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Abstract. We study the minimum number of elements in the conjugacy class of an
automorphism of a sporadic simple group that generate a subgroup containing all inner
automorphisms. These results refine the estimates obtained earlier in the papers by
Guralnick and Saxl and by Di Martino, Pellegrini, and Zalesski.
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Awnnoranusi. V3ygyaercss MUHIMAJIBLHOE YHUCJIO SJIEMEHTOB B KJIACCE COMPSIKEHHOCTH aB-
TOMOpPGdHU3MA IIPOCTOM CIOPATIUIECKON IPYIIIIBI, KOTOPBIE IIOPOXK/IAIOT ITOAIPYIIILY, COJIEP-
JKaIlyIo BCe BHYTPEHHHE aBTOMODPMU3MBI. Pe3ybTaTsl yTOYHSIOT OIEHKU, HOJIYI€HHbIE
pasree B pabore ['ypansuuka n Cakcia u pabore Ju Mapruno, Ilesrerpunn u 3asecckoro.

KinoueBble cjioBa: criopajudeckas rpyiia, rpyira Ouiepa, COnpsizKEHHOCTD, TOPOXK-
naroniue, reopeMa bBapa — Cyuzyku

Baarogapaoctu: Paora nepsoro asropa (npezjioxenue 1 n Teopema 2) BBIIOJIHEHA 34
cuer rpanta PH® (rpanr 19-71-10017-11). PaGora Broporo asropa (Teopema 1) BbIIOJI-
HEHA B PaAMKax rocygapcrseHHoro 3ajanus Uucruryra maremaruku uMm. C. JI. Cobosnena
Cubupckoro orjenenus: Poccniickoii akagemnu Hayk (poekr FWNF-2022-0002).

Ccouika quis uurupoBaHusi: Revin D. O., Zavarnitsine A. V. Generation by conjugate
elements of finite almost simple groups with a sporadic socle // W3sectua Vpkyrckoro
rocynapcrsennoro yuusepcurera. Cepust Maremaruka. 2024. T. 49. C. 135-142.
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Introduction

We only consider finite groups in this paper, so the word “group” will
always mean a finite group.

Let S be a nonabelian simple group, which we always identify with
the subgroup Inn(S) of inner automorphisms in the group Aut(S) of all
automorphisms. Then S is the unique minimal normal subgroup of every
group G such that S < G < Aut(S). In this case, G is usually called an
almost simple group with socle S. If x € Aut(S) is a nonidentity (possibly,
inner) automorphism then the subgroup of G = (x,S) that is generated
by the conjugacy class of z is normal in G. Consequently, this subgroup
includes S and, therefore, coincides with G.

In 2003, R. Guralnick and J. Saxl [10] introduced the notation

a(z) = ag(z)

for the minimum number of elements conjugate to z # 1 in G = (z,S)
that generate G. In other words, the parameter ag(x) is defined by the
property that, for every natural m, ag(x) < m if and only if some elements

x1,...,T, conjugate to x in G generate G. It is not difficult to see that if
y # 1 is a power of x then, for all g1, ..., gm € G, we have the inclusion
(Y9, oo y9my < (a9 . 9.

Thus, if S < (y9',...,y9") then S < (z9',...,29) and so ag(z) < ag(y).
This means in particular that in order to find upper bounds on ag(z) for
a fixed S, it is sufficient to consider only elements = of prime order.

Nssectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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The main result of [10] constitutes finding explicit, albeit not always best
possible, upper bounds on ag(x) for all nonabelian simple groups S. These
bounds and their refinements have been extensively used in applications of
the classification of finite simple groups. For example, they are substantially
used in proofs of various analogues of the famous Baer-Suzuki theorem,
see [3;5-9;15-19]. For practical use, the estimates on ag(z) from [10] are
not always sufficient. Refinements of these estimates for certain simple
groups were required and obtained, for example, in [2;15;16].

In the case where S is a sporadic simple group and « is its noniden-
tity inner automorphism, nearly precise values of ag(x) were found by
L. Di Martino, M. A. Pellegrini, and A.E. Zalesski in [2, Theorem 3.1]. All
cases of imprecise estimates in this theorem are in the following list:

1) (S,2) = (Fis,24) and 5 < ag(z) < 6;
2) (S,2) = (Figs,24) and 5 < ag(x) < 6;
3) (S,x) = (Fig,3B) and 2 < ag(z) < 3;
1) (S,z) = (Suz,3A4) and 3 < ag(x) < 4;

5) S = M, x is not an involution and 2 < ag(x) < 3;
6) S = M, x is an involution and 3 < ag(x) < 4.

