
Серия «Математика»
2025. Т. 52. С. 137—152

Онлайн-доступ к журналу:
http://mathizv.isu.ru

И З В Е С Т И Я

Иркутского
государственного

университета

Research article

УДК 518.517

MSC 68T05, 68P15

DOI https://doi.org/10.26516/1997-7670.2025.52.137

Adaptive Cost Model for Query Optimization

NikitaK.Vasilenko1B, AlexanderV.Demin1B, Denis
K. Ponomaryov1B

1 Ershov Institute of Informatics Systems SB RAS, Novosibirsk, Russian Federation
B vasilenko.nikita.research@gmail.com
B alexandredemin@yandex.ru
B ponom@iis.nsk.su

Abstract. The principal component of conventional database query optimizers is a cost
model that is used to estimate expected performance of query plans. The accuracy of the
cost model has direct impact on the optimality of execution plans selected by the opti-
mizer and thus, on the resulting query latency. Several common parameters of cost models
in modern DBMS are related to the performance of CPU and I/O and are typically set by
a database administrator upon system tuning. However these performance characteristics
are not stable and therefore, a single point estimation may not suffice for all DB load
regimes. In this paper, we propose an Adaptive Cost Model (ACM) which dynamically
optimizes CPU- and I/O-related plan cost parameters at DB runtime. By continuously
monitoring query execution statistics and the state of DB buffer cache ACM adjusts cost
parameters without the need for manual intervention from a database administrator.
This allows for responding to changes in the workload and system performance ensuring
more optimal query execution plans. We describe the main ideas in the implementation
of ACM and report on a preliminary experimental evaluation showing 20% end-to-end
latency improvement on TPC-H benchmark.

Keywords: query optimization, cost model, online machine learning

For citation: VasilenkoN.K, DeminA.V, PonomaryovD.K Adaptive Cost Model for
Query Optimization. The Bulletin of Irkutsk State University. Series Mathematics, 2025,
vol. 52, pp. 137–152.
https://doi.org/10.26516/1997-7670.2025.52.137

Научная статья

Адаптивная стоимостная модель для оптимизации

запросов



138 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

Н.К.Василенко1B, А. В.Демин1B, Д. К. Пономарев1B

1 Институт систем информатики им. А. П. Ершова СО РАН, Новосибирск, Россий-

ская Федерация

B vasilenko.nikita.research@gmail.com

B alexandredemin@yandex.ru

B ponom@iis.nsk.su

Аннотация. Рассматривается важная компонента традиционных оптимизаторов
запросов в базах данных — стоимостная модель, которая используется для оценки
ожидаемой эффективности планов исполнения запросов. Точность модели непо-
средственно влияет на оптимальность планов, выбираемых оптимизатором, и, как
следствие, на итоговую скорость исполнения запросов. Несколько параметров стои-
мостной модели в современных СУБД, как правило, связаны с производительностью
ЦПУ и скоростью ввода/вывода хранения данных и обычно задаются администра-
тором СУБД при настройке системы. Однако эти параметры производительности
нестабильны во времени, и потому оценка в отдельной точке может не быть опти-
мальной для всех режимов работы БД. Предлагаеся адаптивная стоимостная модель
(ACM), которая позволяет динамически оптимизировать параметры стоимости пла-
нов, связанные с ЦПУ и хранилищем, во время работы БД. Модель непрерывно
анализирует статистику исполнения запросов и состояние буферного кэша СУБД
и динамически выставляет значение соответствующих параметров стоимости пла-
нов без необходимости ручного вмешательства со стороны администратора. Это
позволяет адаптироваться к изменениям в нагрузке на систему и выбирать более
оптимальные планы для запросов. Описываются основные идеи в реализации ACM
и приводятся результаты предварительных экспериментов, показывающих 20

Ключевые слова: оптимизация запросов, стоимостная модель, онлайн машинное
обучение

