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Awnunoramusi. Uccnenyercst cybanddepennman Operre moTOYEIHOTO CYyIPEMyMa CeMeii-
crBa (DYHKIUA, WHIAEKCUPYEMbBIX ITPOU3BOJILHBIM MHOXKECTBOM. Bce paccMmarpuBaeMble
pH 3TOM (DYHKIINK 33IaHbI Ha VI3 IKOM 10 Ppelrte TpoCTPAHCTBE; STOT KJIacC DaHAXOBBIX
IIPOCTPAHCTB BKJIIOYAET B ce0sI Kak pedJIeKCUBHBIE ITPOCTPAHCTBA, TaK U cerapabeibHbIe
npocrpancTBa AcmiyHga. HoBble OnieHKU CBEPXY, B TOM YHCJIE€ HEBBITYKJIbIE, YCTAHOBJIE-
HBI 111 cyomuddepennnasia mo Operre cynpemMmyMa HENPEPBIBHBIX U ITOJIYHEIIPEPBIBHBIX
cHu3y PYHKIUA. B 5THX OleHKax K KaxKJIOMy £-aKTUBHOMY UHJIEKCY, COOTBETCTBYIOIIIE-
My HEIPEPBIBHON (DyHKIUU, NIPEIbBIISETCH JONOJHUTEIbHOE TpeboBaHue: £-6Jn30CTh
rpaduKa 3TOil HEMPEPBIBHON (DYHKIMY K pAaCCMATPUBAEMOIl TOUKe TrpadrKa CYyIIpeMyMa.
KiroueBbie 1ByCcTOpOHHIE HEPABEHCTBA JIJIsI TOYKY I'PadUKa HEIPEPBIBHON (DyHKIUU, CO-
OTBETCTBYIOIIEH £-aKTUBHOMY WHJIEKCY, OCHOBAHBI Ha JIBYCTOPOHHEM OJHOHAIPABIEHHOM
Bapuanre Teopembl Jlarpamxka. MeTos noka3areabcTBa BEpXHUX OIEHOK COYETaeT B cebe
noaxozet u3 pador Ix. C. Tpeiimana, FO. C. Jleggesa, M. III. Mopuayxosuua, T. Hrua
u I1. Ilepes-Apoca.

KuaroueBble cJioBa: CynpeMyM HeENpepbIBHBIX hyHKIM, raagakoe mo Pperne
mpocTpancTBo, cybauddepeniman Pperre

Baarogapaoctn: PaGora BbIOJHEHa B paMKaX WCCJICJOBaHUN, TPOBOJUMBIX B
VpallbcKoM MaTeMaTHY9eCKOM IeHTpe NpHu (PUHAHCOBON NoijepkKKe MwuHHCTEpCcTBa
HAyKHU U BbIcIIero obpasosanus Poccuiickoit Peneparun (Ne 075-02-2024-1377).
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Introduction

Consider a family of lower semicontinuous functions f, : X = RU {+o0}
(v € I') defined on a Fréchet smooth space K. Define the following
supremum function f
f(@) = sup f, ().
yel’
In this article we estimate the Fréchet subdifferential of this function f.
There are many works devoted to this topic. For example, for the family of
convex functions, it is necessary to mention the classical Ioffe-Tikhomirov

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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ON SUPREMUM OF CONTINUOUS FUNCTIONS 23

theorem [4] and the very recent monograph [3]. The detailed history of the
issue can be found in [9], [11]. As well as in [9], [11], we will not impose
any assumptions on the index set I'. At the same time, in this article the
main attention will be paid to the case when all the f, are continuous.

The method of proofs follows the key ideas from [6, Theorem 6.1] and
[11]. We will only apply some two-sided version of the mean value inequality
(see Proposition 1) in the continuous case instead of the classical one-sided
mean value inequality [6, Theorem 2.2] and use the famous estimates for
subgradients of the supremum function of linear function in the convex case
with [11, Proposition 3.7] instead of the nonsymmetrical minimax theorem
[1, Theorem 3.6.10].

