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Abstract. Logical-probabilistic machine learning (LPML) is an AI method able to
explicitly work with a priori knowledge represented in data models. This feature signifi-
cantly complements traditional deep learning knowledge acquiring. Object ontologies are
a promising example of such a priori models. They are an expanded logical analog of
object oriented programming models. While forming the core of the bSystem platform,
object ontologies allow solving the applied problems of high complexity, in particular,
in the field of management. The combination of LPML and object ontologies is capable
of solving the forecasting problems, the tasks of automated control, problem detection,
decision making, and business process synthesis. The proximity of object ontologies to
the LPML formalism due to the same semantic modeling background makes it possible to
integrate them within a single hybrid formal system, which is presented in this paper. In
the paper we introduce the approach to integration of these two formalisms and provide
some algorithmic basis for the implementation of the resulting hybrid formalism on the
bSystem platform.
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Awnnoraums. Jloruko-seposTHocTHoe MamuaHOe 00ydenue (JIBMO) — merom umckyc-
CTBEHHOI'O WMHTEJJIEKTA, KOTODBIA CIocobeH paboTaTb HE TOJBKO CO 3HAHUSIME, IOJIY-
YEeHHBIMHU Uepe3 IVIyOoKoe OOyteHHe, HO U C AlPUOPHBIMU 3HAHUSIMU, SIBHO IIPE/ICTaB-
JIEHHBIMH B BHJE Mojesieil naHHbIX. [lepcrieKTuBHBIM IpUMep TaKUX Mojeseil — 0ObeKT-
HblE€ OHTOJIOTMH, KOTODbIE SIBJISIOTCS PACHIMPEHHBIM JIOTHYECKUM AHAJIOIOM OObEKTHO-
OPHEHTHPOBAHHBIX MOJeJIedl B IporpaMMupoBannn. PearnsoBannble B pamMkax miaardop-
MBI bSystem 0O0bEeKTHBIE OHTOJIOTHMH IIO3BOJISIIOT PEINaTh IPUKJIAIHBIE 3aa9di BBICOKON
CJIO’KHOCTH, HAIpUMep B obusiactu ynpasjienus. Kombunaius Bosmoxkuocreit JIBMO u
OOBbEKTHBIX OHTOJIOTHI ITO3BOJISIET PEIIaTh 3349y [IPOrHO3UPOBAHUS, ABTOMATUIECKO-
IO KOHTPOJIsI, BBISIBJIEHUSI IIPOOJIEM, ITOIEPKKH IIPUHATHS PEIIeHU U CHHTe3a OH3Hec-
[IPOIIECCOB, HAIIPABJIEHHBIX Ha JOCTHKeHme neseil. Bimsocrs dopmanuzmos JIBMO u
O0ObEKTHBIX OHTOJIOTUH, OCHOBAHHBIX Ha CEMAHTUYIECKOM MOJIEJNPOBAHUH, [T03BOJISET UH-
TErpupoBaTh UX B paMKaX €JUHOI r'ubpuIHOM (OPMaJILHON CHCTEMBI, KOTOPast IIPEICTaB-
JIeHa B JAHHOI pabore. B Heil onmcbiBaeTcsi MeXaHW3M HHTETPAIUH ITUX JBYX CHCTEM
¥ 3aKJIaIbIBAIOTCH AJTOPUTMHUYECKNE OCHOBBI PEAJIM3AINU IIOJIy IHBIIEroCsi F'UOPUIHOTO
dopmasmama B pamkax maardopMbl bSystem.

KinoueBble ciioBa: 00beKTHAsI OHTOJIOIHS, JIOTUKO-BEPOSITHOCTHBIN BLIBOJ, T11aTMOPMa
bSystem

Ccbuika aiiss nurupoBaHus: Gavrilin D.N., Mantsivoda A. V. Object Ontologies as
a Priori Models for Logical-Probabilistic Machine Learning // Ussectusi pkyTckoro
rocynapcrsenHoro yuusepcurera. Cepust Maremaruka. 2025. T. 51. C. 116-129.
https://doi.org/10.26516,/1997-7670.2025.51.116

1. Introduction

The paper is focused on developing a hybrid formalism that combines
object ontologies and logical probabilistic machine learning (LPML). This
work is fulfilled in line with a strategic direction related to the use of seman-
tic methods to application (apps) development. We implement these tech-
niques on bSystem, a platform intended for web application development,
mainly in business administration and management.