Ссылка для цитирования: VasilenkoN.K, Demin A.V, Ponomaryov D.K Adaptive

Cost Model for Query Optimization // Известия Иркутского государственного универ-

ситета. Серия Математика. 2025. Т. 52. C. 137–152.

https://doi.org/10.26516/1997-7670.2025.52.137

1. Introduction

The convenience of (declarative) query languages goes along with the com-
plexity of finding an optimal execution plan for a query. It is well-known
that for a SQL query there may exist an exponential number of execu-
tion plans (in the size of the query) and the problem to find one with a
minimal latency is NP-complete. In the search for near-optimal execution
plans, a typical query optimizer relies on a cost model which provides an
estimation of the expected plan latency in terms of an abstract cost. In
conventional implementations, a cost model is essentially a collection of
formulas providing integer costs to the physical implementation of query
operators and formulas to aggregate these costs into the resulting cost of a

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 139

plan. The accuracy of the cost model has direct impact on the optimality
of plans selected by the optimizer and therefore, on the end-to-end query
latency and overall DB performance. A higher cost would typically mean
a higher execution time for a plan, but in practice these values are often
decorrelated, non-optimal plans are selected by the optimizer and some
queries appear to be slow.

A typical cost-based query optimizer relies on three main components:
cardinality estimation, CPU and I/O cost estimation, and plan enumer-
ation. Cardinality estimation means predicting the number of records in
the output of a particular plan node. Numerous techniques to improve the
accuracy of cardinality estimation have been proposed in the literature in-
cluding [2–4;6]. The component related to CPU and I/O cost estimation is
also important for accurate estimation of query plan performance, because
performance of a plan (when seen as a program) is obviously affected by
CPU and I/O load at the execution time [7;14]. Finally, plan enumeration
is to find an execution plan with the lowest cost. By employing all these
components, the task of an optimizer is to find the most efficient execution
plan for a query, thereby improving the overall DB performance. However
this approach has a significant drawback: in modern DBs cost estimation
may be wrong by several orders of magnitude (e.g., when estimating
cost of complex queries with multiple joins [14]).

Recently, an idea of learning-based optimizer leveraging prior query
execution experience has been proposed [1; 10; 16]. This approach tries
to mitigate the issues of conventional cost-based optimizers by employing
learning from complex prior examples. The downside of this method is that
it is well-suited for static workloads, but in the case of data drift, changes in
query patterns, or data schema updates the optimizer has to be retrained.

In [8], the authors showed that to reduce cost estimation errors, one has
to improve both, cardinality estimation accuracy and cost model parameter
tuning. In this work, we argue that dynamically tuning CPU- and I/O-
related cost model parameters alone can improve optimizer decisions in the
search for an optimal plan.

Typically, a database administrator configures these cost model param-
eters manually. Finding the most suitable values for these parameters
requires a deep understanding of the database structure, workload char-
acteristics, and system resources. Inaccurate parameter setting can lead
to suboptimal execution plans and degraded performance. Furthermore,
cost parameters may need to be periodically adjusted to adapt to changes
in workload, data access patterns, and system performance. This makes
selecting optimal cost parameters complicated.

Another approach is to execute queries from a specifically designed cal-
ibration workload and collect execution statistics on it [14]. Then cost
model parameters can be adjusted based on these statistics. However
in this approach one has to periodically execute a synthetic calibration



140 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

workload in addition to the real DB workload and even in this case the
obtained parameter estimations may be inadequate for the real workload
due differences with calibration queries.

In this work, we propose an adaptive cost model (ACM), a novel
approach for optimizing CPU- and I/O-related plan cost parameters which
implements lightweight ML models to analyze statistics on executed queries
and makes prediction on the parameter values for next queries. The solution
consists of two components: a model for estimating cost parameters related
to CPU performance and a model for estimating disk-related parameters.
The approach implements online fine-tuning which allows for dynamically
adapting to workload changes. It avoids the need of using calibration
queries, thereby reducing the overall load on database and also on DBAs by
improving query plans and reducing the need to manually tune a number
of configuration parameters.

