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Awnunoranusi. PaccmarpuBaercst cucrema n moJTMHOMOB JlopaHa OT 1 HEM3BECTHBIX C ITe-
PEMEHHBIMU KOMILJIEKCHBIMHU KOodd dburinenramu. /18 TpuBeaEHHOr0 TUCKPUMUHAHTHOTO
MHOXKECTBA CHUCTEMbI HailJICHO MHOXKECTBO KPUTUYECKUX TOUYEK MapaMerpusaruu ['opHa —
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Kanpanosa. B crienuanbsaoM cirydae (n = 3) ncciie0BaHO MHOYKECTBO KPUTHYECKHUX 3HA-
YEeHUU IapaMeTpUu3aluyd U JOKa3aHO, YTO KPATHBI KOPEHb COOTBETCTBYIONIEH CHUCTEMbI
SABJISIETCS BBIPOZKJIEHHBIM.

KiroueBble cioBa: monuHoM JlopaHa, JIMCKPUMUHAHTHOE MHOXKECTBO, A—mucKpumu-
HaHT, CMENTaHHBIN JUCKPUMUHAHT, BBIPOXKIEHHBIN KPATHBI KOPEHb

Baarogapaoctu: Pa6ora nognepzxkana rpaarom Poccniickoro nayanoro dhonga (mpoekT
Ne 24-21-00217).

Ccbuika jist iutupoBanus: Antipoval. A., Chuvashov S. Yu. Singularities of Discrimi-
nant Loci of Laurent Polynomial Systems // Ussectusi UpKyTcKOro rocyapcTBEHHOTO
yuusepcurera. Cepus Maremaruka. 2025. T. 52. C. 44-57.
https://doi.org/10.26516,/1997-7670.2025.52.44

1. Introduction

Key objects of investigation in the theory by .M. Gelfand, M.M. Kapra-
nov and A.V. Zelevinsky, which is called to be the A-—philosophy, are A—
discriminants and .A-hypergeometric functions [5]. Their approach, based
on ideas of the toric geometry, has been reflected in the multidimensional
hypergeometric theory (see [11]) and in the quantum field theory (see [4]
and [8]). Following the .A-philosophy, we consider the system of Laurent
polynomials

=Y ally* =0, i=1..n, (L.1)
AeA®

where coefficients af\z) vary in the vector space CJ¥, sets of exponents AW ¢
Z™ are fixed and generate the lattice as an additive group. Solutions y :=
(y1,-..,yn) are assumed to be found in the complex algebraic torus (C\0)",
so without loss of generality we assume that all sets A® contain the zero
element 0. We identify A® with sets of monomials y* := yfl R T
Ae AW,

We denote by VY the set of all coefficients for which the mapping
f = (fi,.-sfn): (C\ 0)" — C™ associated with the system (1.1) has
multiple zeros, that is, zeros where the Jacobian of f vanishes. The dis-
criminant locus V of the mapping f is defined to be the closure of the set
V0 in the space of coefficients CY. The set V is appropriately called the
(AW  A™) discriminant locus, by analogy with the .A-discriminant
locus considered in [5].

By virtue of the polyhomogeneity property of the algebraic vector-func-
tion y(a) := (y1(a),...,yn(a)) the system (1.1) admits a dehomogenization
resulting in the reduced system and the corresponding reduced discriminant
locus V'. A universal parametrization defining the irreducible components
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of the reduced discriminant locus is comprehensively studied in [2]. It is
proved that if V’ is an irreducible hypersurface depending on coefficients
of all equations of the system, then the parametrization is the inversion of
the logarithmic Gauss mapping for V/. We note that the Gauss mapping
for V’ is not always birational, so (A, ..., A()-discriminant loci can not
generally be reduced to A—discriminant loci.

If the A-discriminant locus is a hypersurface, then the unique (up to
sign) irreducible polynomial with integer coefficients defining it is said to
be the A-discriminant [5]. The discriminant of the (1.1) in the context of
the theory of A-discriminants is studied in [3]. The authors call it the mixed
discriminant and prove its equivalence to the A-discriminant of the Cayley
configuration A = Cay(AW,..., AM™). The discriminant locus in [3] is
defined to be the closure of the locus of coefficients for which the system
(1.1) has a non-degenerate multiple Toot. In this case, an isolated solution
u e (C\0)" is a non-degenerate multiple root if n gradient vectors V, f;(u)
of polynomials of the system are linearly dependent, but any n — 1 of them
are linearly independent. This means that u is a regular point of the curve
defined by any set of (n — 1) equations of the system (1.1).