Earlier we have developed the technology of object ontologies (also called
document models) [6], which are simple logical systems having the expres-
sive power close to that of object-oriented programming models, but based
on a logical formalism. An object ontology can be viewed as a basic model
that specifies the facts, terms, objects and relationships operating in a
subject domain. Reliance on logic makes such a description transparent
and semantically manageable.

An alternative — programmer’s — interpretation of object ontologies in
bSystem allows them to serve as data storages for applications [5]. Ontolo-
gies can evolve over time through transactional mechanisms [6].

A visualization method of model development [5] allowed us to imple-
ment within bSystem a new low-code technology (declarative low-code)
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based on automated code synthesis from the ontology. It increases de-
veloper productivity by 10-15 times.

In its turn, LPML [8] is a machine learning method that can bring seman-
tic (qualitative) analytics to developed applications. Semantic analytics
complements the operational layer and quantitative business intelligence
provided by object ontologies. This three-layer structure of applications
accompanied by a single data model, within which the layers interact with
each other, allow such applications to be characterized as ‘intelligent’, and
capable not only of supporting operations and business processes, but also
of self-monitoring, semantic process analysis, adaptation, forecasting, and
decision support.

Unlike neural networks, the result of deep learning in LPML is a set
of logical probabilistic production rules postulating the laws of the subject
domain. Thus, the process of deep learning in LPML can be understood as
revealing implicit knowledge about the subject domain, and the system of
rules itself can be considered as an automatically generated expert system
intended for helping in forecasts, decision-making, situation monitoring,
etc.

This feature explains some impressive capabilities of LPML:

— LPML can accumulate knowledge not only through deep learning, but
also discover it as direct a priori knowledge supplied by a formal model.

— LPML is able to explain its machine learning results (e.g., through
interpreting logical rules into human texts).

— The accumulated rules can be automatically analyzed within meta-
knowledge reasoning. Such activity corresponds to human holistic
analysis of the overall situation.

The integration of object ontologies and LPML within a unified formal-
ism is feasible because both LPML and object ontologies are based on the
same semantic modeling methodology [3]. It also provides a single data
space, in which the operational, analytical and AI layers of applications
interact.

The aim of this paper is to develop a formal system that integrates object
ontologies and LPML in the way that allows us to apply this formalism for
‘intelligent’ apps development, that is, such apps that combine operational
and intelligent features. Our plan for the development of such a formalism
is as follows:

— We nominate the object ontology as the a priori knowledge model, on
which LPML deep learning is based.

— We enrich the language of object ontologies with primitives that allow
introducing logical probabilistic rules.

—  We introduce a knowledge discovery method as an LPML deep learning
algorithm over ontology data.
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— Finally, we implement the logical and probabilistic superstructure over
object ontologies on the bSystem platform and provide an environment
for developing intelligent apps.

In future, we plan to develop a ‘meta-level’, which analyzes the resulting
production rules and builds up working strategies basing on this analysis.
In particular, if a task statement is formulated as the achievement of a
specific goal described by a formula F', then the solution of the problem
can be interpreted as a chain of transactions performed in the ontology that
turns F' into a production rule with a very high level of probability (e.g.,
> 0.999). Probably, the development of this meta-level could pave the way
towards the creation of a variation of artificial general intelligence (AGI)
based on the integration of object ontologies and LPML.

2. A Simplified Model of Knowledge Representation

A logical-probabilistic approach to machine learning that provides dis-
covering probabilistic laws on arbitrary data has been developed by E.E.
Vityaev [8]. In [1] it is shown that this approach can be useful in a variety
of applications.

In [8], the input data are represented in the form of a relational table
whose rows correspond to objects and columns to object properties. The
algorithm described in that article can be applied to data of various types.

