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AnnoTraums. B pa6ore mosydueHbl TOYHbIE ACUMITOTHKY CIEKTPAIBHBIX JAHHBIX (COG-
CTBEHHBIX 3HAUEHUH U BECOBBIX YHCeJ]) JIMHEHHOro JuddepeHuanbHoro ypaBHeHUs deT-
BEPTOro MopsijiKa ¢ KOIDMUIMEHTOM-PACIPEIEIEHUEM U TPEMs TUIAMU PaCIIaal0NUXCs
KpaeBbIX ycjIoBuit. MeTo/bl CCIeloBaHusT OMUPAIOTCsT Ha HEIaBHUE PEe3y/IbTaThl, Kaca-
IOIIUECs] PEryJIsPU3aIii U ACUMIITOTUYECKOIO aHaIn3a, [ist JnddepeHnajIbHbIX orepa-
TOPOB BBICIINX MOPSIAKOB C KOIDDUITNEHTAMU-PACIPEIETEHUsIMIA. Pe3yIbTaThl UCCIEI0-
BaHUs MMEIOT [IPUJIOXKEHNsI B TEOPUU OOPATHBIX CIHEKTPAJIbHBIX 3824, & TAKXKe CAMOCTO-
ATeJTbHOE 3HAYCHUE.
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1. Introduction

Consider the differential equation
y W+ (ra(@)y) + (n(2)y) + i)y +70(x)y = Ay(z), = € (0,1), (1.1)

where 7 € W}[0,1] and 71 € L2[0,1] are complex-valued functions,
is the generalized function of class W 10,1], that is, 7o = T, To IS a
complex-valued function of Ls[0,1], A is the spectral parameter. We un-
derstand equation (1.1) with a generalized function coefficient in terms of
the regularization approach of Mirzoev and Shkalikov [15] (see the details
in Section 2).

This paper aims to derive sharp asymptotics for the eigenvalues and
the weight numbers of the boundary value problems L, £ = 1,2,3, for
equation (1.1) with the boundary conditions

Lz y(0)=0, y(1)=y'(1)=y"(1)=0, (1.2)
Ly y(0) =y (0)=0, y(1)=y(1)=0, (1.3)
Ly y(0) =y (0)=y"(0)=0, y(1)=0. (1.4)

A general effective method for obtaining eigenvalue asymptotics for ar-
bitrary order differential operators is described in the book of Naimark [17].
However, derivation of sharp asymptotics for specific classes of operators
requires additional efforts. In recent years, eigenvalue asymptotics for the
fourth-order differential operators with various types of boundary condi-
tions were obtained by Badanin and Korotyaev [2;3], Méller and Zinsou [16],
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SPECTRAL DATA ASYMPTOTICS 33

Aliyev et al [1], Polyakov [19-21] (see also the bibliography in the mentioned
papers). Motivation for investigation of spectral properties for the fourth-
order operators arises from applications in mechanics, geophysics, and other
fields (see, e.g., [4;10;18]). Anyway, the mentioned studies deal with
the case of regular (integrable) coefficients. There are much less results
on spectral data asymptotics for differential equations with distribution
coefficients belonging to spaces of generalized functions. Mikhailets and
Molyboga [13;14] investigated the eigenvalue asymptotics for the even-order
differential operators dd;—;,; +¢(x) with distribution potential ¢ € W5 ™0, 1]
and semi-periodic boundary conditions. In [5], spectral data asymptotics
have been obtained for higher-order differential operators with distribution
coefficients in the general form with separated boundary conditions.

In this paper, relying on the approach and on the results of [5], we
derive sharp asymptotics for the eigenvalues of the boundary value prob-
lems L, K = 1,2,3. In addition, we study the asymptotic behavior of
the weight numbers, which are used in the inverse spectral theory to-
gether with eigenvalues for recovering higher-order differential operators
(see, e.g., [8;9;11;24]). We get explicit formulas for all the constants in
the obtained asymptotics in terms of the functions 7 and 7 from equation
(1.1). Note that the boundary conditions of the problems £; and L3 are
non-self-adjoint. Therefore, it is difficult to find the starting index for
numbering of their eigenvalues. The results of this paper play an important
role in the spectral data characterization for equation (1.1) (see [9]) and
also have a separate significance.

