 𝜋 to 𝜋* only by mutation, it is sufficient that
two identical permutations are selected at each iteration of this transition
and the same solution is obtained after independently applying of mutation
operators to them. A crossover operator is applied with probability one,
and taking two identical permutations as input, the operator returns the
same one as a result.

We will consider such transition from 𝜋 to 𝜋*, that at least one value
is placed in the same position as in 𝜋* by the mutation at each iteration
and the obtained permutation is selected at the next iteration. The prob-
ability that the required permutation will be selected as a parent by the
𝑠-tournament selection is no less than 1

𝑁𝑠 . And the probability that one of
the elements will be in the same position as in the optimal permutation after
applying swap or insert mutation has lower bound 1

𝑘2
. So, the probability

of the required transition in at most (𝑑* − 1) iterations is no less than(︃(︂
1

𝑁 𝑠
𝑃 2
mut

1

𝑘2

)︂2
)︃𝑑*−1

.

Thus, the expected number of iterations for the transition from 𝜋 to 𝜋*

does not exceed (see, e.g., Lemma 1 (ii) in [8]):

𝑇 := (𝑑* − 1)

(︂
𝑁2𝑠𝑘4

𝑃 4
mut

)︂𝑑*−1

.

Let us denote by Θ the random variable equal to the number of it-
erations until the optimal permutation 𝜋* is obtained, by 𝜋1,0 the first
tentative solution of the initial population, and by 𝐸[· ] the mathematical
expectation. Then, according to the formula of the total probability for
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conditional mathematical expectations, we have:

𝐸[Θ] =
∑︁
𝜋∈Π0

𝐸[Θ|𝜋1,0 = 𝜋] · 𝑃{𝜋1,0 = 𝜋} 6 𝑇
∑︁
𝜋∈Π0

𝑃{𝜋1,0 = 𝜋} = 𝑇.

The statement follows from inequality 𝑑* ≤ 𝑘 and the property that
after the optimal permutation is reached, such permutation will be kept in
each subsequent population.

Using results of the proved Theorem 1 and Theorem 2.1 from [16], we
conclude that

Corollary 1. GA algorithm almost surely converges to an optimum as the
number of iterations tends to infinity.

3. GPU-accelerated Hybrid “Go with the winners” algorithm

In addition to the genetic algorithm, an alternative hybrid metaheuristic
approach was implemented. It is based on a parallel computing on large
number of cores that is provided by Graphics Processing Units (GPU).
The considered algorithm is a combination of a randomized Iterative Lo-
cal Search (ILS) and a “Go with the winners” (GwW, [1]) population
replacement scheme. This approach was proposed earlier in [2] for solving
permutational scheduling problems and it showed a superior performance
in comparison to the parallel GPU-accelerated genetic algorithm.

The randomized ILS used in this study is a hillclimbing algorithm that
can be also regarded as (1+𝜆)-Evolutionary Algorithm with a shaking pro-
cedure. Initially, a parent solution is generated randomly, then at each
iteration, a mutation is applied to it 𝜆 times independently in parallel. The
best permutation among the parent and all the 𝜆 offspring are chosen to
be the parent at the next iteration. We also introduce a probability 𝑝 of
moving to the new permutation even when it is worse than the current one.
This is required to prove the convergence of the algorithm. The formal
scheme of the obtained hillclimbing procedure is as follows.

Algorithm 2 The modified (1+𝜆)-EA

1: Build initial solution 𝜋.
2: while stopping criterion is not satisfied do
3: Build 𝜆 offspring {𝜎1, . . . , 𝜎𝜆} applying mutation to 𝜋.
4: Let 𝜎 be the best offspring among {𝜎1, . . . , 𝜎𝜆}.
5: With probability 𝑝 replace 𝜋 by 𝜎 and

with probability 1− 𝑝 replace 𝜋 by the best of 𝜋 and 𝜎.
6: end while
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In addition to the parallel evaluation of 𝜆 offspring, a higher level of par-
allelism can be introduced by simultaneous execution of several independent
hillclimbing processes (denote their number by 𝑁). Such an approach suits
well for the GPU architecture that requires to construct a computing grid,
in which there must be a set of blocks each one executing a certain number
of parallel threads. The best performance is achieved when the number of
blocks and threads are relatively large. In our case, the hillcliming processes
are represented as blocks, and in each block, the 𝜆 offspring are processed
by the threads in this block. This scheme is very simple to implement on a
GPU and the degree of parallelism can be easily adjusted for the particular
graphics processor by tuning the values of 𝑁 and 𝜆. The formal description
of the hybrid algorithm is given in Algorithm 3.

