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1. Introduction

Discrete fractional calculus is a unified theory of sums and differences
of arbitrary order. We find two approaches in the literature on fractional
differences: the A point of view (called the delta fractional difference) and
the V perspective (called the nabla fractional difference). In this article,
we confine ourselves to the second approach.

The non-local character of nabla fractional differences has attracted a lot
of attention to the theory and applications of nabla fractional calculus in the
last ten years. Nabla fractional calculus is an ideal tool for simulating non-
local phenomena in time or space. There is a long-term memory effect in the
nabla fractional difference of any function since it holds information about
the function at previous times. Many natural systems, including those with
non-local effects, are better described by nabla fractional difference equa-
tions than by integer-order difference equations [2;3;10]. A strong theory
of nabla fractional calculus for discrete-variable, real-valued functions was
developed as a consequence of the contributions of multiple mathemati-
cians. We refer to [5;6] and its sources for a thorough introduction to the
development of nabla fractional calculus.

The analysis of positive solutions to nabla fractional boundary value
problems has drawn more attention in the last ten years, because this
topic is essential for advancing both theoretical mathematics and prac-
tical applications across various disciplines, from mathematical analysis to
engineering and beyond. Among the noteworthy works cited are [4;7;8;11].
The following Sturm—Liouville boundary value problem for the Riemann—
Liouville nabla fractional difference equation is discussed in this article, and
adequate conditions for the existence of positive solutions are established.
These findings will enhance and expand upon the ones that already exist.

—(Vig—1y) (k) =k y(k — 1)), ke N o,
vy(ko) — 6 (Vy) (ko +1) =0, (1.1)
Cy() +n(Vy) (1) =0,
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where ko, | € R with [ — ko € Ng; y: Nf — R; F: Nf 5 x [0,00) = [0, 00)
is a continuous function; Vy stands for the first-order nabla difference of y;
1 <v<2and V}Zofly stands for the ¥-order Riemann-Liouville nabla
fractional difference of y based at kg—1. We assume the following condition:

(C)y>d>0,(>0,n>0such that v+ 6 >0 and ¢ +7n > 0.

The current article is structured as follows. Preliminaries on nabla frac-
tional calculus are presented in Section 2. We build the Green’s function
related to (1.1) in Section 3. Additionally, we include some of its fundamen-
tal characteristics, such as positivity. Enough conditions are established in
Sections 4 and 5 for the presence of positive solutions to (1.1). The Guo-
Krasnoselskii fixed point theorem is utilized to demonstrate the presence
of positive solutions. We express this theorem in the following manner for
convenience:

Theorem 1. [12] Let Y = (Y,||-||) be a Banach space, and P C'Y be
a cone in'Y. Let wy and we be two bounded open sets in'Y with 0 € w1,
W1 C wy. Let B : PN (wa\w1) — P be a completely continuous operator.
Suppose that one of the two conditions

1) 1Byl < llyll, y € PN dwy, and || By|| = [[yll, y € PN Ows; and
2) | Byl = llyll, y € PN 8wy, and | By| < |lyll, y € P N 0wa,
is satisfied. Then, B has a minimum of one fixed point y in P N (Wa\w1).

Theorem 2. [12] Let Y = (Y, - ||) be a Banach space, and P C'Y be a
cone in Y. Let wy, wy and ws be three bounded open sets in Y such that
0 € wy, W1 C we, and Wy C ws. Let B : PN (w3\wy) — P be a completely
continuous operator. Suppose that one of the two conditions

1) Byl = llyll, y € PN dwr, Byl < |lyl| and By #y, y € PN ez, and
1Byl = llyll, y € PN ows; and

2) 1Byl < llyll, v € PN 8wi; [| Byl = |ly|| and By # y, y € PN w2, and
1Byl < llyll, y € PN s,

is satisfied. Then, B has a minimum of two fized points y1 and yo in
P N (Ws\w1); moreover, y; € wo\w1 and y2 € wW3\wa.