2. Regularization

In this section, we discuss the regularization of equation (1.1) basing on
the results of [6;15;23].
Let oo(x) and o1(x) be the unique functions of W3[0, 1] such that

0'6/:7'0’ 0'0(0) :0‘0(1) :0, 0‘/1 =TI, 0'1(0) =0. (21)

Define the matrix-function

0 1 0 0
—(o1+o0 0 1 0

F@) = ra@lhm = |7 0, 0 YL e
o3 —o? 0 o1—0og 0

the quasi-derivatives

I I Y Zf,wya U k=14,  (23)
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and the domain

Dr = {y: y € AC[0,1], k =0, 3}.

Note that, for y € Dy, the quasi-derivative yl4 is correctly defined and
integrable on (0,1).

Proposition 1. For any y € Dp, the generalized function ((y) := y») +
(1o/) + (T1y) + Ty + 1oy is regular and ((y) = y!¥.

Proposition 1 is a special case of Theorem 2.2 in [6], which was obtained
from the results of Vladimirov [23]. It follows from Proposition 1 that, for
y € Dp, equation (1.1) can be equivalently represented as the first-order
System

37(‘73) = (F(x) + A)g(x)v S (07 1), (2'4)
where
%m) 0000
. T 0000O0
ylw) = Z[Q}Exg » A=To000
yB(x) A000

Indeed, the first three rows of the system (2.4) coincide with the definitions
of the quasi-derivatives (2.3), and the last row is equivalent to the equation
y1 = \y. Thus, we have regularized equation (1.1) by the reduction to the
system (2.4) with the integrable matrix function F'(x).

Note that, for regularization of equation (1.1), different constructions of
an associated matrix F'(x) can be used (see [6;15]). Anyway, it has been
proved in [7] that the choice of an associated matrix does not influence
the spectral data, which will be considered in the next sections. For the
purposes of this paper, it is convenient to use the associated matrix (2.2),
because it contains all the coefficients 79, o1, and o of the same smoothness
on the same diagonal.

3. Birkhoff-type solutions

In this section, we construct the Birkhoff-type solutions of the system
(2.4) by the well-known method (see, e.g., [17;22]), using the technique
of [25]. Consequently, we get the Birkhoff-type solutions for equation (1.1).

In the asymptotic estimates below, we use the following notations:

— Put A = p* and divide the complex p-plane into the sectors

—1
I‘H::{pEC:W(K8)<argp<?}, k=1,8.
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For k € {1,2,...,8}, h > 0, and p* > 0, introduce the extended sector

Lphpr = {p eC:p+ hexp(w) ey, p| > p*}.

For a fixed sector I'y, denote by {wy}i_, the roots of the equation
w? = 1 numbered so that

Re (pw1) < Re (pw2) < Re (pws) < Re (pwy), p € Ty. (3.1)

i—1
Put Q := [w] ];{k:l.

The notation Y(p) is used for various scalar and vector functions such
that

Y(p) >0 as |p| > o0, pETLunp (3.2)

{IIT(pn)||} €12 for any non-condensing sequence {p,} € I'x p p*,
(3.3)

where ||.|| stands for the vector norm if Y(p) is a vector. Recall that a
sequence {p,}5°; is called non-condensing if

i;lg(N(t—i- 1) = N(t)) <oo, N(t):=F#{necN:|p,| <t}

Y (z, p) stands for various scalar and vector functions having the prop-
erties (3.2) and (3.3) for each fixed = € [0, 1].

e(p) is used for various functions of form Tp(f )

{5¢,} stands for various la-sequences.