As a matter of fact, we can indicate the exact value of ag(x) in cases
1) and 2) above. The Fischer groups Fligs, Fliss, and Fligy are so called
3-transposition groups. Each of them is generated® by a conjugacy class
D that is a class of 3-transpositions, i.e. consists of elements of order 2
(involutions) such that the product of every two of them has order 1, 2,
or 3. The classes of 3-transpositions in Fio, Fio3, and Figy = Fioy'.2
are 2A, 2A, and 2C, respectively, in the notation of [1]. The groups of
3-transpositions that can be generated by at most five 3-transpositions
were classified in 1995 by J. Hall and L. Soicher [11, Theorems (1.1)—(1.3)].
This result and S. Norton’s paper [14] imply that Fh4 can be generated by
five 3-transpositions, whereas F'ios and F'iss cannot. Also, Figg cannot
be generated by four 3-transpositions, see [11, Theorem (1.1)]. Thus, the
following assertion holds which in particular gives precise values for ag(z)
in cases 1) and 2) above.

Proposition 1. If (S,z) € {(Fig,2A), (Fi,2A)} then ag(x) = 6. If
(S,z) = (Fligd',2C) then ag(x) = 5.

! Here and later on we use the notation and conventions from the Atlas of finite
groups [1]; in particular, we may use the same symbol to denote both a group element
and its conjugacy class.

2 Figy is not simple, but its subgroup Fizs’ of index 2 is. Therefore, the generating
class of 3-transpositions for Fiias lies in Figs \ Fliod.
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Table 1
Sporadic groups S with Aut(S) # S
classes of involutions
s 151 vin Aut($)\ s | @@ S
Mo 26.3%.5.11 20 4
Moy 27.32.5.7.11 2B, 2C 4
Ja 27.3%.52.7 20 4
J3 27.3%.5.17-19 2B 4
MecL 27.36.5%.7. 11 2B 4
O'N 2.3%.5.7%.11-19- 31 2B 4
HS 22.32.5%.7.11 2C, 2D 5
He 210.3%.52.73 .17 20 5
Suz 213.37.5%.7.11-13 2C, 2D 5
HN 214.36.56.7.11.19 20 5
Figg 217.3%.52.7.11-13 2D, 2E, 2F 7
Figy' | 221.316.55.73.11.13-23-29 2C, 2D 8

As we have already mentioned, only inner automorphisms of sporadic
groups were considered in [2]. For automorphisms in Aut(S) \ S, where S
is a sporadic group, only the estimates from [10] are known. If Aut(S) # S
and z € Aut(S) \ S is of prime order then S is as given in the first column
of Table 1, x is an involution whose conjugacy class is given in the third
column, and the estimate on ag(x) from [10] is given in the fourth column.
Observe that since two involutions always generate a solvable group, we
have 3 < ag(x) for all cases included in Table 1.

The main result of this paper is as follows.

Theorem 1. Let x € Aut(S) \ S be an automorphism of prime order of
a sporadic group S. Then 3 < ag(x) < 4, except when (S,z) = (Fig4',2C')
and ag(x) = 5.

Combining this result with [2, Theorem 3.1] and Proposition 1 we will
also prove the following assertion which includes the cases of inner and
outer automorphisms of prime and composite order.

Theorem 2. Let 2z € Aut(S) be a nonidentity automorphism of a sporadic
group S. Then ag(x) < 4, except in the following cases:

1) (S,x) = (Fig2,2A) and ag(x) = 6;
2) (S,x) = (Fio3,24) and ag(r) = 6;

NsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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3) (S,z) = (Fixu',2C) and ag(x) = 5.
The following problem still remains open.

Problem 1. Find ag(x) for every sporadic simple group S and its non-
identity automorphism x.

In order to solve this problem, we have to determine the precise value
of ag(x) in the above-mentioned cases 3) —6), where [2, Theorem 3.1] does
not give such a value, as well as determine whether ag(x) equals 3 or 4
for S and z from Table 1, except (S,z) = (Fia4',2C), where we know
that ag(z) = 5.