Algorithm 3 Hybrid ILS-GwW algorithm

1: Build initial solutions 𝜋1, . . . , 𝜋𝑁 .
2: while stopping criterion is not satisfied do
3: Run 𝑁 parallel (1+𝜆)-EA processes starting from 𝜋1, . . . , 𝜋𝑁 with

the limit on the number of iterations.
4: Among the current 𝜋1, . . . , 𝜋𝑁 choose the 𝑅 best solutions

(𝜋1, ..., 𝜋𝑅) and the 𝑅 worst solutions (𝜋1, ..., 𝜋𝑅).
5: Replace (𝜋1, ..., 𝜋𝑅) by the copies of (𝜋1, ..., 𝜋𝑅).
6: If the shaking condition holds, apply shaking procedure.
7: end while

The shaking condition and the procedure itself can be implemented dif-
ferently depending on the particular problem. A simple and rather useful
way is to apply it at every 𝑡-th iteration. The shaking may consist in
application of the mutation operator ℎ times to each solution of the current
population. The parameters 𝑡 and ℎ are adjusted experimentally.

Under the described settings and considering only the swap mutation
the following bound can be obtained.

Theorem 2. Let 𝑆 be the maximal possible number of shaking applica-
tions in any (𝑘 − 1) consecutive iterations of the algorithm. Then the
expected number of iterations of Hybrid ILS - GwW algorithm is bounded

by 𝑂
(︁
𝑘2𝜆𝑁(𝑘−1)+2ℎ𝑆+1

𝑝𝑁(𝑘−1)

)︁
.

Proof. The proof is similar to the one of Theorem 1. First, consider the
algorithm without shaking. Recall that 𝑑* is the distance from the initial
solution to the optimum. We observe that the probability of finding the
optimum starting from an arbitrary permutation in all the parallel processes

in at most 𝑑* − 1 iterations can be bounded below by
(︀ 𝑝
𝑘2𝜆

)︀𝑁(𝑑*−1)
. Since

we suppose that this event happens in all the processes, the GwW step
does not spoil it.

Известия Иркутского государственного университета.
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The probability that the shaking procedure does not increase the dis-
tance to the optimum can be bounded below by 1/𝑘2ℎ. This may correspond
to the case where all the performed mutations of the shaking are “void”, i.e.
they consist in swapping the same element with itself. Finally, since there
can be not more than 𝑆 shaking executions within any 𝑑* − 1 iterations,
we may bound the probability of finding the optimum by(︁ 𝑝

𝑘2𝜆

)︁𝑁(𝑑*−1) 1

𝑘2ℎ𝑆
.

Observing that 𝑑* ≤ 𝑘 by the same reasoning as in the proof of Theorem 1
we obtain the required statement.

Corollary 2. The hybrid ILS-GwW algorithm almost surely converges to
an optimum as the number of iterations tends to infinity.

4. Experimental Results

The proposed genetic algorithms were implemented in Java program-
ming language version 11.0.6 and were run on the server with AMD EPYC
7502 CPU. The Hybrid ILS-GwW was coded in C++ using CUDA for the
GPU parts and was executed on Tesla V100 GPU.

In the GAs we set the population size 𝑁 equal to 100, the mutation
probability 𝑃mut = 0.1, and the tournament size 𝑠 = 5 based on the
preliminary experiment and previous research of such type of genetic algo-
rithms (see, e.g., [4; 23]). The values were selected from the following sets:
𝑁 ∈ {50, 100, 200, 300}, 𝑠 ∈ {2, 5, 7, 10, 12}, 𝑃mut ∈ {0.05, 0.1, 0.15, 0.2}.

