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Abstract. This research focuses on addressing both linear and nonlinear fuzzy Volterra
integral equations that feature piecewise continuous kernels. The problem is tackled
using the method of successive approximations. The study discusses the existence and
uniqueness of solutions for these fuzzy Volterra integral equations with piecewise kernels.
Numerical results are obtained by applying the successive approximations method to
examples for both linear and nonlinear scenarios. Error analysis graphs are plotted
to illustrate the accuracy of the method. Furthermore, a comparative analysis is pre-
sented through graphs of approximate solutions for different fuzzy parameter values.
To highlight the effectiveness and significance of the successive approximations method,
a comparison is made with the traditional homotopy analysis technique. The results
indicate that the successive approximation method outperforms the homotopy analysis
method in terms of accuracy and effectiveness.
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Awnnoranus. Vccnemyercs Teopust JUHEHHBIX U HEJIUHEHHBIX HEYETKUX MHTErPAJIBHBIX
ypaBHeHuit BosibTeppa ¢ KycouHO-HENmpepbIBHBIMU siapaMu. [Ipobema permaercst ¢ wc-
[I0JIb30BAHUEM METO/IA MOCJIe0BATEIbHBIX NpubmKkeHuii. PaccMoTpeHbl BOmpocs! cyiie-
CTBOBAHWSI M €IMHCTBEHHOCTU PEIIEHUN JIsi HeYEeTKUX WHTErpajbHBIX ypaBHeHUit Bosb-
Teppa € KYCOYHBIMU sIpaMU. UUCJIEHHbIE PE3YJIbTATHI [IOJIYyYeHBbI IyTeM MPUMEHEHUs
MeTOJIa TOCJeJOBATEIbHBIX NTPUOINKEHNI KaK K JIMHEHHBIM, TaK W HEJTWHEAHBIM WH-
TerpajibHbIM ypaBHeHHsIM BoJibTeppa ¢ KyCOYHO-HENPEPBIBHBIME siApamu. llocTpoeHbr
rpaduKu IS aHAJIN3a OIMIMOOK C IEJbI0 MJIIIOCTPAIIMA TOYHOCTA MeToja. Kpome Toro,
[IPE/ICTABJIEHO CPABHUTEJIBHOE HCCJIEIOBAHUE, TJI€ UCIIOJIB3YIOTCS I'DAGUKN IPUOIIMKEH-
HBIX PEIIeHMil [JIsi Pa3JIMYHBIX 3HAYEHUN HEYEeTKUX IapaMeTpoB. UToObI IMOMYepKHYTH
3 PEKTUBHOCTD W 3HAYUMOCTH METOJA IOCJIEI0BATEIbHBIX MPUOINKEHUN, TTPOBOINTCS
CpaBHEHME C TPAJUIMOHHON TEXHUKONW TOMOTOMUYIECKOTO aHAJIN3a. Pe3yIbTarsl MOKa3bl-
BAIOT, YTO METO/I, TIOCJIEIOBATEILHBIX MTPUOJIMKEHII TPEBOCXOIUT METOJI, TOMOTOIMNIECKO-
ro aHaJIM3a 110 TOYHOCTH U 3(PHEKTUBHOCTH.

KuaroueBble ciioBa: HeYeTKOEe MHTErPAILHOE ypaBHeHHe Bosbreppa, KycOdHOe sIpo,
I10CJIEIOBATEIbHAST AIIIIPOKCUMAIINST, OIEHKA ITOI'PEITHOCTH
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1. Introduction

Fuzzy integral equations (FIEs) represent significant and applicable
challenges across various disciplines, including engineering, physics, biology,
and chemistry. Research by Bede and Gal [5], Friedman and Ma [11], and
Goetschel and Voxman [12] has contributed to the theoretical understand-
ing of FIEs. Ziari and Abbasbandy addressed nonlinear FIEs through the
application of fuzzy quadrature rules [30]. The Reproducing Kernel Hilbert
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space method was utilized by Javan et al. [10], while Asari et al. explored
radial basis functions in their work [4]. Amirfakhrian et al. implemented
fuzzy interpolation techniques to tackle FIEs [2]. Additionally, numerous
other methods for solving FIEs are discussed in [1]. The well-known sinc-
collocation method was employed in [17] to solve fuzzy Fredholm integral
equations. In [8], a combination of the homotopy analysis method and
Laplace transformations was used to investigate Abel-type FIEs. Further-
more, the CESTAC method and the CADNA library were applied in [9; 18]
to optimize the results of the homotopy analysis method for solving FIEs.