2. Preliminaries

We use the following fundamentals of discrete fractional calculus [6]
throughout the article. Denote by N, = {p,p + 1,p+2,...} and N} =
{p,p+1,p+2,...,q} for any real numbers p and ¢ such that ¢ — p € Nj.

NsBectusi pKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtukay. 2025. T. 51. C. 50-65
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Definition 1. [6] The Euler gamma function is defined by
I'(2) :/ e %5 lds, R(z) > 0.
0

Using the reduction formula
I(z+1)=2I(z), R(z)>0,

the Euler gamma function can also be extended to the half-plane R(z) <0,
except for z € {--- ,—2,—1,0}.

Definition 2. [6] For any «, 8 € R, the generalized rising function is
defined by

%, a,a+BER\{...,—2,—1,0},
OZE: 17 0426:0,
0, =0, BER\{...,—2,—1,0},

undefined, otherwise.

Definition 3. [6] The v*"-order nabla fractional Taylor monomial is

(k—ko)® _ T(k—ko+v)
Fw+1) T(k—ky)l(v+1)

Ho (k. o) = veRN{...,—3,—2 —1},

provided the expression on the right-hand side is well-defined.

Definition 4. [6] Let y : Ny, — R and N € Ny. The first-order nabla
difference of y is defined by

and the N*'-order nabla difference of y is defined recursively by
(VM) (k) = (V (VYY) (k). & € Nigrw.

We collect some important properties of nabla fractional Taylor mono-
mials in the following lemma.

Lemma 1. [6] The following properties hold, provided the expressions in
this lemma are well-defined.

1) Hv(k07k0) =0;
2) Ho(k, ko) = 1;
3) Hy(k, ko) =0 for k € Ni, andv € {...,—3,-2,—1};
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4) VHU(k7 kO) - HU—l(kka);

k
5) > Huls ko) = Husa (k, ko).
s=ko+1

Definition 5. [6/ Let ¥ > 0 and y : Ny,4+1 — R. The 9"-order nabla
fractional sum of y based at kg is

k
)
(Taln) = 2 Hoosls = o). ke,
s=ko

where by convention (V;fy) (ko) = 0.

Definition 6. [6] Let 9 > 0 and y : Ny, 41 — R. The 9*"-order Riemann—
Liouville nabla fractional difference of y based at kg is

(v;joy) (k) = (vN (V;O(N_ﬂ)y)) (), N—1<9<N, NeNi,

fOT’ ke NkO+N.

In the following result, we show that the traditional definition of a nabla
fractional difference can be rewritten in a form similar to the definition for
a nabla fractional sum.

Theorem 3. [1] Let ¥ > 0 and y : Ny, — R. The 9"-order Riemann—
Liouville nabla fractional difference of y based at kg is

k
(v;joy) (k)= > H_g_a(k,s—1)y(s), N—=1<9 <N, N €N,
s=ko+1

for k € Ngo11.

Remark 1. Let 0 < ¢ < 1. From Theorem 3, we observe that the value of
(V}goy) (k) depends on the values of y on D\I’,go 41+ This full history nature of

the 9-order nabla fractional difference of y is one of its important features.
In contrast the value of (Vy) (k) depends on the values of y at the points
k —1 and k only.

We present some important composition rules of nabla fractional sums
and differences.

Lemma 2. [6] Let y : Ngo+1 — R and p, 9, v > 0. Then,
1) (T (Vi) ) ) = () (), ke Ny,

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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2) (v, (v,;oﬂy)) (k) = (vz(j“y) (k), where N —1 <9 < N, N € Ny,
G D\‘k0+N.

Theorem 4. [6] Let 9 > 0. The homogeneous nabla fractional difference
equation

(Vi _1y)(k)=0, N—-1<9<N, NeNi, k€eNgin,
has a general solution
N
k) =Y DiHy_i(k, ko — 1), k€ Ng,.
i=1
Here, D1, D5, ---, Dy are constants.