Our objects of research are Laurent polynomial systems which have
degenerate multiple roots. The specified class of systems is defined in the
space of coefficients as a set of critical values of the parameterization for
the discriminant hypersurface. In case of one algebraic equation, singular
strata of the reduced discriminant locus responsible for the presence of
roots of a certain multiplicity were studied in [9]. It turns out that they
coincide with critical strata of the Horn-Kapranov parametrization, which,
in turn, are restrictions of the parametrization onto a chain of embedded
linear subspaces of the projective space (see also [10]).

The plan of the paper is as follows. In Section 2, we briefly charac-
terize parameterizations for the reduced discriminant locus (Theorem 1)
and multiple roots (Theorem 2). Our main result is stated and proved
in Section 3. It contains a description of the set of critical points for the
parametrization of the reduced discriminant hypersurface (Theorem 3). In
Section 4, we deal with a special case (n = 3) and distinguish a class of
polynomial systems with degenerate multiple roots.

2. Horn-Kapranov Parametrization

The system (1.1) admits a monomial (with rational exponents) transfor-
mation G: a—> x of coefficients. As a result, in each equation two coeffici-
ents are fixed, and the rest are variable. Polynomial supports AM), ..., A®™
remain unchanged. We recall that the support of a polynomial is defined
to be the set of exponents of its monomials with nonzero coefficients.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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We fix an element w(® in each set A® and form a matrix
w = (b, . w™)
with columns w®. The matrix w is assumed to be non-degenerate. As a

result of the transformation, we get the reduced (dehomogenized) system of
the form

giw) =y 3 Al —1=0, =1 (21)
AeA(®
with new unknowns y := (y1,...,¥yy), variable complex coefficients x :=

(ng)) and A® := A®\ {w® 0}. The dehomogenization procedure is based
on the polyhomogeneity property, which can be expressed by the formula:

(o r DDy = (a7 a0, ),

where r := (r), ... 7)) 1= (ly,...,1,) € (C\ 0)". If {D;(x) = 0} is a
system of equations for the discriminant locus of the system (2.1), then the
discriminant locus of the system (1.1) is defined by equations {D; (G(a)) =
0}. The solution of the system (1.1) can be recovered from the solution
of the reduced system. A detailed description of the dehomogenization
procedure is given in [2].

Next, we consider the parametrization of the discriminant locus of the
system (2.1), see [2]. We call it the reduced discriminant locus and denote
by V'. Let A be the disjoint union of sets A® and N’ the cardinal-
ity of A. The set of coefficients of the system (2.1) is the vector space
CA = €Y', where the coordinates of points 2 = (x) are indexed by elements
A € A. We interpret the set A as a matrix A = (A®M|...|AM) .

Let us define a multivalued algebraic mapping

h: CPY' -1 ¢V,

by putting
(4) n P (2N
() _ 5 (@%¢$> W .
Ty = ——— , ANeEAY i=1,...,n, 2.2
el | § e 22

where ¢, @), are the rows of matrices ® := w™'A and d:=d— X respec-
tively, x is a block matrix consisting of 0 and 1, the i-th row of which
represents the indicator of the subset A® C A, and ¢y is the coordinate
indexed by A € A®) C A in the row ¢y.

Following [2], we assume that the discriminant locus V' depends on all
variable coefficient groups (9, that is, it can not be factorized in the form
V' x €AY where V' is an algebraic subset in A" x ... [i]... x CA™.

We say that a system of k Laurent polynomials g;(y1,...,yn) satisfies
the condition (x) if the set of all exponents of the system does not lie in a
k-dimensional subspace.
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Theorem 1. [2] If each subsystem of the system (2.1) satisfies the con-
dition (%) (in particular, if Newton polytopes of all equations in (2.1) are
n-dimensional), then the discriminant locus V' is parametrized by the map-
ping (2.2).

Recall that the Newton polytope of a Laurent polynomial is defined
to be the convex hull of its support in R®. The full dimension of the
Newton polytope of each equation in the (2.1) means that exponents of
its monomials do not lie in a hyperplane. The fulfillment of this condition
automatically implies the condition (%) for all subsystems of the system
(2.1).

Next, we need the notion of the logarithmic Gauss mapping of a hyper-
surface V/ = {D(z) = 0} € (C\ 0)N'. This is the mapping ~: Vieg =
CPN'~"! defined in coordinates (z1,...,zx/) € (C\ 0)N by the formula

/ /
(.%'1,... ,xN/) — (xlel: P xN'Da:N/) .