We begin our exposition in Section 2 with a brief summary on related
work and the main ingredients of cost models in conventional database
optimizers. Then we describe in Section 3 the main ideas and design
solutions in Adaptive Cost Model: the CPU- and disk-related components.
Finally, in 4 we provide results of a preliminary experimental evaluation on
TPC-H benchmark and in Section 5 we conclude.

2. Background

2.1. Related Work

In the literature, there is a number of approaches to configuring grand uni-
fied configuration parameters (GUCs) of databases, including those related
to cost model. The most general methods rely on search techniques like
random search, simulated annealing, and Reinforcement Learning [5; 9; 12;
13; 15], to name a few. In these approaches, cost model parameters are
treated as general database configuration parameters and it is suggested to
optimize them with search techniques just like any other DB parameters.

In [12], the authors proposed to use a language model combined with
Reinforcement Learning techniques to identify DB configuration parame-
ters from manuals and posts in open DBA discussion groups. In [15], a
deep deterministic policy gradient method was proposed to find optimal
configurations in high-dimensional continuous spaces with Reinforcement
Learning.

In [9], the authors propose to consider three levels of tuning with Re-
inforcement Learning. At the query level, GUCs are tuned separately for
each query prior to execution by representing a query as a vector and
recommending a configuration. At the workload level, the configuration is
tuned for the entire workload by combining all query vectors into one and

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 141

generating a recommended configuration. At the cluster level, queries are
separated into clusters and configurations are tuned for each cluster.

In [5], the authors identify the most important GUCs for tuning by first
using Latin Hypercube Sampling (LHS) to sample configurations for all
GUCs. They then collect statistics for these samples by running bench-
marks for each configuration. Then by using a random forest, they rank
GUCs to determine the most significant ones.

In the approach presented in [13], the authors propose to begin with
selecting the closest matching configuration for a database. During an
initial observation period, they characterize the workload and hardware
by using internal runtime metrics and by running queries. Factor analysis
and K-means clustering are used to reduce the value of the metric and the
result is used for system profiling. The most important knobs are selected
by using Lasso and ranking. Tuning proceeds incrementally, increasing
the number of knobs during the process. Initially, they find the closest
similar workload from the repository, and then they determine the best
configuration by using a Gaussian Process.

Another class of approaches is based on the idea of using calibration
queries and formulas to adjust cost parameters. For example, in [14], based
on the observed latency of calibration queries, the values of the parameters
are derived analytically from a set of formulas.

We can summarize all these approaches as follows:
− Search-based approaches:

• provide more accurate parameter values
• are time-costly

− Calibration-based approaches:

• allow for quickly estimating parameter values
• face the problem of constructing a calibration query for each param-
eter

• may provide relatively high errors preventing accurate calculation of
optimal values

Both approaches share the common disadvantage: they require a large
number of trials to assess the impact of a set of parameter values on
workload execution time.

2.2. Cost Model in DB Optimizers

Conventional open-source cost-based databases with bottom-up optimiza-
tion (e.g., relational DBs including PostgreSQL, MySQL, openGauss, etc.)
employ a cost model which includes the following five key parameters:

1. cpu tuple cost, the CPU cost to process a tuple,

2. cpu index tuple cost, the CPU cost to process a tuple via index access,



142 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

3. cpu operator cost, the CPU cost to perform an operation such as
hashing or aggregation,

4. seq page cost, the I/O cost to sequentially access a page,

5. random page cost, the I/O cost to randomly access a page.

The cost of the query execution plan is calculated as the sum of the
costs of the operators in the plan. The cost of operators is calculated as
a linear combination of basic parameters (cost-relevant GUC parameters
being numeric constants) and variable values such as the number of data
blocks read from disk, etc.