In this paper we use a simplified data model based on Boolean data
types. That is, let B be a table whose rows represent some objects and
columns represent properties, and these properties can have only two states
1 and 0 . We can represent the table as matrix (2.1)

Bll B12 e Bln
Bs1 B ... Boy,

B= (2.1)

By Bna ... B

Let B = {By,Bs,...,By,}, where B; is i-th row of the table, and B; =
{Bi1, Bi2, ..., Bin}. Bij is the value in the cell located at the intersection of
the ¢-th row and j-th column. We also introduce a predicate P]‘? such that:

pe(By) = { B 1He=0
J _‘Bij’ ife=1

Let us consider the algorithm for discovering laws in this data model.
Let U(Th) = {A1, Ag, ..., Aop} be the set of all literals of the form A; =
Pg, where k is the column index, ¢ € {0,1}. We also introduce a target
predicate Ayg = P:, in which s is the index of the target column.
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We call a probabilistic law [8] a rule Ag, A Ag, A ... N Ay, — Ag,, whose
conditional probability is defined and is strictly greater than the conditional
probability of any of the subrules, that is, satisfying conditions (2.2) and
(2.3):

p(Ak()’Akl VAN Akn) >0 (22)

P(Agg|Apy Ao A Ag) > p(Apg| Ay A--- A Ay,)
Vv, ..o otm C{k1, ... kn} (2.3)

For discovering such laws we can apply the algorithm from [2] including
forecast generation and decision making.

Note that more advanced models can be converted into the simplified
data model introduced above. For instance, let us consider the initial
relational data model from [2]. Suppose, the original data is represented
as a relational table D, the rows of which correspond to objects and the
columns correspond to object attributes, i.e. D = {Dy,...,D,}, where the
row Dj; represents the i-th object, D; = {Dj1,..., D, }. Here D;; is the
value of the j-th property of the i-th object.

Let P = {Py,...,P,} be a set of predicates. By sequentially applying
the predicates to all data rows of table D, we form a new table B, where
for each row D;, B contains the row B; = {Bj1, ..., Bi,} such that B;; is
equal to the value of P;(D;). In this case B contains truth values and has
the form (2.1).

3. Probabilistic Object Ontologies

3.1. OBJECT ONTOLOGY MODEL

An object ontology is a simple logical model. In its expressiveness, object
ontologies are a logical analogue of object models in programming. Object
ontologies (also referred as document models) were considered in a number
of papers [4-6]. Processes are defined over ontologies [7], which can change
their state and content in time. In this paper we consider the ontology at
an instant moment, so suppose that its content is immutable.

Let © be a set of elements. We call a sequence (over ) the expression

(e1,..rem), € €8

We denote by () the empty sequence (which contains no elements). To
determine the number of elements in a sequence we define the notion of
cardinality and introduce the following cardinalities:

— () is the empty sequence

— 7 s a sequence containing zero or one element

— lis a sequence containing strictly one element

— + is a sequence containing at least one element
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— x is a sequence containing an arbitrary number of elements.

The set of names is a countable collection of constants N = {ny,ng, ...}.
This set consists of two disjoint subsets: the set of class names N and the
set of object field names Np.

A field type is a tuple

d=(d,c)

where d € Np is the field name and c is its cardinality. The field is
represented as a tuple

(d,v)

where d € Np is the field name, and v is its value as a sequence.
An object class is a tuple

f=(fdi,...,dn)

where f € Np is an object class, and dq, ...,dy, is a finite set of field types.
An object is defined as a tuple

0= <f’ /L'dadla )dn>

where f € N is the class name of the object, id is its unique identifier, and
di,...,d, is a finite set of object fields such that their names are identical
to the names from the field types of class f.

Definition 1. An object ontology is a pair containing a domain (a set of
valid field values) and a finite set of object classes D = (Q,f1, ..., fm).

A state of an object ontology is a finite set of objects {01, ...,0,}, where
each o; is an object of some class f; € {fi,..., £, }, and its fields have values
from domain Q.

3.2. THE LANGUAGE OF LOGICAL STATEMENTS OVER ONTOLOGY

In order to most effectively use the logical-probabilistic ML over object
ontologies, it is necessary to convert data from ontologies into a data model
compatible with the logical-probabilistic method. For this, we introduce a
special query language, which will help us to formulate logical statements
over ontologies.

A retrieval operator returns the value of a field named d in an object
denoted by x:

get(z,d).

Let M = (Q, Np, Np; get, exists, =, <,>) be a model augmented with
exists, equality and inequality relations, and x a variable. ezists(xz,d) is
true if the value of the field named d is not empty in z. A special query
language is defined as follows:
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— xis a term
— get(x,d) is a term
— e, where e € Q) is also a term
— the constants (identifiers of objects) id; are terms
— if t1,to are terms, then expressions of the form
e i1 =19, t1 equals ty
e {1 < to, ty is less than to
e t1 > to, t1 is greater than to
exists(z,d)
are atomic formulas.
— an atomic formula is a formula.
— if Fy, F5 are formulas then the expressions
o (Fy)
o [ A Fy
o [V Fy
o - F}
are also formulas.
If t is a term then the substitution F|! is a formula equal to the formula F,
in which all occurrences of the variable z are replaced by the term ¢.