Here V.., is the set of regular points of V'.
Theorem 2. [2] If the discriminant locus V' of the system (2.1) is
an irreducible hypersurface depending on all groups of variables, then the
parametrization (2.2) is the inversion of the logarithmic Gauss mapping:

h(s) =~71(s).

Moreover, if matrices ® and ® do not contain zero entries, then the set
V' is a hypersurface, see Propositon 2 in [2].

Theorem 2 is an analogue of Kapranov’s theorem in [7], where he proved
that the Horn uniformization parametrizes the A-discriminantal hypersur-
face being the inversion of the logarithmic Gauss mapping. Thus, the
parameterization of V' in the form y~!(s) is appropriately said to be the
Horn-Kapranov parametrization. For the classical discriminant the analo-
gous fact is proven in [10]. We note that in our case the Gauss mapping
for V' is not always birational (see Example 3 in [2]).

Let the set V' be a hypersurface and the defining polynomial D(x)

depends on all groups of variable coefficients. We consider = € V., and a
mapping 7(x) = (11(x), ..., T (z)) with components
n e
<s0i,’7v(ﬂf)>> o
Ti(z) = (~7 ,j=1,...,n, (2.3)
@ =H{GAe @)

where €U) are columns of the matrix w™'. According to Lemma 5 in [1],
the values of the mapping 7(z) are multiple roots of the system (2.1).

Ussectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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3. The Critical Set of the Parametrization

Let us study critical points of the mapping (2.2) for a system of the form

yw(i) + x(i)y/\ -1=0, i=1,...,n, (3.1)

where the number of variable coefficients (¥ equals the number of equa-
tions. The matrix w with columns w(? is assumed to be non-degenerate and
the system (3.1) to satisfy the condition (x). The monomial substitution
y =t transforms it as follows

ti @2 _1=0, i=1,...,n, (3.2)

where exponents ¢ are columns of the matrix ®.
Let us start with some notations:

oili] = (o, .., o el
S[l] = (81, ey Si—1ySi+1y- .- 73n)7
)= o,
J#i

Here and throughout the text, the symbol [i| denotes the omission of the
7’th element.
Consider the matrix

{1 [121)5[1]> —oPsy e @éniﬁ
- 21. s[2]} ... —
M(")(s) — 802. sy (2] ].,s[ 1 . @2. so 5
fSOS)sn 790512)‘9” e <SOn [TL], S[TLD

Lemma 1. The minor M( (s) of the matriz M ™ (s) obtained by exclud-
ing the j’th row and the j ’th column admits the factorization:

M (s) = 5, 1(s),
here 1;(s) is a homogeneous polynomial of the degree (n — 2) of variables
s=(S1,---,5n)-
Proof. We first note that det M (™ (s) = 0. Indeed, the transposition of a
matrix does not change its determinant, so we write it as follows
(erll], sl —pi”s2 o s

_ 0 91 sy ... —,mM
detM(”)(S): (‘02. st (p2f ].v s[2]) . ‘Pzi Sn

—<P§zl)81 —<P§z2)82 -+ {pnln], sln])
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Here we see that columns are linearly dependent, hence the determinant
vanishes.
Next, we prove the statement of the lemma for the minor

<¢1[1]i$[1]> ERAC —<P(1"_1)31
—oWVsy  (pa]2],8[2)) - g,

(3.4)

—(P;l_)lsn—l _9051221371—1 <“Pn—1[n_1]73[n_1]>

Let us decompose the (3.4) into a sum of determinants using the following
representations of its diagonal entries:

(pild], sli]) = (@ili, n], s[i,n]) + gpin)sn, i=1,...,n—1
As a result, we get

MM (s) = det MY (s) + spln(s),

n,n

where [,,(s) is a homogeneous polynomial of the degree (n — 2). The first

summand vanishes, so we obtain M,S’Q(s) = splp(s). For minors M ](.3.)(3),

j=1,...,n—1, the proof is similar.

Next, we use homogeneous polynomials ;(s),j = 1,...,n, which are
defined as follows )
1i(s) = S—ijjy(s). (3.5)

Theorem 3. The critical set of the parameterization (2.2) of the discrim-
inant hypersurface V' for the system (3.2) is given in the form:

L={li(s)=...=1,(s) =0} c CP" !, (3.6)
where 11(s),...,ln(s) are defined by formulae (3.5).

Proof. We consider a homogeneous mapping h: CP?~1 — C? with coor-
dinates () (s) defined on C"\ {0} and prove that the rank of the Jacobi
matrix (9x(*)/8s;) drops below (n — 1) on the set £. It is equivalent to
study the rank property of the matrix

J = (alnm(i)/asj), i,j=1,...,n.