Theorem 5. Let 9 > 0. The nonhomogeneous nabla fractional difference
equation

(Vi _1y)(k) =p(k), N—1<d9<N, NeN;, keNgin, (2.1)

has a general solution

N
k) =Y DiHy_i(k, ko — 1) + (Vi y_1p) (B), & € N,
i=1
Here, D1, Da, ---, DN are constants and p : Ng,+n — R.

Proof. In view of Theorem 4, it is sufficient to show that (Vk. N 1p) (k) is
a particular solution of (2.1). Denote by

q(k) = (V" y_1p) (K), k€ N,

It is enough to show that ¢ satisfies the nonhomogeneous nabla fractional
difference equation (2.1). That is,

(Vip-10) (k) = p(k), k€ Nigyyn- (2.2)

To see this, for k € Ng,+n, we have

(Vig-19)( ZHﬁlkS—l)() (By Theorem 3)
s=ko
ko+N—1
= > H_y_i(k,s—1)qls ZHglkjs—l)()
s=ko sk:0+N
ko+N—-1
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We observe that
(V;OﬁN_lp) () =0, seNoNL (2.3)

Now, for k € Ng,+n, consider

(V1) () = (Vhoor (Vidhnoap) ) (B) =

ko+N-—1
= > Hoalks =) (Vi) (9)+
s=ko
+ (Vv (Vilinoap) ) (k) = p(h),
(By (2.3) and Lemma 2) which completes the proof. O

3. Green’s Function and Its Positiveness

In this section, we construct the Green’s function for the linear boundary
value problem

— (Vi _1y) (k) = z(k), keN, .,
vy(ko) — 0 (Vy) (ko +1) =0, (3.1)
Cy(l) +n(Vy) (1) =0,

associated with (1.1), and state a few of its essential properties, including

positivity. Here, x : kao 4o — R. We introduce the following notations for
this purpose.

ap = v+4(1—9),
ay = v+96(2—-9)=a+9,
w = (Hy—a(l, ko — 1) + nHy—5(l, ko — 1),
A = azp(ko) — arw,
¢(m) = (Hy_1(l,m — 1) + nHy_o(l,m — 1), m e N},
w(m) = agHy_1(m, ko — 1) — a1Hy_s(m, ko — 1), m € Nj,.
We begin with the following lemma.
Lemma 3. The following properties hold:
1) a; >0, ag >0 and ¢p(m) > 0 for m € D\llo;

2) A >0;

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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3) w(ko) > 0, and w is a positive nondecreasing function on D\lémﬂ.

Theorem 6. The unique solution of the linear boundary value problem
(3.1) is
l

y(k) = > Gk, s)a(s), kN, (3.2)
s=ko+2
where )
. gl(k,s), ke D\lio_ ,
G(k,s) = {gQ(k,s), ke n (3.3)
with L
Gi(h,5) = “os),
and

Qg(k,s) = Ql(k:, S) — Hﬁfl(k),s — 1)

Proof. From Theorem 5, a general solution of the nonhomogeneous nabla
fractional difference equation in (3.1) is

y(k) = CiHy_1(k, ko—1)+CoHy_s(k, ko—1)— (V;.', ) (k), k € N, (3.4)

where C] and Cy are arbitrary constants. Now, applying V on both sides
of equality (3.4), using Lemma 1 and Lemma 2, we obtain

(Vy)(k:) = Cng_g(k:, k071)+C2H19_3(k, k‘o*l)* (V}m*flx) (k‘), ke Ngﬁo-i-l'

(3.5)

From the first boundary condition yy(ko) — 6(Vy) (ko + 1) = 0 in (3.4) -
(3.5), we get

a1C1 4+ axCy = 0. (36)

From the second boundary condition Cy(I) + n(Vy)(l) = 0 in (3.4) - (3.5),

we obtain
l

$(ko)Cr +wCo = > d(s)a(s). (3.7)

s=ko+2
From (3.6) and (3.7), we have

Cr=7 Y els)(s) (3.8)
s=ko+2
and l
CQZf% 3 os)a(s). (3.9)
s=ko+2

Substituting the equalities (3.8) and (3.9) in (3.4), we obtain (3.2). O
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Lemma 4. The Green’s function defined in (3.3) obeys the following char-
acteristics:

1) 0 <Gk, 5) <G(s —1,s), () € Ny X N
2) There ezists a positive number o € (0,1) such that
G(k,s) > o0G(s—1,s), (k,s)€ D\IZ:H X D\I20+2,

where

1 A
wl = 1) ’ C+(C+n) (k)

(3.10)

g

Proof. We refer to Lemma 6 and Lemma 7 of [9] for the proof of (1). The
proof of (2) is also available as Lemma 8 of [9]. We rewrite it here when
(k,s) € D\lg}rl X D\I§€0+2. For this purpose, consider

gl(kas) s—1
Gks) ) Gi(s 1,9 "Nk (3.11)
G(s—1,s) _Ga(k,s) Ee N .
Gi(s—1,8) ©

It follows from Lemma 7 of [9] that
Gi(k,s) > Giko +1,5), k€N, s €N,

and
Go(k,s) > Go(l—1,8), keNT' seN,

Then, from (3.11), we obtain

(Gi(ko +1,5) 51
Ghs) o)1) F &N

G(s—1,8) = | G2(l —1,5) ke N-1
Gi(s—1,8)’ s

w(ko + 1) s—1

- # & Nt
T ywl -1 AHy (I-1,5s-1) ke N1
w(s —1) w(s —Do(s) s

1 w(ko + 1), keN!

= — H (l—ls—l) ol
v—1 ) -1
ws—l Q,Ul—l—)\ , kGD\]S .

(3.12)

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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Now, for k € N.-! and s € D\l20+2, consider

Hﬁ,l(l—l,s—l) - Hﬁ,l(l—l,s—l) o
o(s) CHy—1(l,s — 1) +nHy_2(l,s — 1)
- Hy_1(l,s—1) Ho_o(l,s—1) —s— _
CHﬁfl(llfl,Sfl) + nHﬁflé*l,S*l) C (%) + n (119781>
1 1
= — < —. (3.13)
CHcrm (32E) T e (k)
Using (3.13) in (3.12), we get
w(ky + 1), keN—L
Ghs) _ 1 E ' | ) A )
G(s—1,8) —w(s—1 w(l —1) - — keNg .
ot Tty C+(¢+m ()
(3.14)
Since w is a positive increasing function on D\IZO 4o, from (3.14), we have
w(ky + 1), ke Nt
G(k,s) 1 E 0 | ) A o1
Qs—l,s_wl—l w(l —1) — - , k?GD\ls ,
(8= hs) Tl =1 C+ ¢ (k)
which completes the proof. Clearly, 0 < o < 1. O

4. A Positive Solution

This section deduces adequate conditions on the existence of a positive
solution to (1.1) using the Guo—Krasnoselskii fixed point theorem. From
Theorem 6, we obtain the equivalence between the solutions of (1.1) and
the solutions of the equation

l
y(k) = Z G(k,s)F(s,y(s—1)), ke D\Ifgo.

s=ko+2
Let

B={y: N1 = Rlyw(ko) = 5 (V) (ko +1) = 0, Cy(l) +n (Ty) (1) = 0}

Then, B is a (I — kg — 1)-dimensional Banach space equipped with the
maximum norm defined by

)

Iyl = masx Jy(k)

kg+1
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for any y € B. Define the operator S : B — B by

l
(Sy)(k) = > Gk, 5)F(s,y(s = 1)), k€ Nj.

s=ko+2

Obviously, y is a fixed point of S <= vy is a solution of (1.1). Let

K = {y eB | y(k) >0 for k € D\l%il, k:emlifll y(k) > J||yH} ,

ko+1
where o is given by (3.10). Clearly, K is a cone in B.
Lemma 5. S (K) C K.