The rest of the paper is organized as follows. In Section 2, we will for-
mulate two estimates for the Fréchet subdifferential of f (Theorem 1) and,
then, discuss and compare these estimates with those previously known.
The proof of Theorem 1 is contained in Section 3. But first, we will recall
several definitions and two results of variational analysis.

1. Basic Definitions and Preliminaries

We will use basic notions from the set-valued and variational analyses [1;7].

For every subset X of Banach space X, by co X, cl X denote its convex
hull and the closure (in the norm topology). Similarly, by 1"y denote the
closure in the weak* topology of a subset ) of X*. Denote also by B and
B* the closed unit balls in X and X*, respectively.

Recall that a Banach space is Asplund if each of its separable subspaces
has a separable dual. We say a real Banach space is Fréchet smooth if this
space has an equivalent norm that is C'-smooth off the origin. Each Fréchet
smooth space is Asplund. Observe that any reflexive Banach space and any
separable Asplund space are Fréchet smooth [1, Theorem 6.1.6]. It is worth
mentioning that B* is sequentially compact in the weak* topology [10,
Theorem 3.113] if X is Asplund.

Given an extended real-valued function g : X — R U {—o00, +0o0}, define

its graph gphg 2 {(z,9(x)) € X xR | |g(x)] < +o0}. For a point z € X
with |g(z)| < 400, define the Fréchet subdifferential [1, (3.1.1)] of g at x as

y—e ly — |
Observe that dg(z) = @ if |g(z)| = +o0.
Next, we will essentially need the two recent results of the variational
analysis. First, we will use the following two-sided one-directed mean value
inequality [5]:
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Proposition 1. Let X be a Fréchet smooth space. Let a continuous
function g : X — R and some closed interval [u;v] in X be given.

Then, for a real number s < g(v) — g(u) and positive € there exist some
point 2 € [u;v] + B and Fréchet subgradient ¢ € dg(2) that satisfy

s <Cv—u) and |g(2) = g(u)] < |s| + <. (1.1)

Second, we will also apply the following excellent estimate in the case of
the direct index set T [11, Proposition 3.7]:

Proposition 2. Let X be an Asplund space. Assume that some non-
decreasing family of defined on X lower semicontinuous functions hy (t € T)
is given. Let h = sup{h;|t € T}.

Then, for all points x’' € X,

on(z') c () o U Ohy(z").  (1.2)
x>0 2" ex’+xB, teT,
h(z")<hi(z" )45, |he(x’)—he(z")|<s

2. The main result

Let a Fréchet smooth space X, some non-empty index set I', and a family
of lower semicontinuous functions f, : X — RU {+o0} (y € T') be given.
Define a function f: X — RU {4oc0} by the following rule:

f(x) =sup f,(x) for all z € X.
yel’

Due to [12, Proposition 1.26], f as a supremum of a family of lower
semicontinuous function is lower semicontinuous.

By (Fin)(T') denote the set of all finite subset of I'. For every T €
(Fin)(T'), define fr(y) = maxyet fy(x). For each v € I put |a|, = |a] if f,
is continuous on X, and |aly = a otherwise. Finally, by [1: K] denote the
set {1,2,...,K} for each K € N.

Theorem 1. Let £ be a Fréchet subgradient of f at a point T € X.
Then, for an weak® neighborhood U of the origin in X*, for every positive
e, there exist a natural K, coefficients a; € (0;1] (i € [1 : K]), and pairs

Useectuss pKyTCKOTO TOCYJapCTBEHHOTO YHUBEPCUTETA..
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ON SUPREMUM OF CONTINUOUS FUNCTIONS 25

(xi,vi) € AxT (i€l : K]) that satisfy

K
d =1, (2.1)
=1

K
£€d i+, (2.2)