In general, the cost of a SQL operator is computed as the sum of the
products of cost model parameters and estimated cardinalities:

Costoperator = ct · nt + co · no + cs · ns + ci · ni + cr · nr, (2.1)

where:
− ct - cost of processing a tuple,
− nt - number of tuples processed,
− co - cost of performing an operation,
− no - number of operations performed,
− cs - cost of a sequential disk page fetching,
− ns - number of disk pages fetched sequentially,
− ci - cost of processing an index entry,
− ni - number of index entries processed,
− cr - cost of fetching a disk page randomly,
− nr - number of disk pages fetched randomly.
For example, the cost of sequential access to a table (SeqScan operator)

without filter can be defined as:

CostSeqScan = ct · nt + cs · ns
and the cost of aggregation operator is:

CostAgg = ct · nt
The optimal choice of values for the parameters above depends on the

hardware configuration, workload type, as well as on the ‘warm-up degree’
of the database, i.e., the amount of data which resides in the buffer cache.

In the above mentioned list of parameters, seq page cost is typically
set to the time required to process one page in sequential scan. The rest
of the parameters are set as fractions of this base value. For instance,
cpu tuple cost set to 0.01 means that processing 100 rows requires the same
time as reading one page sequentially from disk. Similarly, random pa-
ge cost equal to 4 means that the time required for random access to a
page exceeds the sequential access time by a factor of 4.

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 143

Thus, to increase the cost of sequential page scan, one can decrease the
values of the other four parameters, and vice versa, to increase the cost of all
operations except seq page cost, it suffices to decrease only seq page cost.
Therefore, to adjust disk and CPU-related configuration of a cost model it
suffices to change only four parameters. W.l.o.g. we assume in this paper
that seq page cost is 1.

The primary objective of cost model parameter tuning is to increase the
correlation between the cost and the execution time of a node, which allows
for estimating the execution time of plans more accurately. Thus, the task
looks like:

corr(cost, time) → 1 (2.2)

where
− cost is a cost for a plan operator,
− time is a real execution time for this operator.

3. Design of ACM

ACM implements computation of the cost parameters associated with disk
I/O operations (I/O cost) and cost parameters related to the processor uti-
lization (CPU cost) in two different ways. Having two different approaches
is natural, because CPU parameters do not depend on the current state of
the database, while disk-related parameters can change depending on the
state of the database buffer cache, which varies nearly after every query.

ACM computes optimal I/O cost parameters before every query by as-
sessing the volume of requested data already present in the database buffer
cache and by estimating the amount of data that needs to be retrieved
from the disk. The model employs historical data on the execution of past
queries to generate accurate predictions.

To calculate optimal CPU-related cost parameters, the model is con-
tinuously monitoring query operator execution statistics and computes pa-
rameters to align the estimated execution time (determined at the planning
stage) as close as possible to the actual execution time (obtained post query
execution). This way ACM continuously adjusts the cost model parameters
to provide more accurate estimates of plan execution costs, which guides
the database optimizer towards more optimal query plans.

In the following, we provide a detailed description of the two components
of ACM: the disk-related model and CPU-related model.

3.1. Disk-Relevant Parameters

Heuristic-based formulas of the conventional cost model take into account
the difference between the cost of sequential and random page access by
differences in cost parameters. However, this approach does not allow for



144 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

estimating the number of requested pages that are already in the buffer
cache and thus, do not have to be fetched from disk. Since the optimizer
is not aware of how much of the requested data already resides in the
memory, it makes estimation errors. ACM improves the accuracy of cost
estimation by dynamically adjusting the cost of random disk access based
on the information about the availability of data in the buffer.