3.3. THE INTERPRETATION OF PROBABILISTIC RULES

Let us define the interpretation function Ey as follows:

Ew(id) = o, where o is the object with identifier id
Ew(get(id, d)) ={E(id;) | M [ get(id,d) = v and id; € v}
Em(tl = tg) =M ): E(tl) = E(tg)
Em(tl < tz) =M ): E(tl) < E(tQ)
Em(tl > tz) =M ): E(tl) > E(tQ)

1, ME Jv: (get(id,d) =
Euenists(ia ) = 1 3 et d) = vnu £ )

0, otherwise
En((F1)) = E(F1)

1, E(F)=0,
Bu(~Fi) e

0, E(F)=1,

1, if BE(F1)=1and E(Fy)=1
Ew(F1 A Fy) =y ( 1.) and E(F) =1,

0, otherwise,

1, if BE(Fi)=1or E(Fy)=1
Ew(F1V Fy) =y ( 1.) or B(fe) =1,

0, otherwise.

Useectus MpKyTCKOro TOCyJapCTBEHHOTO YHUBEPCUTETA.
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Let {Fy, F1, ..., F},} be formulas with only one variable x. Then a rule R
is an implication of the form:

R:FiAN...\NF, = F (31)
By N(F) we denote the set of such objects o; that

N(F)={o; | M E(F|%) =1 and Ew(id;) = o;},
Then the conditional probability p(R) of the rule R is the ratio of the

number of objects on which both the premise and the conclusion are true
to the number of objects on which the premise is true:

N(Fy A ...NF, \ Fy)

p(R) = p(Fo|F1 ) N(FL A ... AN Fy)

(3.2)
where N(Fy A ... AN F,) > 0.

3.4. PROBABILISTIC LAWS OF OBJECT ONTOLOGIES

By analogy with the LPML model, we introduce a notion of a proba-
bilistic law over object ontologies. The logical-probabilistic approach looks
quite promising for object ontologies. Real-life data that we work with
can have errors and uncertainties, so strict logical laws can not be used
effectively under such conditions. On the other hand, probabilistic laws are
more flexible and sustainable in the context of noise, blurred data and info
gaps.

But we should take into account the following aspects. On the one hand,
we are interested only in those discovered rules, which have sufficiently high
conditional probability. A rule with conditional probability 0.1 (works for
at most each 10-th object) is not interesting, because only shows that the
dependence of the conclusion on the premises is very weak at best.

On the other hand, a rule should not be overloaded with premises in
order to be general enough. We denote py,;, the minimum value of the
conditional probability, which makes a rule a probabilistic law.

Definition 2 (Probabilistic Law). A probabilistic law is a pair (R, pmin),
for which the following conditions hold:

p(F()’Fl/\.../\Fn) > p(F()’Fkl/\.../\ka), Vki,...,km C {1, ,n} (34)

Condition (3.3) represents the requirement imposed on the conditional
probability. Condition (3.4) ensures that there are no insignificant premises
in the rule. If a rule have the same conditional probability with and without
a premise F; then this F; does not bring additional knowledge to our model.
It only makes the premises stricter and less general, and thus narrows the
scope of applicability.
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Definition 3 (Probabilistic Object Ontology). A probabilistic object on-
tology is a triplet (Q,f1,...,fm, L1,...Ly), where (Q;f1,....,fm) is an on-
tology, and Ly, ..., Ly are a collection of probabilistic laws defined on this
ontology.

The definition of a state of a probabilistic object ontology is similar
to that of an ordinary object ontology, that is, a finite set of objects
{01,...,01,}, where each o; is an object of some ontology class, and the
fields have values from domain €.

4. Integration of a Logical-probabilistic Inference Algorithm
into an Object Ontology Model

Let
§S=A{F,...,F,}

be some set of formulas containing variable »z and
0= {01,...,<Dm}

some set of objects. Having interpreted each formula by substituting z with
identifier id; for each object from £, we form the state matriz of the object
ontology:
Bll B12 “ee Bln
B21 B22 “ee BQ’I’L
B = . . .
Bmi Bm2 ... B

where Bij = Em(FJ‘;dl) and Em(’tdz) = 0;.