Proof. Let y € K. Clearly, Sy > 0 for all k € ka-;lrl' Consider

l
min (Sy)(k) = min | > G(k,9)F(s,y(s —1)| =
ken\lko-H kEINko-Fl s=ko+2

l

l
> 3 min (G 3u(s—1) 20 3 Gls—1s)3(s,u(s—1)) 2

—1
s=ko+2 FENko 11 s=ko+2

l
>0 ) vt [G(k, 5)]S(s,y(s — 1)) =
s=ko+2 ko+1

l
>0 max | Y G(k9)3(s,y(s - 1)| = oSyl

ko+1 | s=ko+2

Therefore, Sy € K. O
Denote by
l

a= Z G(s—1,s).

s=ko+2

Theorem 7. Suppose we have two positive numbers 0 < m < M < oo
such that

(A1) §(k,€) < = (k&) € Niyp x [0,m];
(A2) () 2 o, (5,€) € My x [0, M],

where o is given by (3.10). Then, (1.1) has a minimum of one positive
solution y € K such that m < |ly|| < M.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «Maremarukas. 2025. T. 51. C. 50-65



NABLA FRACTIONAL STURM-LIOUVILLE PROBLEMS 61

Proof. Define the sets
wlz{yEK | lyl| <m} andwgz{yGK | llyll <M}.

Clearly, wy and we are bounded open subsets of B with 0 € wq, w1 C wo,
and S : K N (w2\w1) — K is a completely continuous operator. In order to
apply Theorem 1, we separate the proof into the following two steps:

Step 1: Let y € K N 0w;. Then, we have 0 < y(s) < m for all s € D\Ig}rl.
It follows from (Al) and Lemma 4 that

l

ISyl = max | > Gk s)F(s,y(s — 1) | <

ko+1 | s=ko+2

!
<2 max | Y Ghs)| < T max  [G(k, 5)] <
@ RENL b1 | sShot2 Y o2 FEN
!
m
<™ S Gls-Ls)=m=yl.

s=ko+2

Step 2: Let y € K N Jws. Then, we have 0 < y(s) < M for all s € N%il’
and
min y(s) > olly]| = oM.
SeNgc;}&-l

implying that oM < y(s) < M for all s € D\ILE}H. Consider

l
(Sy)(k) = > Gk, 5)F(s,y(s — 1))

s=ko+2
l
M
> M Gk By (A2)
s=ko+2
M l
> 2 _
= Z G(s—1,s) (By Lemma 4)
s=ko+2
=M = [ly|],

implying that ||Sy|| > ||y|| for y € K Ndw,. Hence, by the first condition of
Theorem 1, (1.1) has a minimum of one positive solution y € K such that
m < |lyll < M. O

Theorem 8. Suppose we have two positive numbers 0 < m < M < oo
such that

m
(B1) 3(k,€) > —.  (k,€) € Nj, 1p x [0,m];

oo
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(B'Q) g(kvf) < %7 (k,f) € Ni:o—f—Q X [JMv M];

where o is given by (3.10). Then, (1.1) has a minimum of one positive
solution y € K such that m < ||y|| < M.

Proof. The proof is similar to the proof of Theorem 7. So, we omit it [J

5. Twin Positive Solutions

Here, we deduce adequate conditions on the existence of two positive
solutions to (1.1) using the Guo—Krasnoselskii fixed point theorem.

Theorem 9. Suppose we have three positive numbers 0 < m < p < M <
oo such that

(A1) §(k,€) < = (k&) € Ny p x [0.1];
(43) §(k.&) > =, (k&) € Wiy x op.p;
(A4) Bk €) < o, (K.8) € Ny x [0 M],

where o is given by (3.10). Then, (1.1) has a minimum of two positive
solutions y1, y2 € K such that m < ||y1|| <p < ||y2]| < M.