Note that due to the homogeneity of the mapping Inz(®(s), the Euler
identity holds:

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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whence it follows that
det J = 0.

It remains to show that the set of common zeros of all (n — 1)-minors of
the matrix J is the set L.
Let us consider differential forms

%( ) =dln CC( i) Qi(s)ds;i—s;dQ; (3)+

5iQi(s)
~ 0 Pi(9)dQ;(s) — Qi(s)dPi(s) . _,
+j2190] Pj(s)Qj(s) , 1 geee s,

where P;(s) and Q;(s) denote linear forms (p;, s) and (p;, s) respectively.
We note that

P()dQ;(5) — Q5(s)P,(5) = s;dPy(s) — Py(s)ds;.
and
Qi(s)ds; — 5;dQ;(s) = P;(s)ds; — s;dP;(s),

50 »® can be written as follows

L0 (sﬁz[l]

/—\
V)

— |
)
.

/\
\_/

where

A; = s;dP;(s) — Pi(s)ds;.

Let us fix i € {1,...,n}. The minor J;j of the matrix J obtained by
excluding the 7’th row and the k’th column is equal to the coefficient at
dsi A ...[k]... ANdsy, in the form

i) = M A LE] A ™),
The form [i] admits the following representation
i = 30 M ()AL
J

where A[j] == Ay A ... [j]... N Ay, and MZ-(Z)(S) is a minor of the matrix

1], s1]) o o)
SPIEQI(s)  Pas)Qa(s) Po()Qn(s)

) o1 (pa[2),s2) o)
MM (s) = Pyi(s)Q1(s) 82P2(5)Q2(5) P, (5)Qn(s)
oY @é’” {ipnln], s[n])

POGE  BOGE  5mPa)Qu(s)
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An easy computation now leads to the following expression:

n

Alf] = Ar ALl A Ay = (1)1(s) Y (= 1) s ds[k].
k=1
Thus we get
il = | S (1) M (5) | S (=1)Fsy dsk].
j=1 k=1
It remains to do the following calculations:
(i sA)) oo ) e)sa
Mt Teneaw, 0 o ol
k#j : : :
eVst ] —(pnln), sln))

(_1)i+j+n718ilj(s)

T T sk Pe(s)Qi(s)
k#j

We end up the proof with the representation:

w[i] = (=1)"ts; Y —1)k-t Y Sjl]z(s) dsy dsn
[i] = (-1) 1251) Z;Qf%@QM” SRATHURE S C)

According to (3.7), we conclude that the set of common zeros of coefficients
of the form [i] is the set (3.6). O

4. Degenerate Multiple Roots (n = 3)

In this section, we deal with the special instance of (3.2). It is the system
of the form

tir @ _1=0, i=1,23, (4.1)

with unknowns ¢ = (1, t2,t3) and variable coefficients = = (2, 22 23,
We assume that matrices & and ® do not contain zero entries. According

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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to Theorem 3, the critical set of the parametrization for the discriminant
hypersurface V' of the system (4.1) is given by a system of linear equations:

(1), (2) 3) (1)

1 1
li(s) = ﬁPé )<P(3 )81 + 5 3 82+ @y 3 s3 =0,
2 1 2 2 2
la(s) = 9PN s1 + PP sy + PP ss = 0, (4.2)

l3(s) = Vo1 + ool s + 01 0855 = 0,
where s = (s1: s3: s3) are homogeneous coordinates in CP?. The system
(4.2) has a nontrivial solution if and only if, the condition
2) (3) (1 3) (1) (2
o) = oVl el (4.3)
holds. In this case, the rank of the matrix of (4.2) equals one.

Let C C V' C C2 be the subset of critical values of the parameterization
(2.2) for the system (4.1). It is defined by the restriction of the mapping
x = x(s) to the set £L C CP? given by (4.2). This is made precise in the
following proposition.

Proposition 1. Suppose that exponents o) of the system (4.1) satisfy
the condition (4.3).

1 (2 ()

1. The set C consists of a single point xo = (xy”, 2y ,xy ) with coordi-

nates
(3), oM 1), @ (2), o
x(Ol) = _(p2~ - s x(OQ) = (pg" - ) .,L,(3) = _(pl*' = ) (44)
D32 P13 D21
; (i) (i) (i)
where u?" = ERRENCERENLES
Puy Py Py
U = (’U,l,’U,Q,ug) - : ) : ) : ) (45)
(‘1’[3,2] Qg Py

and (b[i,j}’&)[i,j] are minors of matrices ® and ®, respectively, formed
by excluding the i’th row and the j’th column.