=1
x; €T +eB forallic|l : K|, (2.3)
G € Ofy(w;) for alli €1 : K], (2.4)

(G —&)(x; —3) > —€? forallic 1 : K],

| fy; (i) — f(2)] < eif fy, is continuous and
Jri(@i) — f1,(Z) < € otherwise; (2.6)

in particular, | fy,(z;) — f(Z)]y, <€ and
fri(@i) — f(2) <e (2.7)

holds true for all i € [1 : K|. In addition, if T is finite, we also can
guarantee that

|fy: (zi) — fr, (@) <e foralliel : K. (2.8)

Furthermore, one has

af(z) ﬂ v U ﬂ " co U éfv(:c)

#>0 x'€2+xB, Te(Fin)(T), €>0 ~ET, z€x’'+eB,
|fr (@) —f(@)<5, |y (@)= fr(z)|<e
|y (&)= fr ()4 <0 VyeT
(2.9)
C ﬂ ¥ co U éfy(:c);
x>0 vel', zez+xB,
[y ()= f(2)]y <3¢
(2.10)

in particular, in the case of the family of continuous f-,

df(&) C ﬂ v U ﬂ " co U dfy(x). (2.11)
#>0 x'€2+xB, Te(Fin)(T),&e>0 YET, z€x'+¢B,
lfr(2")—f (&) <z, | £y (@)= f+ (z)|<e
fr(&)=fr (") VveT

The proof of this theorem will be presented in Section 3. Now, the
discussion of the results is presented in the form of a series of comments.
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Remark 1. If X 2 R?, by the famous Carathéodory theorem [12, The-
orem 2.29], any finite convex sum of a (co)vectors can be represented by
some finite convex sum of no more than d + 1 of them. So, this theorem
holds true with additional requirement that K <d + 1.

Remark 2. If each f, is C'-smooth on X, we obtain that each df (z) is
a singleton, therefore (; = f! (x;) whenever 1.

Remark 3. Following [9] in the case of the family of continuous f,, assume
also that for all z close to & each set-valued map z — O fy(x) weak™ outer
stable at point z [9]: for all sequences of z; and (; € d f+(2i), converging and
w*-converging to z and a ¢ € X* respectively, ¢ lies in cl*"d f+(z). Then,
(2.11) is simplified to

df(z) C ﬂ v U ¥ co U ¥ O, ().
2>0 z'€t+xB, Te(Fin)(T), vET
lfr (") —f(@)<z,
fy(@)=fr(a") VeT

Remark 4. The first inequality in (2.6) can be replaced by
|f, (@) — f(@)] <eforallie[l : KJ; (2.12)

if either all the f, are equicontinuous near to &, or f and all the f, are con-
tinuous. These conditions are typical, for instance, [8, (8.33)]. In particular,
(2.10) yields [9, (3.4)].

Remark 5. The condition (2.7) can not be replaced by the first inequality
in (2.6) or by

dist(x;, fv,(xi),gph f) < e forallic [l : K] (2.13)

even if f is continuous on X and each f, is continuous near # and lower
A A

semicontinuous on X. Indeed, consider X = R and I' = Q; for all p/q € T
set fp/q(r) = 0if 2 < p/q and f,/4(7) 2 1 otherwise. Now, f(z) = x
and Of (z) = {1} on X. Note that also f,(z) = {0} if r # z. Consider
the unique subgradient ¢ = 1 at point & = e~! and a positive ¢ < e™1.
Assume that we could pick finite families of «;, v;, x;, and (; that satisfies
(2.2). Since ¢ is nonzero, at least one of ¢; must be nonzero, therefore the
corresponding +y; coincides with x;. This yields f,,(x;) = 0 for some i, and
(2.13) does not hold if € < 1/e. So, in this example the condition (2.13),
as well as (2.6), is not consistent with (2.2).