When a query is executed, ACM collects statistics on the usage of data
from the buffer (buffer hit) and disk (read). This relationship is important
because it gives an idea of how much of the requested data was in the
database memory. First of all, the proposed model separately calculates
the random page cost parameter for each table, as one table might reside
entirely in the buffer cache, while another table might be absent. Having
the entire table in the buffer cache allows for setting random page cost
equal to seq page cost, suggesting to the optimizer that the read time
will be the same. Thus, ACM implements a dynamic computation of
random page cost relative to tables. As already mentioned, an exact esti-
mate for random page cost depends on the information on how much of
the requested data will be taken from the buffer and how much will be read
from disk. This information can be expressed by the ’hit ratio’ defined as:

R(q) =
hit

hit+ read
(3.1)

where
− q is a query,
− hit is the number of pages that was requested by the query and read

from the memory,
− read is the number of pages that was requested by the query and read

from the disk.
Typically, this information becomes available after query execution, but

ACM tries to estimate this ratio by using statistics on the execution of
previous queries. For each table, the model collects hit ratio statistics:

R(qt), R(qt−1), R(qt−2), ... (3.2)

where
− R(qt) is the hit ratio of query qt executed at time t.
To estimate the hit ratio R(qt+1) for a new query qt+1 one can use various

models to predict the hit ratio based on previous values R(qt), R(qt−1),
... . For example, one can use various time series prediction models like
ARIMA, exponential smoothing, etc.. But in ACM we employ a simpler
solution which analyses only the previous hit ratio and a degradation factor.
In fact, in our experiments, this simpler model showed results as good as
more complex ones:

R(qt+1) = R(qt) ·D, (3.3)

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 145

where D is a degradation factor defined as:

D =
1 + (qc− tc)

1 + (qc− tc)2
(3.4)

and
− qc is a query counter (current total number of accesses to all tables; it

gets incremented upon any table read),
− tc is a counter that indicates the last access to the target table. If

target table is accessed, the current value of qc is written to tc.
The meaning of the degradation factor is explained as follows. In general,

after a query referring to a table T1 is executed, some other queries referring
to tables T2, ..., Tn may be processed, which may cause the data of table T1
to be evicted from the buffer. The more requests to different tables have
been executed since the last access to table T1, the less likely its data will
remain in the buffer. The degradation factor takes this effect into account.

Next, it is necessary to relate R(qt+1) to random page cost so that at
maximum the predicted hit ratio random page cost equals seq page cost.
We set:

random page costnew = random page costdef ·
(1−R(qt+1)) + seq page cost · R(qt+1)

(3.5)

where
− random page costdef is the default value of random page cost,
− random page costnew is the new value for random page cost that is

used to calculate costs of scans for a particular table.
Figure 1 shows the schema of computing buffer usage statistics at query

execution. The more pages are read for the table from the memory, the
lower the cost of subsequent random accesses to the memory will be, since
most pages can be read from the buffer. Thus, the cost of random access
to the page is adjusted for each data table.

The number of pages read from disk and memory is collected for each
table until the amount of data reaches the level when it is possible to predict
the hit ratio for a next table access. After that, at query planning, the cost
of random access to the page is computed by using the degradation factor as
defined above and the obtained costs are injected. ACM considers the size
of the time interval between the last access to the table and the scheduled
one, changing the number of hits to the degradation factor. With cost
injection, query planning is standard and after a query is executed new
parameter values will be recorded for all the tables with the data.



146 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

Figure 1. Computation of disk-relevant cost parameters

3.2. CPU-Relevant Parameters

The other three parameters in the standard cost model refer to CPU op-
erations, such as the cost of processing one tuple (tuple cost), performing
one operation (operator cost), and processing one index tuple (index tuple
cost). Standard parameter values do not reflect specifics of various hard-
ware setups and database configurations which again may lead to inaccurate
estimates of query costs. Also, standard cost models do not provide indi-
vidual cost computation formulas for different operators which is another
source of inaccuracy. To address these issues, ACM provides a method
to collecting statistics and dynamically set parameters to account for a
DB configuration and hardware setup individually for each plan operator.
Figure 2 shows the logic of statistics collection on CPU usage at query
execution.