Volterra integral equation with piecewise continuous kernel is known
and applicable problem which can be employed in various balance prob-
lems including electric loading problem. Sidorov et al. in [7;24] studied
the generalized solution of Volterra integral equations. Solvability of this
problem has been illustrated by Sidorov in [25; 27| and Muftahov and
Sidorov in [14]. The successive approximation method was used to find the
solution of Volterra integral equations in [26]. The numerical solution of
this problem can be found in [15]. Also some numerical and semi-analytical
methods can be found for solving Volterra integral equations with piecewise
kernel such as the spline collocation method [29], Lagrange-collocation
method [19], Adomian decomposition method [20], homotopy perturba-
tion method [21], the collocation method with Taylor polynomials [22] and
other [23]. For more details on the theory of Volterra integral equations with
piecewise continuous kernels readers may refer to monograph [28]. Such
equations naturally generalizes the non-classic Volterra equations studied
in monograph [3].

This research focuses on a new category of fuzzy Volterra integral equa-
tions that feature a piecewise continuous kernel as

m’ 3¢(p)
t=1 t—1(P

(1.1)
where

by =:d0(p) < d1(p) < ... <Op—1(p) <Opr(p) :i=p, b1 <Pp<T <o

The kernel W;(q,p) is defined as a crisp and positive function over the
square region by < q,p < T < by. The function S(p) represents a fuzzy real-
valued function, and G : RF — RF is continuous. Additionally, W;(q, p)
is characterized as a piecewise kernel along continuous curves d&;(p) for
t=1,2,...,m'. Consequently, the functions Wi(q, p), Wa(q,p), ..., Wi (q, p)
exhibit uniform continuity with respect to ¢, and there exists a constant
M; > 0 such that My = maxy, <qp<b, |Wi(q,p)|. We employed the method of
successive approximations to address problem (1.1). The theorem regarding
the existence of solutions is also examined. Furthermore, the main theorem
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is demonstrated below to provide error estimation for the problem. By
solving various examples in both linear and nonlinear contexts and plotting
error graphs along with graphs of fuzzy approximate solutions, we illustrate
the capability and efficiency of the method.

This paper is organized as follows. Section 2 provides the preliminaries
of fuzzy mathematics. Section 3 is the main idea of this study. Also in
this section the main existence of solution theorem is illustrated. Section
4 shows the error estimation of the successive approximation method for
solving problem (1.1). Section 5 provides the linear and nonlinear examples.
Using some graphs we show the accuracy of the method. Section 5 is the
conclusion.

2. Preliminaries

We have reported the main definitions and theorems of fuzzy mathemat-
ics [5;6;11-13;16].

Definition 1. Based on the following properties a fuzzy number p : R —
[0,1] can be defined as a function:

1) p is normal which is Jzg € R;p(xg) = 1,

2) p is fuzzy convea set p(yz + (1—~)y) > min{p(z), p(y)}, Va,y € R,y €
[0,1].

3) p is upper semi-continuous on R,
4) {x € R:p(x) >0} is a compact set.
R, shows all fuzzy numbers sets.

Definition 2. (p(¢),p(¢)),0 < € < 1 is the parametric form of an arbitrary
fuzzy number satisfying the following conditions:

1) p(e) is a bounded left continuous non-decreasing function over [0, 1],
2) p(e) is a bounded left continuous non-increasing function over [0, 1],
3) p(e) <PE).0<e < 1

We show the scalar multiplication and addition of fuzzy numbers as:

1) (p@p1)(e) = (p(e) + pi(e),p(e) +pi(e)),

2 one={{]

=S
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Definition 3. Let p = (p(¢),p(¢€)), p1 = (p1(€),P1(€)) be two fuzzy num-
bers then the distance can be defined as

D(p,p1) = sup max{|p(e) — p(e)l, [p(e) — Pr(e)[}-

We have the following properties for distance D.

Theorem 1. 1) (R;,D) is a complete metric space,
2) D(p @ p2,p1 @ p2) = D(p, p1)Vp,p1,p2 € Ry,
3) D(k®pak ®p1) = |k|D(p,p1)aVP,P1 € [Rf Vk € [R’

4) D(p @ p1,p2 ® p3) < D(p,p2) + D(p1,p3)Vp, p1,p2, 3 € Rp.

Theorem 2. 1) We have a commutative semigroup for (Ry,®) with the
zero element (Ry,®).

2) There is no opposite element if there are fuzzy numbers which are not
crisp (Rp,®) cannot be a group).

3) ¥by,ba € R with by,ba > 0 or by,by < 0 and Vp € Ry, one get (by +
b)) Op=b1 ©p® by O u.