Remark 6. The requirement of the finiteness of " for the condition (2.8)

as well as f,(z;) > f,,(Z) — € cannot be omitted. Indeed, consider X 2R

Useectuss IpKyTCKOTO TOCYJapCTBEHHOTO YHUBEPCUTETA..
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ON SUPREMUM OF CONTINUOUS FUNCTIONS 27
and I 2 N, set fp(z) 20ife < 0, fn(x) 2 _nrifze [0;1/n], and f,,(x) 2
1 otherwise. Now, f(z) =0if x < 0 and f(z) = 1 otherwise. Assume that
for this subgradient £ = 1 at point £ = 0 and a positive € < 1 one finds
finite families of «y, i, z;, and (; that satisfies (2.2). Since £ is positive,
at least one of {; must be positive, therefore the corresponding ~; coincides
with x; = 1/~;. This entails f,,(z;) = —1 and |f,, (z;) — f+,(0)] > 1. So, in
this example the condition (2.8) is not consistent with (2.2).

To the best of our knowledge, the convex estimates (2.2) and (2.10) of
the Fréchet subdifferential of supremum function f in Theorem 1 are similar
to the following results:

— for lower semicontinuous functions f, on a reflexive X, the inclusion
(2.2) with (2.3), with

> av—l' <e (2.14)

vel, ay>0

instead of (2.1), and without any condition on f(z’) [2, Theorem 3.18];

— for the lower semicontinuous functions f, on a reflexive X, the inclusion
(2.2) with (2.1), (2.3), and (2.7) [6, Theorem 3.2];

— for the uniformly locally Lipschitz continuous (or, merely equicon-
tinuously subdifferentiable) family of f, on an Asplund space, the
equivalent to (2.2) inclusion [9, Theorem 3.1(ii)]:

— for the finite family of lower semicontinuous functions f, on an Asplund
space, the inclusion (2.2) with (2.8), (2.14),

(1f (@) = fr. (@) > &) = (i <o), (2.15)

with 2/ = & for each v € T instead of (2.1) and (2.7) [11,
Proposition 3.2(v)].
Finally, regarding the non-convex estimate (2.9), we notice a similar result
in Asplund space for lower semicontinuous functions f, [11, Theorem 3.8]:

af(#)c ﬂ cl?” U ﬂ clw*U { Z ayéfw(my) ‘

#>0 TE(Fin) (D), €448, £>0 ~eT
fr@)2f (@)=, | fr (@)= fr ()| <>

ay > 0,2, € 2’ + B satisfying (2.14), (2.15), and | f (z,) — f1(2)| < 5}
(2.16)

and for uniformly Lipschitz continuous functions [11, Theorem 3.1(i)]:

of@)c)a” U co | ) ofy(). (2.17)
#x>0 Te(Fin)(T'),z’ €2+4xB, veT
fr@)=fr(z")>f (@)= VyeT
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3. The proof of Theorem 1

Step 0. At the beginning, we can assume, without loss of generality, that
f(z)=0and & = 0.
Fix some positive ¢ < 1/4 and an weak* balanced neighborhood U of
the origin in X*. Decreasing ¢ if necessary, we can assume that 4e B* C U.
Recall that, for each v € T, |a|, = |a| if f, is continuous, and |a|, = a
otherwise. Introduce the set =, C X* by

2.2 {CeX*|IyeT, 2 €eB/2, ¢ €f,(2) satisfying (2.5), (2.6)}.

So, since we can choose positive € arbitrarily, for every Fréchet subgradient
¢ of f at & = 0 and corresponding relations (2.1)—(2.7), we only need to
prove that £ € coZ. + U.

To this, introduce the scalar function g : X — R by the rule:

g(x) = —€x +3|z|| for all z € X.

Now, by the definition of Fréchet subgradient, one find a positive 7 < £/4 <
1 such that

—g(x) < f(z) on 27B\ {0}. (3.1)
Decreasing 7 if necessary, we can ensure the inequalities

dg(x)| <e,  dg(x) c —€+€2B*,  4t(||¢]| +¢€) < e on TB.