After a query is executed, the system collects key statistics including
the execution time for operators and the number of tuples processed by
each operator. Statistics for each type of operator are collected separately.
The purpose of using these statistics is to reduce the mismatch between
the output values of operator cost formulas and the execution times for
these operators. The minimization function uses linear lightweight models,
which have a minimal computation overhead. An operator cost is defined
as:

F (ct, co, ci) = ct · nt + co · no + ci · ni + s,

s = cs · ns + cr · nr
(3.6)

where

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 147

Figure 2. Computation of CPU-relevant cost parameters

− ct is a cost of processing a tuple,
− nt a number of tuples processed,
− co a cost of performing an operation,
− no a number of operations performed,
− ci a cost of processing an index entry,
− ni a number of index entries,
− s a cost of sequential and random reads for a node with GUC param-

eters derived from disk-relevant model.
Based on this cost formula, a simple linear model is defined:

L(c, x) = xT c (3.7)

where the vector c = (ct, co, ci, 1) of model parameters and x = (nt, no, ni, s)
are independent variables. Note that s is treated as an independent variable
because its value is set by the disk-relevant model.

Suppose we have a sample of observations X of variable values collected
by the system at query execution:

X =




n1t n1o n1i s1

n2t n2o n2i s2

... ... ... ...
nnt nno nni sn


 (3.8)

We can rewrite the model 3.7 in the matrix form:

L(c,X) = Xc (3.9)

and then the task of finding optimal cost parameters is reduced to the
linear regression problem:

L(c,X) → time · scale factor (3.10)



148 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

where

− time =




t1

t2

...
tn


 is a collected execution time for an operator,

− scale factor is a constant representing a scaling factor between exe-
cution time and cost.

Various techniques can be used here to estimate model parameters. In our
implementation we used the classical least squares method.

After collecting statistics and calculating cost parameters, ACM saves
the results for predicting cost parameters for future queries. When ad-
justing parameters dynamically, it is important to respond in a timely
manner to changes in database configuration, as well as to other factors
that may affect cost. ACM uses time series analysis to estimate future cost
parameters when they are individually set for each operator type. In our
implementation we used the exponential moving average, but we note that
other models (e.g. ARIMA, etc.) can be used. The exponential moving
average is defined as:

cpred,n = (1− α) · cn−1 + α · cpred,n−1 (3.11)

where
− cpred,i is a predicted value for cost parameter on step i,
− ci a cost parameter value derived from the linear model (3.9) on step

i,
− α a smoothing factor.
In this way, ACM employs query execution statistics to dynamically

adjust 5 essential cost model parameters, which enables the DB optimizer
to estimate cost more accurately for each type of operator. Information
analyzed by ACM includes (but is not limited to) buffer state information,
execution time of queries and nodes, the number of tuples produced and
other key feature values.

4. Preliminary Experiments

We now present first results of an experimental evaluation of ACM on
the standard TPC-H benchmark [11] in which we answer the following
questions:
− Is correlation between time and cost for nodes increased with ACM?
− Does ACM improve benchmark execution latency?
For experiments, we used a 10Gb TPC-H dataset consisting of 22 temp-

late-based queries. We implemented ACM in the open-source database
openGauss, which has a cost model similar to PostgreSQL. The benchmark

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 149

was run several times to ‘warm up’ buffer followed by the execution of test
queries with measurements.

The correlation between cost and execution time of plans for TPC-H
queries without/with ACM is shown in Figures 3. One can notice two
groups of nodes on the left part of the figure: one group has time within
200 ms and cost value up to 5000, while the second group lies significantly
higher, with costs ranging from 20,000 to 25,000 and times from 200 to 400
ms. The correlation between cost and time is 0.29.

Figure 3. Correlation between node cost and execution time: with standard openGauss

cost model (left) and with ACM(right)

When using ACM, the correlation is increased to 0.92, which means a
big improvement of the cost model accuracy.