During the preliminary testing, the following values of the tunable pa-
rameters of the ILS-GwW were defined. The population size is 𝑁 = 256,
the number of offspring of each solution is 𝜆 = 32, the probability 𝑝 of
Step 5 of Algorithm 2 is set to 0.01. The size of the population part for
replacement at the GwW Step is equal to ten percent of the population
size: 𝑅 = 25. Each run of (1+𝜆)-EA was given 𝐾 = 100 iterations. In
each application of the mutation, one of the shift and swap mutations is
chosen with probability 0.5. In the shaking step, the swap mutation is
applied five times to each solution of the current population. The shaking
is performed each 200-th iteration of the main loop (step 2 of Algorithm 3).
We observed that under these settings on the equipment indicated above the
GPU version works about 100 times faster than the equivalent sequential
(one-thread) code running on the CPU.

The test instances for the multi-machine problem with up to 200 cus-
tomers and 20 machines are taken from [18]. Unfortunately, for the single-
machine problem, the benchmark used in the earlier studies are not avail-
able, so we have generated new random large scale instances with up to
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50 customers and 100 orders. Recall that in the single-machine case, the
permutation length is equal to 𝑛𝑚, so such instances are larger and harder
than the ones of the multi-machine problem, where this length is 𝑛.

Before the main experiments for evaluating the algorithms, we ran the
ILS-GwWwith the large time limit (for the largest instances it was given six
hours for the single-machine problem and two hours for the multi-machine
problem) in attempt to obtain the near optimal solutions and improve the
previously known records where possible. For each instance, the algorithm
was executed five times and the best solution was returned. As a result, in
case of multi-machine problem, for the 138 out of 180 considered instances
the new records were found. Note that the solutions were improved for all
the large instances with 100 and more customers.

The generated test data and the updated records can be found at
https://github.com/pborisovsky/customer-order-scheduling.

In the next experiment, we compare the GAs and the ILS-GwW on the
test instances of different sizes in the terms of the solutions quality obtained
within the similar time limits. Since C++ usually provides faster machine
code than Java, all the running times for the ILS-GwW were divided by 1.5.
In what follows, GA-GR denotes the 𝐺𝐴 with the optimized crossover
operator based on the cycle enumeration, where the upper bound on the
possible number of cycles is given, and all position-values from the non-
selected cycles are assigned in accordance to the parent values; GA-RN is
the 𝐺𝐴 with the randomized Cycle Crossover.

For the single-machine problem, the results are presented in Table 1.
The representation of the results are similar to the one of the earlier studies
from the literature. Each line corresponds to solving a set of four random
instances of a given size, which is indicated in a form 𝑛-𝑚. For each
instance, the algorithm was run five times with the given time limit and
the best solution was returned as a result. Then the relative deviation from
the best known solution is computed on the average of all instances of the
same dimension: 𝑟 = 𝑎𝑣𝑔((𝑂𝑏𝑗(𝑎𝑙𝑔)−𝑂𝑏𝑗*)/𝑂𝑏𝑗*)×100%, where 𝑂𝑏𝑗(𝑎𝑙𝑔)
and 𝑂𝑏𝑗* are the current result of the algorithm and the best known result
accordingly. The columns represent the time limits and the output of the
corresponding algorithm. As we can see, the best results are obtained by
the GA-GR and the parallel ILS-GwW. GA-GR may be recommended for
solving medium-size instances. On the largest instances, the ILS-GwW
shows the most convincing advantage over the others. As expected, the
CPU version of the ILS-GwW is rather poor. Note that a parallel CPU
implementation could be also possible, but in order to compete with the
GPU version it should be executed on a CPU with about 100 cores, which
is not usual for actual processors.

The results for the multi-machine problem are given in Table 2. We
compare our algorithms with the Learned Dispatching Rule and Adaptive
Search (LDR-AS) heuristic [18], which combines a Genetic Programming
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Approach with the Local Search. It was shown that this approach outper-
forms some other earlier proposed heuristics such as the Particle Swarm
Optimization and the hybrid GA with the Variable Neighborhood Search.
The best results of LDR-AS are taken from [18], and we use their shortest
running times as the time limits for our algorithms. As before, the relative
deviations from the best-known records are shown. Note that the values
presented in Table 2 are larger than the ones of [18], because we use better
near-optimal solutions as estimations of 𝑂𝑏𝑗*. Each row represents the
average results over 30 test instances of the same dimension. The asterisk
indicates that results of the algorithm statistically significantly differ from
the others at level less than 0.05 (Wilcoxon test is used).