Step 1. We claim that, for every v € B, there exists a ( € Z. that
satisfies

sup (¢ — &)v > —¢? for allw € B. (3.2)
(EEe

In the case v = 0 this inequality is trivial. Therefore, let v € B be non-zero.
By (3.1), we obtain

—e/4 < —g(tv) < f(tv) for all 0 < t < 7.
Hence, for each 0 <t < 7, one finds a v(¢) € I' that satisfies
(fy@) +9)(tv) > 0.
By the choice of 7, one has
Jy)(0) < £(0) = g(0) < —g(tv) + /4 < fy (tv) + /4 (3.3)

Assume also that there exists a positive ¢ < 7 with continuous f, . Fix
this t and the corresponding v = (). The continuity of f, leads us to a
root t' € [0;¢) to the equation —g(t'v) = f,(t'v). This root exists due to

Useectuss MpKyTCKOro TOCyJapCTBEHHOTO YHUBEPCUTETA..
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ON SUPREMUM OF CONTINUOUS FUNCTIONS 29

the intermediate value theorem by f,(0) + g(0) < 0 < f,(tv) + g(tv). We
obtain the inequality

Fy(tv) = f5(t'0) > g(tv) — g(t'v) > (t — ') (v — £2).

Now, let’s apply Proposition 1 to this inequality with data 2 t'v, v 2 tv,
s 2 (t—t) (v —A52), = t/2. Then, we pick a point 2 € X and a Fréchet
subgradient ¢ € 0f,(2) that satisfies

(t—t) (v —e®) < (t—t)Cv, ||Z]| <t+t<e/2

£5(2) = £ ()] < |(t = 1) (€0 — %) + ¢.

By the choice of ¢ < £/4, in the account to g(t'v) = f,(t'v), this yields that
Z €eB/2 and

N>

1By = 15 < 1fHE ) +e/2+E < s

in particular, ¢ € =, and v — 2 < (v. In this case, (3.2) has been proved.

Assume also that, for all positive ¢ < 7, from (3.3) it follows that f,
is not continuous. Fix this ¢t and the corresponding v = ~(¢). Now, from
fy(tv) + g(tv) > s >0 > £,(0) + g(0) it follows that

(fy +9)(tv) — (fy + 9)(0) > s > 0.

One-sided unidirectional mean value theorem [1, Theorem 3.4.6] to f, + g,

AN A A . . P .
u=0,v=tv, s =0, =tgives a point z € X and a Fréchet subgradient

¢' € O(f, + g)(2) that satisfies
0 < 1o, 2l <14t < /2 Fy(2) +9(2) < £,(0) +9(0) + 1 < £,(0) + /2

by the choice of ¢ < £/4. Applying the strong approximate sum rule [1,
Theorem 3.3.1], we pick a point 2 € X, a Fréchet subgradient ¢ € df,(2),
and a Fréchet subgradient ¢ € Uz/eag/gég(z’) C (—& + £2B*) that satisfies

0<s<t(+&, |2l <e/2, f,(2) < f,(0) +e.

Further, from 0 = s < t(C 4 &)v it follows —¢v < Cv. Since v € B and
¢ € —¢ +£2B*, we obtain v — €2 < (v. So, we have verified that ( lies in
Ee.

Thus, in all the cases for each v € B there exists a ( € =, that satisfies
(3.2).

Step 2. Define the sequence of functions h, : X — R by the following
rule:

hp () 2 sup (¢ —&)x for all z € X,n € N.
(EEc.MB*
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Notice that, for each n all the functions of family Z; N nB* are uniformly
locally Lipschitz continuous, therefore, by [9, Theorem 3.1(ii)], one has

AOhn(z) C ™ co U (¢ —&)(x)

(EE.NnB*

=l co ( —&+E:N nB*) C—E+cd¥ coZ. (3.4)

whenever = and n.
Further, the sequence of h,, allows us to rewrite (3.2) as

h(x) 2 sup hy(x) > —* for all z € B.
neN

Since h,,(0) = 0 whenever n, we establish that 0 is an e2-minimum of h on B.