Figure 4 shows end-to-end latency of TPC-H queries.

Figure 4. E2E latency of TPC-H queries: summary

The query plan is changed for queries 3, 5, 7, 9, 10, 12, and 17. For
the remaining queries, the execution plan remains unchanged. The overall
latency improvement for queries with a modified plan is 46% and the latency
improvement for the entire benchmark is 20%. We provide detailed latency
results (in milliseconds) in Table 1.



150 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

Table 1

E2E latency values for TPC-H queries

Query No. Baseline ACM Query No. Baseline ACM

1 128235 127906 12 51593 39639

2 1325 1423 13 33872 33795

3 42453 22632 14 4685 4442

4 5969 5956 15 5893 5949

5 43756 9860 16 8992 8816

6 4290 4254 17 1971 1225

7 42803 21306 18 52151 51435

8 6819 6808 19 36333 36371

9 93829 61407 20 71459 71743

10 35248 11726 21 47928 47944

11 2308 2225 22 3909 3878

We note that some queries could not be sped-up with ACM which was
primarily caused by errors in cardinality estimation. Even though ACM
improves key parameters of the cost model it may not be able to shift the
choice of optimizer towards better plans in all cases due to inaccuracy of
cardinality estimation.

5. Conclusion

In this paper, we have proposed a method to dynamically adjust CPU-
and I/O-related parameters of a conventional cost model of a database
optimizer. Our approach differs from other solutions known in the literature
in that it is online, it does not require pre-training or periodic running of
calibration queries on the database, and it is based on light-weight learning
models with a minimal computational overhead, which makes it practical
for implementation in DB kernels. The proposed solution takes into ac-
count several nuances for a more accurate cost estimation including buffer
hit ratio prediction for accessed tables and per operator cost estimation.
Even though improving the accuracy of CPU- and disk-related cost model
parameters alone can not improve the optimality of plans in all cases, we
have demonstrated in preliminary experiments on TPC-H benchmark that
it may have a significant positive impact on query latency due to improved
correlation between cost and execution time. The next natural step would
be to evaluate this approach in conjunction with methods to improve car-
dinality estimation and planning in general, and we leave this for future
work.

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152



ADAPTIVE COST MODEL FOR QUERY OPTIMIZATION 151

References

1. Akdere M., Cetintemel U., Riondato M., Upfal E., Zdonik S. B. Learning-
based query performance modeling and prediction. Proc. IEEE 28th International
Conference on Data Engineering, 2012, pp. 390–401.

2. Dutt A., Wang C., Nazi A., Kandula S., Narasayya V., Chaudhuri S. Selectivity
estimation for range predicates using lightweight models. Proc. VLDB Endowment,
2019, vol. 12, pp. 1044–1057.

3. Halford M., Saint-Pierre P., Morvan F. Selectivity correction with online machine
learning. arXiv e-prints, Sept. 2020, arXiv:2009.09884.

4. Hasan S., Thirumuruganathan S., Augustine J., Koudas N., Das G. Deep learning
models for selectivity estimation of multi-attribute queries. Proc. ACM SIGMOD
International Conference on Management of Data, New York, USA, 2020, pp. 1035–
1050.

5. Kanellis K., Alagappan R., Venkataraman S. Too many knobs to tune? To-
wards faster database tuning by pre-selecting important knobs. Proc. 12th USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage), USA, 2020.

6. Kipf A., Kipf T., Radke B., Leis V., Boncz P., Kemper A. Learned Cardinali-
ties: Estimating Correlated Joins with Deep Learning. arXiv e-prints, Sept. 2018,
arXiv:1809.00677.

7. Lan H., Bao Z., Peng Y. A Survey on Advancing the DBMS Query Optimizer:
Cardinality Estimation, Cost Model, and Plan Enumeration. arXiv e-prints, Jan.
2021, arXiv:2101.01507.