4) Yy €R and p,p1 € Ry, one get YO (p@®p1) =7 OpSyOp1
5)Vvy,e €R and p € Ry, one get 7y ©® (e ©® p) = (ye) @ p.

6) There is the general attributes of the norm for of ||.|f : Ry — R by
Ipllr = D(p,0) which is |[plly =0 p=0,|[yopl =hllpl, and
lp @ pille < lpllr + [Pl

7) llplle +1pille | < D(p,p1) and D(p,p1) < plr + pill for any p,pr €
R .

Definition 4. Continuity of a fuzzy real number valued function H :
[b1,b2] = Ry can be defined in x¢ € [by,ba] as Ve > 0, Ip > 0; D(H(x),
H(zp)) < e, whenever x € [by,ba] and |z — xo| < p.

Definition 5. Assume that H : [b1,bs] — Ry is a bounded mapping. The
modulus of continuity wpy, p,)(H,.) : Ry U{0} = Ry is defined as

Wby bo] (H; p) = sup{D(H (z), H(y)) : =,y € [b1,bo], [z —y[ < p}.  (2.1)
Also wip, p,)(H, p) is the uniform modulus of continuity of H if
H € Crlby, ba).

Theorem 3. We have the following properties for the modulus of conti-
nuity:
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1) D(H(x), H(y)) < wy, py)(H, |z = yl) for any z,y € [b1, bo].
,p) 18 increasing function of p,
,0) =

2) wipy gy (H
(H

4) Wiy pe) (H, p1 + ,02) Wiy o] (H, 1) + Wiy po) (H, p2), p1,p2 >0
(H,
(H

3) Wiby,bo]
5) Wiy bo) (H,mp) < nwpy, 4,1 (H, p) for any p >0 andn € N,
6) Wi, po) (H,vp) < (v + Dwpp, o) (H, p), p,7v >0,

7) For [bs,ba] C [b1,b2] one get wyy, p,)(H, p) < wip, p,)(H, p)-

Definition 6. Assume that H : [by,bs] — Rp. H is a Riemann integrable
of fuzzy type to I(H) € Ry if Ve > 0, Jp > 0; V division P = {[p,p1] : £}
of [b1,ba] with the norms A(p) < p, it holds

D (Z*m -p)© H(f)J(H)) <s (2:2)
where Y. shows the fuzzy summation. Then
I(H) = (FR) be H(x)de.
And for H € Cy [b1,bs] it follows 1
(FR) [{* H(t;r)dt = [ H(t;r)dt,
(FR) [y H(t;r)dt = [ H(t;r)dt

Lemma 1. If H,V : [by, bz] CR—= Rp are fuzzy and continuous functions,
then H : [b1,bo] — Ry by F(z) = D(H(z),V(x)) is continuous on [by, bs]
and

D ((}‘R)

ba ba b2

H(x)dz,(FR) / V(m)dm) < D(H(x),V(x))dx.

b b b

1 1 1 (2.3)
Theorem 4. Assume that H : [by,bs] — Ry is a Henstock integrable and a

bounded function. Then for by = xog < 1 < ... < T, = by and & € [z;—1, ;]
it gives:

bo n

D ((]—“7—[) H(t)dt,y  *(x; —xi_l)QH(&)> <

by i=1

<Z P = i)Wy, (H, T — 251)
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Corollary 1. Let H : [by,bs] — Ry be a bounded and Henstock integrable
function. Then

1) D ((FH) fy2 H@dt, (b = by) © H(25) ) <bagbiay, o) (H, g

(FH) [y H(t)dt, 250 © (H(br) @ H(b2)) )< 1250wy, 4 (H, 251

3) D ((FH) fy2 Ht)dt, 252 © (H(b) ©4© H(U$52) @ H(b))) <
< 2(b2 — bl)w[bl,bg](Hv b2€b1 )

3. Main Idea

In this section, we will examine the existence and uniqueness of the
solution to problem (1.1) using the method of successive approximations.
Let us define the space of continuous functions as X = {H : [by,b2] — R, |
H is continuous}, equipped with the fuzzy distance given by D*(H,p) =
SUpy, <p<i, P(H(p),V(p)). Consider A : X — X as a nonlinear integral
operator. The application of A to problem (1.1) results in

m’ 0t (p)
AS(p)=H(p)®(FR) i (V)Vt(q,p)GG(S(q))dq,Vq,p € [b1,bo],VF € X.
t=1 t—1(P

Theorem 5. Assume that the kernels Wi(q,p), Wa(q,p), ..., Wy (q,p) are
positive and continuous for by < q,p < T < be. Let the function H(p)
be fuzzy continuous with respect to p in the interval by < p < T < bs.
Furthermore,

3L > 0; D(G(Z1(p)), G(Z2(p1))) < LD(Z1(p), Z2(p1)), Vp,p1 € [b1,ba].