Invoking the lower subdifferential variational principle [7, Theorem 2.28],
there exists a point & € eB and ¢ € Oh(z) such that ||C||« < e. In particular,
0 € Oh(&) 4+ eB*. Since sequence of h,, is non-decreasing, Lemma 2 ensures

0e ﬂ v U Ohy (") + e B*.

x>0 z'ex’'+»xB, neN

In account to eB* C U/4, substituting s 2 g, we find a 2/ € 2¢B and
n € N that satisfies 0 € Oh, (") + U/2. Now, (3.4) entails

OECI’”*CO(EeﬂnB*)—§+U/2CcoEe—f—i-U

and £ € cI¥ coZ. + U for sufficiently small . Since we can choose a
neighborhood U arbitrary, the relations (2.1)—(2.6) has been proved.

In the case of finite subset I', we can pick a positive ¢’ < ¢ that satisfies
[y < fy(&)4¢€ on &'B for continuous f and f, > f(Z)—e on &'B for upper
continuous f. Now, £ € ¢l coZE. 4 U yields (2.8). In particular, we obtain

e ﬂ ¥ co U df(x). (3.5)
e>0 vel', xez+eB,
|f7 (@)= f(@)|y<e, [f(@)=f~(2)]<e

Step 4. Fix a positive ». Recall that f(z) = 0, 2 = 0. Following
the proof of [11, Theorem 3.8], consider the set T = (Fin)(I') of all finite
subsets 7 of I'. This set is ordered by the relation C, the family of f7 with
T € (Fin)(T") is increasing and its supremum coincides with f. Applying
Proposition 2 to this family, substituting (3.5) with 2’ instead of & in (1.2),
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we get
£ec U Afr(x') U A fr(x")
x'€xB, TET, x'€xB, TE(Fin)(T),
fr(@)>=s, |fr(@)—fr(a’)|<s L7 (@) <z, [f7(2)| <23
C v U ﬂ ¥ co U 5f7(a:)
z'€xB, Te(Fin)(l'), >0 veT, z€x'+eB,
Lfr (@) <z, [f7(2)| <22 |fy (@)= f7 (@) |y <e, | f~ (@)= fy (z)|<e
C ¥ co U df(x).
vyel', x€2x%B,
| f (@) |y <23

Furthermore, |fy(z) — fr(2')]y < € together |fy(z") — fy(z)| < e gives
|fy(z")— fr(2")]y < 2e. Since we can choose ¢ small enough, we can exclude
continuous f, in the case fy(z) # fr(z). Therefore, f,(z) has to coincide
with fr(z’) for each continuous f,. This yields

£ec” U ﬂ ¥ co U df(x).

x'€xB, TE(Fin)(T), |fr(z')|<s,e>0 ~YET, z€a’+eB,
|fy (") = fr @)y <0 VyeT |f5 (@)= f~ (@)|<e

Since we can choose s arbitrary, we obtain (2.9) and (2.10). The theorem
has been proved.

Remark 7. In the proof above, the fact that a given X is not only is an
Asplund but also is Fréchet smooth, was applied only once: when referring
to a two-sided inequality (1.1) of Proposition 1. This allows us to hope
that this Theorem 1 will be fulfilled in all Asplund spaces.

4. Conclusion

In this article we refine the estimates of the Fréchet subdifferential for the
supremum. In particular, we replace the requirements (2.14),(2.15) with
(2.6),(2.1) for the case of continuous functions. By doing so, the obtained
in Theorem 1 convex and nonconvex estimates of Fréchet subdifferential
bridge the gap between the result of [9, Theorem 3.1(ii)] in the uniform Lip-
schitz case and the result of [11, Theorem 3.8] in the lower semicontinuous
case.
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