Proof. Define the sets wy = {y € K | [ly|| <m}, wa ={y € K | [ly| <p},
and wy = {y € K | |ly| < M}. Clearly, wy, wy and ws are three bounded
open sets in B such that 0 € wy, w1 C we, Wa C w3, and S : KN(w3\w1) = K
is a completely continuous operator. In order to apply Theorem 2, we
separate the proof into the following three steps:

Step 1: Let y € K N 0w;. Then, we have 0 < y(s) < m for all s € D\Ig}rl.
It follows from (Al) and Lemma 4 that

l
1Syl = max S Gk 9)F(s,y(s —1)| <

ko+1 | s=ko+2

l

l
max Z G(k,s) §% Z max [G(k,s)]

-1
ken\lko-H s=ko+2 s=ko+2 ko+1

<

23
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Step 2: Let y € K N 0wy. Then, we have 0 < y(s) < p for all s € D\If,C <1H’
and

min - y(s) > olly|| = op,

se ko+1

implying that op < y(s) < p for all s € D\lk 41~ Consider

!
Z G(k,s)F(s,y(s —1))

S_k‘0+2

M

G(k,s) (By (A3))

s=ko+2
l
> P G(s—1,s) (By Lemma 4)
a s=ko+2
==yl
implying that
1Syl > llyll, ve€KNIw,. (5.1)

Further, by (5.1), Sy # y for y € K N 0ws.
Step 3: Let y € K N Jws. Then, we have 0 < y(s) < M for all s € N

k‘o-i—l’
and

min  y(s) > oljy| = oM,

s€ k0+1

implying that oM < y(s) < M for all s € D\lk 41- It follows from (A4) and
Lemma 4 that

l

1Syl = max ST Gk 9)F(s,y(s — )| <

ko+1 | s=ko+2

l

M l M
< — max E Gk,s)| <— E max [G(k,s)] <
o ke INl 1 o k:ElNl 1
ko+1 | s=ko+2 s=ko+2 ko+1

l

M
<— D Gls—1s) =M=yl

s=ko+2

Hence, by the first condition of Theorem 2, S has a minimum of two fixed
points y; and yo in K such that m < ||y1|| < p < [Jy2]] < M. O

Theorem 10. Suppose we have three positive numbers 0 < m < p < M <
oo such that

(B1) §(k,6) 2 = (k&) € Ny 5 x [0.m];
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(BSJ) %(kag) < g’ (kag) € [NﬁcOJrQ X [O-pap];
M
(B4) §(k:&) = —.  (k,€) € Nygyp X [oM, M],

where o is given by (3.10). Then, (1.1) has a minimum of two positive
solutions y1, y2 € K such that m < ||y1|| <p < ||y2]| < M.

Proof. The proof is similar to the proof of Theorem 9. So, we omit it [J

6. Examples

We provide a few examples to illustrate the applicability of established
results.

Example 1. (Dirichlet Conditions) Consider (1.1) with kg =0, [ = 5,
9 =15 6=n=0~v=C=1and (k&) = & + 3E for all (k,¢) €
N3 x [0,00). We obtain that ¢ = 0.0357 and o = 4.0636. Clearly, ¥ is a
continuous function. If we take m = 555 and M = 1 so that (B1) and (B2)
hold. Then, by Theorem 8, (1.1) has a minimum of one positive solution

y € K such that m < [jy|| < M.

Example 2. (Right Focal Conditions) Consider (1.1) with ky = 0,
=5 09=1535=C=0v=n=1and §k¢ = & + 2L for all
(k, &) € N3 x [0,00). We obtain that o = 0.2501 and o = 14.6306. Clearly,
§ is a continuous function. If we take m = 1 and M = 25 so that (B1)
and (B2) hold. Then, by Theorem 8, (1.1) has a minimum of one positive

solution y € K such that m < |ly|| < M.

7. Conclusions

In this article, we developed a theory to study the existence of positive
solutions to the problem (1.1) under natural conditions, for this we applied
the Guo—Krasnoselskii fixed point theorem, after constructing and studying
the function of Green associated. In the near future, we want to extend
our results to other nabla fractional difference operators.
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