8. Leis V., Radke B., Gubichev A., Mirchev A., Boncz P., Kemper A., Neumann T.
Query optimization through the looking glass, and what we found running the join
order benchmark. VLDB Journal, 2018, vol. 27, pp. 643—668.

9. Li G., Zhou X., Li S., Gao B. Qtune: a query-aware database tuning system with
deep reinforcement learning. Proc. VLDB Endowment, 2019, vol. 12, pp. 2118–2130.

10. Marcus R., Negi P., Mao H., Zhang C., Alizadeh M., Kraska T., Papaemmanouil
O., Tatbul N. Neo: a learned query optimizer. Proc. VLDB Endowment, 2019, vol.
12, pp. 1705–1718.

11. Poess M., Nambiar R. TPC H benchmark standard specification. URL:
https://www.tpc.org/tpc documents current versions/pdf/tpc-h v2.17.1.pdf

12. Trummer I. DB-BERT: a Database Tuning Tool that “Reads the Manual”. arXiv
e-prints, Dec. 2021, arXiv:2112.10925.

13. Van Aken D., Pavlo A., Gordon G.J., Zhang B. Automatic database manage-
ment system tuning through large-scale machine learning. Proc. ACM International
Conference on Management of Data, New York, USA, 2017, pp. 1009–1024.

14. Wu W., Chi Y., Zhu S., Tatemura J., Hacigumus H., Naughton J. F. Predicting
query execution time: Are optimizer cost models really unusable? Proc. IEEE 29th
International Conference on Data Engineering, 2013, pp. 1081–1092.

15. Zhang J., Liu Y., Zhou K., Li G., Xiao Z., Cheng B., Xing J., Wang Y., Cheng
T., Liu L., Ran M., Li Z. An end-to-end automatic cloud database tuning system
using deep reinforcement learning. Proc. International Conference on Management
of Data, New York, USA, 2019, pp. 415—432.

16. Zhu R., Chen W., Ding B., Chen X., Pfadler A., Wu Z., Zhou J. Lero: A learning-
to-rank query optimizer. Proc. VLDB Endowment, 2023, vol. 16, pp. 1466–1479.



152 N.K. VASILENKO, AV. DEMIN, D.K. PONOMARYOV

Об авторах About the authors
Василенко Никита

Константинович, аспирант,
Институт систем информатики им.
А. П. Ершова СО РАН,
Новосибирск, 630090, Российская
Федерация,
https://orcid.org/0009-0003-8727-3000

Nikita K. Vasilenko, Postgraduate,
Ershov Institute of Informatics
Systems SB RAS, Novosibirsk, 630090,
Russian Federation,
https://orcid.org/0009-0003-8727-3000

Демин Александр Викторович,
канд. физ.-мат. наук, Институт
систем информатики им. А. П.
Ершова СО РАН, Новосибирск,
630090, Российская Федерация,
alexandredemin@yandex.ru

Alexander V. Demin, Cand. Sci.
(Phys.-Math.), Ershov Institute of
Informatics Systems SB RAS,
Novosibirsk, 630090, Russian
Federation,
alexandredemin@yandex.ru

Пономарев Денис

Константинович, канд. физ.-мат.
наук, Институт систем информатики
им. А. П. Ершова СО РАН,
Новосибирск, 630090, Российская
Федерация, ponom@iis.nsk.su

Denis K. Ponomaryov, Cand. Sci.
(Phys.-Math.), Ershov Institute of
Informatics Systems SB RAS,
Novosibirsk, 630090, Russian
Federation, ponom@iis.nsk.su

Поступила в редакцию / Received 06.09.2024
Поступила после рецензирования / Revised 20.11.2024

Принята к публикации / Accepted 27.11.2024

Известия Иркутского государственного университета.
Серия «Математика». 2025. Т. 52. С. 137–152