The change of variables

Y(z) =Q 'diag {1,p ", p 2, p*}¥()

transforms the system (2.4) into

1
LY :=-Y'— A(z,p)Y =0, (3.4)
p
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where

Apy(z)  Awy(z)
Az, p) = Ay + (22 + (2)4 ;

Aw) = diag{wi }p—1, Aqy=4A@E) =0, (3.5)
i 0 0 0 0
-1 | (o1 +00) 0 0 0
A =9 0 _mtos, 0 ol% (6
.0 0 op—09 0
[0 000
 O0-1 0 000
Aw =10 0 00o0|"
0§ —01 000

Clearly, the entries of A(9)(z) and A (z) belong to W3[0, 1].

Below, we suppose that p € ffi,h,p* for some k, h > 0, p* > 0, and
{wi}{_, are numbered in the order (3.1) for p € I';. Note that, for p €
T pp, we have Re(pwy) — Re(pwit1) < ¢ < 0o.

Let us search for approximate solutions of (3.4) in the form

g(l);:(£) N 9(2?2(96)) , k=14, (3.7

Uk (, p) = exp(pwyz) <9(o)k +

where g,y = [g(u)k,j]§:1 are column vectors. Furthermore, Ug(z, p) has to
satisfy the estimate

LU, = exp(pwra)p™? (hi(z) + O(p™")) s p € Tunyprs ol = 00,  (3.8)

where hy(z) = [hy ;(z )]J 1 is a column vector such that hy, = 0, and the
O-estimate is uniform with respect to « € [0, 1].

Due to [25], the vectors g(,yx, ¢ = 0,1,2, and hy have to fulfill the
relations

A(o)g(o)k = WEG(0)k>
A(O)g(u)k = WkY(wk T g (u—1)k ZA(] I(u—i)ks H= 1,2,
T = Gapp — Z A9k ek =0
j=1
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Therefore, using (3.5) and (3.6), we obtain

gk = ek gayk(x) = T (z)ex, (3.9)
1 (=2) .
_ Jaoyen T@), i=Fk
(x) = _ , 3.10
g(Q)k,J( ) {_ij_(zl)c’ ik ( )
a’, (z) 1 B .
hiy(z) = =2 - (@) V), j#k

J
wj —wr 4wy

where ey, is the k-th column of the unit matrix,

AV (2) = /O Cndt, () = /D OV ) dt

and [ajk(x)];{kzl := A(g)(z). Note that hy; € L0, 1].
Thus, the functions U (z, p), k = 1,4, given by (3.7) with the coefficients
(3.9), (3.10) satisfy (3.8). Let U(xz, p) be the matrix function consisting of

the columns Uy(z, p) and let Vj(x,p), j = 1,4, be the rows of V(z,p) :=
(U(z,p))~ L. Denote

1
L*Z :=-7"— ZA(z, p).
p
For k = 1,4, consider the integral equation

z k
Yi(z, p) = Uk(z, p) +p/0 ZUJ‘(M)L*VJ'(W) Yi(t, p) dt

7j=1
1 4
o [ | X vtenrvieo | vitpa @
T \j=k+1
whose solution Yy (x, p) solves the system (3.4). Changing the variables
Yi(z, p) = exp(pwrpz)Wi(z, p),  Uk(z, p) = exp(pwpz) W (z, p)  (3.12)

and using (3.8), we transform equation (3.11) into

1 1
Wie.p) =Wila.p)+ 5 [ Bulat)Wiltp)dt (313
0

where the function Bg(z,t, p) equals

= 3% explpio; — ) — O)WP(e (0 + O ), w2 1,

J
5 explplws — wi) (@ — )W, p) (s (1) + O(0™)), @<,
j=k+1
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and the O-estimates are uniform with respect to « € [0,1] and p € T j, p*
as |p| = oo. The analysis of the integral term in (3.13) shows that

Y (z,p)
2
where Y (z, p) denotes various vector functions satisfying (3.2) and (3.3) for

each fixed z € [0,1].
Combining (3.7), (3.9), (3.10), (3.12), and (3.14) all together, we obtain
the fundamental solutions {Yx(z, p)}i_, of the system (3.4) for p € T p o+

@) B
Yi(e. ) = explpora) ((1 TRy I

Wk(xv P) - ng(x7p) =

: (3.14)

4

- Z €+ 3 :
Wi T Yk P
J#k

Returning from the system (3.4) to equation (1.1), we arrive at the
following theorem.