Table 1.

Table 1. Comparison of the algorithms for single-machine problem

Series GA ILS-GwW

𝑛-𝑚 Time GA-GR GA-RN Time CPU GPU

20-20 1200 2.2530 5.355 800 6.0774 1.2315

20-50 1800 0.7844 3.5733 1200 7.5514 1.516

20-100 3600 2.1624 6.2971 2400 25.8 0.8039

50-20 1800 1.8652 4.3787 1200 7.6236 1.2252

50-50 5400 6.9498 12.9446 3600 25.4435 0.6407

50-100 7200 20.48 27.4265 4800 88.8814 2.2458

We may see that the GA-GR and the LDR-AS provide similar results,
and the best ones are obtained by the ILS-GwW. It should be noticed that
out algorithms are rather generic and can be used for two variants of the
considered problem and potentially for other permutational optimization
problems, while the LDR-AS is specially designed for one particular case.

Table 2.

Table 2. Comparison of the algorithms for multi-machine problem

Series LDR-AS [18] and GAs ILS-GwW

𝑛-𝑚 Time LDR-AS GA-GR GA-RN Time CPU GPU

50-10 9 0.002 0.0317 0.7117 6 0.1253 0.0002*

50-20 17 0.005 0.0049 0.7989 12 0.189 0.0006*

100-10 46 0.0385 0.0385 1.1307 30 0.3007 0.01787*

100-20 91 0.0307 0.0307 1.4994 60 0.456 0.016*

200-10 162 0.0232 0.0232 1.2774 108 0.4374 0.0223

200-20 324 0.0688 0.2393 1.5967 216 0.723 0.0491*

An additional experiment was carried out to illustrate the performance of
particular parts of the Hybrid ILS-GwW. Four multi-machine instances of
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different dimension were solved by the algorithm with the following settings:
the Hybrid ILS-GwW as described in Algorithm 3; the Hybrid algorithm
without shaking procedure (called by LS-GwW); the algorithm with the
shaking procedure, but without the GwW step (i.e. the parallel random
ILS); the algorithm with neither the shaking procedure nor the GwW step
(the parallel random LS).

For each case, the instances were solved 20 times with the time limits
defined as before, and the average relative deviations are presented at the
diagram in Fig. 1. The labels below the X-axis show the names of the
instances and their dimensions. One can see that the shaking procedure
has more influence than the GwW step if they are considered separately, but
their combination provides the drastic improvement of the performance.

Figure 1. Performance of the parallel heuristic with different settings

We also compared our 𝐺𝐴 with the ant colony optimization method,
tabu search, simulated annealing and genetic algorithm proposed in [11] for
the problem with one machine. We used instances from [11] with 𝑛, 𝑚 from
5 to 20. The experimental results shown that GA-GR demonstrates bet-
ter results over all compared algorithms, and the difference is statistically
significant (see details in [22]).

So, the proposed evolutionary algorithms on medium size instances yield
results competitive to those of other well-known algorithms for the cus-
tomer order scheduling and confirms that the provided techniques may be
used successfully in evolutionary algorithms. The GPU-accelerated hybrid
algorithm shows leading results on large scale instances.

5. Conclusions

In this paper, two variants of the Customer Scheduling Problem are
solved with the proposed evolutionary heuristics: the Genetic Algorithm
with the Optimized Crossover and the parallel hybrid Local Search com-
bined with the “Go with the Winners” scheme. Both the approaches are
quite generic, they exploit little knowledge about the features of the prob-
lem and perform similarly or better than the previously known heuristics

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 53. С. 3–17



EVOLUTIONARY ALGORITHMS FOR CUSTOMER ORDER SCHEDULING 15

specially designed for particular problems. The parallel hybrid heuristic
is essentially based on a high-performance computing and provides the
best results if implemented on a graphics processor. It allowed to improve
the previously known records for a large number of test instances. Note
that this algorithm is rather simple to implement and adjust for a GPU
architecture.
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