The matrix B is formed by interpreting the formulas from §, and thus
all its values are truth values reflecting the qualities of objects from ©O in
model M. B has form (2.1) and, thus, its data can be used for discovering
logical-probabilistic laws using the algorithm mentioned in section 2.

The selection of formulas from § allows us to focus our interest on a
specific segment of knowledge we want to discover in the ontology. We can
consider each F; € § as the definition of a concept, the behavior of which
we want to understand better. We also can use these formulas to discover
generalized knowledge, say, by grouping real values into ranges and con-
sidering the values belonging to the same range as indistinguishable. The
selection of such Fjs is one of the ways to configure the logical-probabilistic
machine learning solver and focus it on solving a specific task. The other
way to configure the search is the selection of the set of objects 9. In
real-life problems the exhaustive search over all ontology is frequently too
hard algorithmically, so we need to select those subsets of objects that, as
we think, correctly represent the general concepts, behavior of which we
want to investigate.
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Definition 4. Let § = {Fi,...,F,} and O = {01,...,0,,}. An ontology
segment based on § and O is such a structure (O,fFy,...,Fy,) that can
interpret formulas from §.

A ML procedure can be applied to an ontology segment if all class
symbols occurring in the formulas of § are among {fy,...,f,,}.

Lemma. An ontology segment is itself an object ontology.

An ontology segment has the same structure as the ontology from which
it was extracted, and since no additional constraints are placed on the
ontology, the proof of the lemma follows from definitions 1 and 4.

4.1. INTERPRETATION OF DISCOVERED LAWS

The laws obtained by the machine learning algorithm are built from the
formulas of the set § and thus can be interpreted in the context of the
initial object ontology. Suppose that as a result we have obtained some
probabilistic law

Ak1 /\"'/\Akn —>Ak0

Since by definition each element A; of the premise Ay, A --- A A,
represents some formula or its negation within the ontology M
F; e=0
A . =P(B)=Fc=1{¢""7 ’
T 7 ( Z) Vi _‘Fj, c = 1
then within the object ontology the probabilistic law can be represented by
a rule in the form (3.1)

€1 oo En €0
Fj1 A Aan — Fjo.

Further, each row B; of matrix B can be matched with some object o;.
Then

Ar(Bi) & En(F5 ) =1

Hence the conditional probability of the rule in terms of LPML is equal
to the same probability within the object ontology:

P(Akg|Aky A AN Ag,) = p(EDIF;E A ANEST)

0

Now if we select only rules with the conditional probability greater than
some threshold p,,.;» defined for the object ontology then their counterparts
in the ontology are also the probabilistic laws since condition (3.3) evidently
holds and (3.4) follows from (2.3) in the definition of probabilistic laws.

Thus, if we need to estimate the behavior of the object ontology in
the terms of formulas § then using the technique above we can convert
them into the form, for which the machine learning technique from [2] is
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applicable. Having found the probabilistic laws we can convert them back
to their counterparts working in the context of the object ontology. These
counterparts also appear to be probabilistic laws.

4.2. AN EXAMPLE

Let us consider a simple example about people. We have three properties
(fields) to characterise them: hairColor, age and occupation. The basic
formulas {F}, ..., Fio} select people with a specific hair color (F1, ..., F3),
the age range (Fy, ..., F7), and the occupation (Fg, ..., Fig):

Fy = get(x,hairColor) = "brunette"
F, = get(z,hairColor) = "blond"
F;5 = get(x,hairColor) = "green"
Fy = get(z,age) < 16
F5 = get(x,age) > 16 A get(x,age) < 25
Fys = get(z,age) > 25 A get(x,age) < 50
F; = get(z,age) > 50
(
(
(

Fy = get(x,occupation) = "musician"
Fy = get(x,occupation) = "scientist"
Fyp = get(x,occupation) = "student"

Suppose that we have a specific ontology that describes facts about specific
people, and for these people the following probabilistic laws have been
generated as a result of machine learning in the ontology:

L1 F4 — F10 0.98
Lo | F3N F5 — —Fy 0.95
L3 F7 — —|F3 0.999

Using linguistic patterns we can convert these laws into a text in the
natural language, and this text can explain us what is going on in our
model:

— Lq: if a person is under 16 then this person is a student, with proba-
bility 98% of being a scholar,

— Lo: if a person has green hair and is between 16 and 25 years old then
he/she is not doing science with high probability (95%),

— L3: if a person is over 50, it is almost certain (with probability 99.9%)
that this person does not have green hair.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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4.3. PREDICTION AND DECISION MAKING

Now consider how the prediction algorithm described in [2] can be ap-
plied to probabilistic object ontologies. A prediction is a formula used to
predict the value of a given object property. A prediction is valid if it
forecasts the property value with some high probability.