Theorem 1. For any k = 1,8, h > 0 and some p* > 0, equation 1.1 has
a fundamental system of solutions {yx(z,p)}i_, whose quasi-derivatives
yl[j](:c,p), k=1,4, j = 0,3, are continuous by x € [0,1] and p € Ty p»,
analytic in p € L'y p o+, for each fized x € [0,1], and satisfy the asymptotic
relation

o) = (o) explpn (1~ @) @)
B ‘ ‘ Apwy, (4pwi)?

() e T

1k
It follows from (2.1) and (3.6) that
1 _
alk(O) = —ZTQ(O)(A}I 2wk,
1 _ 1 _ _
aip(1) = —ZTQ(l)wl 2w + Zm(l)(cul 30.2,3 —w; 1).

Using the latter relations together with (3.15), we conclude that, for k =
1,4,j=0,3,

- , c0)ikto
y10,p) = (pop)? (H“”pé’“ +e<p>)7 (3.16)

2
(] _ if,__" 4 cosrtt | C)ke
Yg (Lp) (pwk) (1 dpwy, + 32(pwk)2 + pg + 2 +€(p) >
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where (p) = % and, for brevity,

1 1
::/ Ta(z)dz, to:=7(0), ti:=m(l), o:=o(l)= / mi(z) dz,
; 0

4 i -2 4 -3 2 -1
1 w7 W fwi 1 wy '\ Wy Cwi — W,
C(0)jk ‘—4211 (c%) O 421 Noe) " wr—w

14k 1k

4. Eigenvalue asymptotics

In this section, we obtain the eigenvalue asymptotics for the boundary
value problems L, k = 1,2,3. The results of [5] imply the following
proposition.

Proposition 2. Suppose that 72,71 € Ls[0,1] and 19 € W5 '[0,1]. Then,
for each k = 1,2,3, the spectrum of the boundary value problem Ly is a
countable set of eigenvalues {\, ;}n>1 (counted with multiplicities) such
that

n
m M,
At = (—1)F < — <n+xk7o+ X’“+”>> ., neN, (4.1)
Sin 4 n

where X1,0 and Xx,1 are some constants, Xx,o does not depend on (1o, T1,T2),
and X1 depends only on 6 = fol To(x)dx. The notation {s,} is used
for various sequences of la, in particular, in (4.1) and analogous formulas
below, s, depends on k.

For k = 2, the constants in (4.1) are known from the previous studies
[12;20]: x20 = %, X2,1 = —#. In this section, we find x0 and xy, for
k = 1,3 and improve the remainder term of (4.1), taking 7o € W}[0, 1] into
account. The main result is presented in the following theorem.

Theorem 2. The following asymptotic relations hold for n > 1:

)\n,zﬂ:—<(\f27m_|_2f@>4_0<\/§7m+2\7r/§>2

_ Wg% (Varn+ 2%) N Wn), (4.2)

m\4 T\ 2 0
An2 = (7rn + 5) - 9(7m + 5) + (to + tl)(Trn + 5) +nsx,.  (4.3)
Proof. Note that £ is adjoint to the boundary value problem for equation
(1.1) with (79, 71, 72) replaced by (7o, —71,72) subject to the boundary con-
ditions (1.4). Thus, the eigenvalue asymptotics (4.2) for A, ; and for A, 3
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can be easily obtained from one another. Therefore, it is sufficient to prove
(42) for >\n,3-

Let Ck(z, ), k = 1,4, be the solutions of equation (1.1) under the initial
conditions

o, \) =06, =14, (4.4)

where dj, ; is the Kronecker delta.
Note that the boundary conditions (1.4) are equivalent to

y(0) =y (0) = yP(0) =0, y(1)=1.