If c = Z;Zl ML(0; — 0;—1) < 1, then there exists a unique solution F* €
X for the FVIE (1.1) using the method of successive approzimations as
follows:

m 6 (p)

Zonlp) = H(p) & (FR) S /5 | Wia.n)© G ()i, (3)
i—1 J0t—1(p

b1 <g,p<T<by m=>1,

which is convergent to F*. And the error bound is

Cer 1

DU () Zn0) S L= Mor L€ brba], m21 (32)
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for Mo = supy, <,,<p, |G(H (p)) |l -

Now we can introduce the following numerical method to find the ap-
proximate solution of (1.1). As

blzp0<p1<---<pn—1 <pn:b2

where p; = b1 + th and h = % and one have the following iterative
procedure as

l\ﬁlb‘

m
Ym (D Z

o [Wt(pmp) © Gt (P0)) & Wielpnsp) © Clymor (b))
n—1

®2 Y Wilpr,p) © G(Ym—1(m))|, m>1.
=1

Also the compact form of the relation is

m’ n—1
) = HO)© Y- 3 5 © Wil p)o (33)
t=1 =1

OG(Ym-1(m)) © Wi(p1,p) © G(ym-1(p1)) |, m > 1.

4. Error Estimation

Theorem 6. Assume the nonlinear functional Volterra integral equation
(1.1) with the kernel Wy(q,p) is defined along continuous curves §;(p) for
t=1,2,...,m, where the kernel is positive on the domain [b1,ba] X [by, ba].
Additionally, let G be a continuous function on Ry and H be continuous on
the interval [by1,bs]. Furthermore, there exists a constant L > 0 such that

D(G(Z1(p)), G(Z2(p1))) < L.D(Z1(p), Z2(p1)); Vp,p1 € [b1,ba].
For the condition Cy = MyL(by — by) < 1, where

M =
t blgtgl)%)%SbQ ’Wt(Q7p)’7

the iterative scheme (referenced as (3.1)) converges to the unique solution
of (1.1), denoted as F. Additionally, an error estimation can be derived as
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follows:

m' OmTiLy
(U ym)<Zt 12(1- c)wét 16t(H h)+2t 1L1 Ct)

2C,
+ 3 2 (Lyws (We, ) + Lowy (Wi, h)
where

wS(Wta h): sup {Sup |Wt(x)p)7Wt(yap)| : |1E*y| S h}’ t= 1’2) °'°am/a

b1 <p<T'<b

and

wt(Wt) h): sup {Sup |Wt(Q5p1)*Wt(Qap2)| : |p17p2| < h})t = 15 2) °'°am/
b1 <g<T'<b2

Remark 1. As we know C; < 1,t=1,2,....m’ and it shows

lim C"™ =0,t=1,2,...,m

m— 00

And we have

im cops,_, 59 (H, ) =0, im woy (Wi, h) =0, lim wy (Wi h) = 0,8 = 1,2,..,m’

The convergence of this scheme can be obtained by

lim  D*(U,ym) = 0.

m—00,h—0

5. Numerical Results

In this section some examples are presented. We apply the mentioned
method for solving the problems. This is the first time that the problem
(1.1) has been solved and there are no other methods to compare with. But
in order to show the accuracy of the method we compare to the homotopy
analysis method. All the mentioned examples are simulated problems.

Example 1. We examine the issue presented in (1.1) with the following
definitions: Wi(q,p) = 14+p—r, Walq,p) = p—1,m' = 2, and a = §y(p) = 0,
d1(p) = §, and d2(p) = p, where

H

2
(=24 &) (=14 p?) — g7 ("2 +e) (=1 +p)p(-27+ 13p?)
(=24 &)p(—108 — 90p + 4p* + 3p?),

|~

32

=~

2
= (—2+¢)(1 +p2)—8—1(—2+5)(—1 + p)p(27 + 13p?)
— =57 (=24 €)p(108 + 90p + 4p* + 3p®).
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The exact solution is given by (U(p), U(p)) = ((—2)(p*—1), (e—2)(p*+1)).
A comparison between the exact solution (U(p), U(p)) and the approximate
solution (U;(p), U1o(p)) for e = 0.5 is illustrated in Fig. 1. The absolute
errors for m = 10 are shown in Fig. 2. Additionally, Fig. 3 presents the
graphs of the obtained solutions for different values of ¢. Table 1 provides
a comparison of the absolute errors between the successive approximation
and the HAM.