2. The u given by (4.5) is a root of the system (4.1) when coefficients x
are equal .

Proof. As mentioned above, critical values of the parametrization can be
obtained by restricting the mapping z = z(s) to the set £. The second
statement can be proved by the direct substitution ¢ and v into the system
(4.1). O

Next, we will verify that the multiple root u is degenerate. By definition,
an isolated solution u € (C\ 0)? of the system (4.1) is said to be the non-
degenerate multiple root if three vectors V;g;(u) are linearly dependent and
any two of them are linearly independent.
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The Jacobi matrix of the system (4.1) is as follows:
I(tw) = (8 + P07 (4.6)
irj

where e; form the standard basis in 73 and &7 is the Kronecker symbol. Let
us substitute the Horn-Kapranov parameterization (2.2), and the mapping
(2.3) written in terms of parameters s for the system (4.1) into (4.6). As a
result, we obtain the following matrix:

‘ ()S() 3 3 &
J(T(x(s)),w(s))=<5i o >H(<% >> ) : (4.7)

<QOZ’ =1 <SOZ, 8>

Calculations yield that the dependence condition for any subset of two
rows of the matrix (4.7) is equivalent to the condition (4.2). Let s” be a
nontrivial solution to (4.2). The existence of such a solution is provided by
the condition (4.3). Note that

. o 3,2 - o 1,3 - ® 2,1
<901a 50> = [(3)] 5?’ <Q02a 50> = - [(1)] Sg’ <Q03a 50> = [(2)} Sg' (4'8)
'2) ¥3 ¥1

Finally, we take s = s in parameterizations z = z(s) and 7 = 7(z(s)) and

use relations (4.8). As a result, we get © = g, 7 = u. Thus, we proved

Proposition 2. If exponents of the system (4.1) satisfy the condition
(4.3), and coefficients © = ¢, then the multiple root uw = (uy,us,us) is
degenerate.

Example 1. We consider a system of the form

t1 +a2Widtoty — 1 =0,
ty + 2Pttty —1 =0, (4.9)
tz + 2Bt itats —1 =0,

with exponents o) = (3,1,1), ¢® = (1,3,1), ¢ = (1,1,3) satisfying

the condition (4.3).
The Horn-Kapranov parametrization for the system (4.9

(1) . —S51 ( 1,8
'\ (8) = —
( ) <(p178> P1, S

N
(o1,

W0 = 5 (1
(B1,9

o1

is as follows

(P2, 5)

=) = 25 (

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «Maremarukas. 2025. T. 52. C. 44-57

©1,8
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where s = (s1: s2: s3) are homogeneous coordinates in CP?, and

<<P17S>:381+82+337 <95173> =281 + 59 + 3,
<<P27S> = 51 + 359 + 83, <95273> = 81 + 259 + s3,
(ps3,8) = 851+ 2 + 3s3, (p3,s) = 851+ s2 + 2s3.

The discriminant locus V' given by the mapping (4.10) is the hypersurface
since matrices ® and ® do not contain zero entries.

The critical set of the parameterization (4.10) is the plane
L = {s1 + 53+ s3 = 0} € CP?%. The set of critical values C := {z(s)|z}
consists of one point zg = (—1/2%, —1/25, —1/2%), which is a singular point
of the discriminant hypersurface V', and the logarithmic Gauss mapping is
not defined in it.

The mapping 7(s): CP? — (C\ 0)? with coordinates

<§01’5> 7_2(3 _ <902’8> 7'3(8) _ <Q03a5>
(@1,8) (@2, 5) (@3, 5)

7'1(8) =

defines multiple roots of (4.9). The multiple root u = 7(s)|z = (2,2,2) is
degenerate.

Calculations performed in the computer algebra system SageMath show
that the system of equations

25t — t3tat3 — 2° = 0,
25ty — tytits — 2° = 0,
253 — tytats — 2° =0

has 20 isolated roots, including 16 simple roots and the root u = (2,2,2)
of multiplicity 4.

5. Conclusion

In this paper the critical points of the parameterization for the discriminant
locus of the Laurent polynomial system have been studied. In the special
case (n = 3) it is proved that systems with degenerate multiple roots
belong to the set of critical values of the parameterization in the space
of coefficients. Unlike the case n = 1, where geometry of the discriminant
strata has been studied from different points of view, starting from the
paper by D. Hilbert [6], in the multidimensional case the stratification
of the discriminant locus has not been investigated. The obtained results
confirm efficiency of the parameterization as a tool for studiyng singularities
of discriminants of polynomial systems.
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