1. Proof of Theorems 1 and 2

Proof of Theorem 1. As we have already mentioned, the inequality 3 <
ag(x) for an involution x follows from the fact that every two involutions
generate a solvable group [13, Lemma 2.14].

Taking account of Proposition 1 and the data in Table 1, we will prove
Theorem 1 once we establish that ag(x) < 4 when (S, z) is in the following
list:

(HS,2C),(HS,2D),(He,2C), (Suz,2C), (Suz,2D), (HN,2C),
(Figo,2D), (Fig,2FE), (Fig, 2F), (Fiz',2D).

Since O2(G) = 1 for G = (x,S), the Baer-Suzuki theorem [13, The-
orem 2.12] implies that x, together with some conjugate !, generates a
subgroup containing a nonidentity element y of odd order. Also, y € S,
because |G : S| = 2. If ag(y) = 2 then by definition S contains an element
g € G such that

S = <y7 yg> < <.%', xtv z7, xtg>.

This will imply the inequality ag(z) < 4 and the claim will follow.
In view of [2, Theorem 3.1], we have ag(y) = 2 for a nonidentity y € S
of odd order, where (S, z) is from the above list, unless

(S, y) S {(Suz, 3A), (Figg,?)A), (Figg, 3B), (Fi24,, 3A), (F’i24/, 3B)}

In particular, ag(y) = 2 if S is one of HS, He, or HN.

In the remaining part of the proof, we are going to establish that even
when S is one of the groups Suz, Fiso, or Fig,', the conjugate x! can be
chosen so that the product y = za! would be of odd order and belong to
neither class 3A nor 3B. Under this choice, we have ag(y) = 2 as required.

We use the known fact from character theory that, given elements a,b
and ¢ of a group G, the number m(a, b, ¢) of pairs (u,v), where u is conjugate
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Table 2
Some class multiplication coefficients
(S, ) m(z,z, y)

(Suz,2C) | m(2C,2C,3C) =45
Suz,2D) | m(2D,2D,3C) = 45
Fiz,2D) | m(2D,2D,3C) =3
Fiy,2E) | m(2E,2E,3C) = 729

) (

(

(
(
(
(Fiss,2F) | m(2F,2F,3C) = 1080

(Fiss',2D) | m(2D,2D, 3C) = 1224720

to a, v is conjugate to b, and uv = ¢, can be found from the character table
using the formula

e c X(@X (X
O = @I o Xe;r@ W

see [12, Exercise (3.9), p. 45]. To make sure that z and some of its con-
jugates generate a subgroup containing a conjugate of y, it is sufficient to
show that m(x, z,y) > 0. We use the character tables of Suz.2, Fig.2, and
Figy'.2 available in both [1] and the computer algebra system GAP [4]. The
remaining cases can be treated using the GAP function

> ClassMultiplicationCoefficient()

to calculate m(z, z,y) for x and y listed in Table 2. It turns out that in all
these cases y can be chosen from the class denoted by 3C in [1]. The proof
of Theorem 1 is complete. O

Proof of Theorem 2. For inner nonidentity automorphisms of .S, the claim
holds in view of [2, Theorem 3.1] and Proposition 1. For elements of
prime order in Aut(S)\ S, the claim holds by Theorem 1. It remains
to consider the elements of composite order in the difference Aut(S)\ S.
Let = be such an element. If y is a power of x, |y| is prime, and (S,y) ¢
{(Figg,2A), (Fia',2C)} (for example, when z is not a 2-element), then

ag(r) < ag(y) <4,

and the claim holds for . Consequently, we may assume that S is either
Figo or Figy, x is a 2-element, and y is the power of x of order 2 in class 24
if S = Fig and in class 2C if S = Fioy’. Then either 2 or some power of
x has order 4. The character tables of Fige.2 and Fisy’.2 from [4] contain
information about which conjugacy classes the prime powers of elements

WsBectusi IpKyTCKOTO TOCY/IapCTBEHHOTO yHUBEPCUTETA.
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belong to. This information implies that both Fiss.2 and Fiay’.2 have no
elements of order 4 whose squares would belong to classes 24 or 2C. The
proof is complete. O

The authors are grateful to Prof. Andrey S. Mamontov for helpful
consultations.
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