Suppose that we have discovered in an ontology some set of probabilistic
laws L = {Ly,...,L,}, 0 is an ontology object, denoted by constant id,
and we want to predict the outcome of an o’s property with k possible
alternatives that expressed by formulas {F},..., Fy}, respectively. Let
us partition the original set of laws into disjoint subsets {Lf1,... LFk}
selecting only those laws whose premises are true on object o and whose
conclusions are equal to F;, that is,

LFe={L | Lel A Cn(L)=F; AN Ew(Pr(L)|¥) =1},

where Pr(L) is the premise and Cn(L) the conclusion of the implication
L. For each L we determine the probability that the conclusion Fj is true
as the maximum conditional probability among all laws included in L%:
p(LE) = max{p(L) : L € LF7}.

Now, two options are available. In case if the property allows several
outcomes simultaneously (several F;s hold on the same object) then all F;
such that p(Lf") > §, where 6 € [0, 1] is some minimum threshold, can form
a prediction for the object o.

If the property can have at most one outcome (so at most one F; can
be true on the same object simultaneously) then it is necessary to make an
assessment of the consistency of the obtained result. For this, we define the
threshold of acceptable consistency 6 > 0 and then look for such a formula
F € {F,...,F,}, the probability of which is maximum:

p(LY) = max{p(L") | i € {L.n}}

Now, the obtained forecast result is consistent only if the minimum differ-
ence between p(L") and other p(L%?) is not less than the given consistency
threshold 6, i.e.

§ <min{p(L) — p(L*7) | i € {1.n}, L' # L7}

So, a prediction can be considered as valid only if we have a clear cham-
pion among all possible outcomes, otherwise the prediction fails. And the
reliability of a successful forecast depends on its probability.

In case of a mixed situation when some formulas from the initial set
should be pairwise contradictory and others can be true simultaneously,
it is necessary to partition this set into pairwise disjoint subsets in which
either all formulas are pairwise contradictory or can hold simultaneously,
and perform the forecasting procedure for each subset separately.
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Both situations, when the formulas are pairwise contradictory and when
they are not are quite practical. For instance, if we have continuous data
with possibly infinite number of values (like speed, weight etc.), it is con-
venient to partition them into a finite collection of subsets, so each object
can belong to no more than one subset (like we split child age into five
stages: newborn, infant, toddler, preschool, school-age). And we should
ensure that any object belongs to only one subset. On the other hand,
the properties can overlap like hobbies: I like music, tennis and hiking.
This means that several formulas describing hobbies can hold for the same
person.

5. Conclusion

In this paper we primarily consider only the static properties of proba-
bilistic object ontologies, that is, their states at instant moments and do not
take into account their capability to develop in time due to transactions
and processes [7]. But we think that the approach to machine learning
considered above has significant potential of acting in changing contexts.
For instance, periodical re-learning can be established that can reveal con-
ceptual changes in the ontology, and we can discover those changes via the
probabilistic law meta-analysis. In particular, this allows us to implement
the task approach [9] by targeting the goal using logical-probabilistic cri-
teria of the task solution and achieving this solution by finding the chain
of transactions that enable the ontology to comply with these criteria with
sufficiently high probability. That is, given a set of logical-probabilistic solu-
tion criteria L1, ..., Ly for a task T and a set of reals p1,...,pr, 0 < p; <1,
then a sequence of ontology transactions %1, ..., %, is a solution of the task
T if the consecutive application of these transactions to the ontology will
change it in such a way that

p(Lz) > p; for Vi € {1, ,k}

The probabilistic laws also can serve for making some qualitative assess-
ment of the ontology data at each instance of time. Some laws also can
appear and disappear during the ontology lifetime indicating some external
influences on the ontology. So we plan to investigate this and other topics
in more detail together with implementing on the platform bSystem the
logical-probabilistic machine learning approach described above.
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