Fv) F)

Figure 1. Comparison between the exact solution (U(p),U(p)) and approximate
solution (U,,(p),U1o(p)) for e = 0.5.

Error Error
35x103F
3.x107E 3.x1013
25x103
2.x107F 2.x10-3]
15109 F
11019 F 1108

5.x 1074

Figure 2. The absolute error for (U,,(p), U1o(p)) and € = 0.5.

Table 1
The error results of Example 1
p [ 1U®P) —U,®I [ [UWP) =T | [UM) = Uyan®I | 1U®) = Unam(p)
0.00 | 0 0 0 0
0.30 | 1.55431 x 107*% | 1.77636 x 10715 | 1.48935 x 10~ 4 1.35746 x 1074
0.60 | 1.75859 x 10713 | 1.81188 x 10713 | 1.768177 x 107 !? | 1.64527 x 10~ *2
0.90 | 2.30593 x 1073 | 2.41585 x 1073 | 7.86275 x 10~ '? 7.24517 x 10712

Example 2. We have Wi (q,p) = p, Wa(q,p) = p—1, Ws(q,p) = r—p,m’ =

3, by = do(p) = 0,01(p) = £,02(p) and d3(p) = p, with nonlinear term

2p
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J— E(V) for =025
EW)for 4=0.5
) for p=0.75
EW) for p=1.0

— Fv) for p=0.25
Fv) for =05
Fl) for p=0.75
F) for p=1.0

Figure 3. Fuzzy approximate solution for various e.

G(S(q)) = F*(q) where

(1023(—=1 +¢)3(=1+p)p'?)  (1073733109(—1 + £)3p't)

H=(1-¢)p? -

H=(1=e)p"+ 10737418240 118111600640 ’

— 1023(2 + )3 (=1 4+ p)p'®  1073733109(2 + €)3p't

H=(2+e)p’ (2+e)*(“1+pp” 2+e)p
10737418240 118111600640

and the exact solution (U(p),U(p)) = ((1—¢)p?, (6+2)p?). The comparative
graphs between the exact and approximate solutions (Uy(p), U2o(p)) have
been presented in Fig. 4 for ¢ = 0.5. Fig. 5 shows the absolute errors for
both underline and overline cases. Fig. 6 demonstrates the approximate
solutions (Usyg(p), Uso(p)) for various . In order to show efficiency and
accuracy of the method, we have compared the successive approximation
method with the traditional homotopy analysis method. The results have
been shown in Table 2.

s , L
— fw y 25 e

) 20[ Fw

Figure 4. Comparison between the exact solution (U(p),U(p)) and approximate
solution (Uy,(p), Us20(p)) for e = 0.5.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
Cepusa «MaremaTtukay. 2024. T. 50. C. 36-50



Error

0.020

0015

0.010

0.005F

FUZZY VOLTERRA INTEGRAL EQUATIONS

Error

0.030F

0.025F

0.020F

0.015F

0.010F

0.005F

0.2

04 06

08 1.0

Figure 5. The absolute error for (U, (p), Uz0(p)) and € = 0.5.

— Evforp=025

EW) for p=0.5

EW) for p=0.75

F)for p=0.25

— Fy) for p=0.5

F)for p=0.75

Figure 6. Fuzzy approximate solution for various e.

The error results of Example 2.
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Table 2

P | 1U®) = U@ | [U@) = Uz0®)| | 1UP) = Upan®)] | [U@) = Unan(p)l
0000 0 0 0

0.25 | 0.0000253047 | 0.000126491 0.0000521732 0.000358749
0.50 | 0.00077713 0.00381917 0.00084267 0.00417518

0.75 | 0.00574238 0.0229733 0.0079563421 0.05269427

1.00 | 0.0228692 0.0211465 0.024871277 0.02565382

6. Conclusion

In this work, the fuzzy Volterra integral equation of the second kind
with piecewise kernel was studied.We applied the successive approximation
scheme. This is the first time that the method has been implemented for
solving this problem. The existence of an unique solution with the error
bound and also the error estimation theorems were discussed. Some exam-
ples have been solved. Plotting the graphs of fuzzy approximate solutions
for various € and error functions we showed the accuracy of the method.
Also the method has been compared with the traditional homotopy analysis
method and we can see that the method is more accurate than the HAM.
As the limitations of the method, generally the iterative methods are not
fast thus when we need to make more iterations we need more time. Also
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for solving nonlinear problems if we have special and complicated nonlinear
terms, applying the successive approximation method will not be easy. As
our future works, we will combine the method with the CESTAC-CADNA
strategy to find the numerical optimality results and optimal distance.
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