Hence, the eigenvalues of L3 coincide with the zeros of the characteristic
function

C1(0,\)  C2(0,A) C3(0,A) C4(0,N)

AV C1(0,X) C50,X) C5(0,A) C(0,N)
~ Py oy oy o)

Ci(1,N) Co(1,N) Cs(1,A) Cyu(1,N)

Let A = p, p € Typ,pe, and let {yg(z,p)}i_; be the Birkhoff-type
solutions from Theorem 1. Then, the both matrix functions C(z, A) :=

[C,Ejfl} (:c,)\)]ik,:l and Y (z,p) = [y,[gjfl} (a:,p)];{kzl are fundamental solu-
tions of the system (2.4). Hence

C(l‘, )‘) = Y(xv P)A(P),

where A(p) = (Y (0, p))~!. Consequently,

A(A) = D(p) det(A(p)), (4.5)
where
y}(O,p) y?(O,p) yi?(oap) yjl(ovp)
D(p) - ?J[%](O’p) y[%](O,p) y3(0,p) yé](O,p) (4.6)

yl (0,0) y2 (O,p) yi[’;](o’p) y4 (07:0) ‘
yi(Lp) y2(l,p) ws(l,p) wa(l,p)

It follows from (3.15) that det(A(p)) # 0 for sufficiently large |p|, p €
f,@h’ o+ Therefore, for such values of p, a complex A\ = p* is an eigenvalue
of the problem L3 if and only if D(p) = 0.

One can easily see that the images of the two closed sectors 'y and T'y
of the p-plane cover the whole A-plane. Furthermore, the zeros of D(p)
for sufficiently large |p| lie in the neighbourhood of their joint boundary
argp = 7. For definiteness, consider I'1, for which w1 = —1, wy = 1,

w3 = —i, wy = 1. Substituting (3.16) and (3.17) into (4.6( for p € I'y 4 p=,
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we derive
D(p) = p’® exp(pwa)d(p), (4.7)
d(p) = r1(p) — r2(p) exp(p(ws — w1)) + £(p),
_i0 2o i(to+ty)  i6?
TI(P):—4Z+*+T—T—8T)2,
10 20 to +t1 62
=44 0T 7
r2(e) P T T T TR

Consequently, the equation D(p) = 0 in I'y; p« can be reduced to the
form

r2(p)
r1(p)

Taking the logarithm and using the standard approach, based on Rou-
che’s theorem (see [5]), we find the roots

(1+i)9+i0 i(to+t1) 62
4p  p? 4p? 16p

exp(p(wi—ws)) = 22 1e(p) = it s +<(0)-

m (14490 o to+t

1+i)pp = 2min + — Z -
(14 i)pn = 2min+ 5 + Zip, 2 pye) +e(pn)
for n > ng, where ng is sufficiently large. Recall that (p) = T/fzp ), where

Y(p) satisfies (3.2) and (3.3). Therefore, e(p,) = %%, {5} € lo. Finally,
we arrive at the relation

=ex (m> <\@ﬂn+ T 0 — 7
P =P 22 A(V2rnt 7)) 2v/2(mn)?
to + 11 Hn
+ —= |, >ng. (4.8
8\/5(7TTL)2 n2> n no ( )

Computing \, = p, we arrive at the asymptotics (4.2) for sufficiently
large values of n. It remains to show that the numbering in (4.2) starts
from n = 1. By virtue of Theorem 1.1 in [5], it is sufficient to prove this for
the eigenvalues {/\9173} of the boundary value problem L9 of the same form
as L3 but with the zero coefficients TJQ =0, 7 =0,1,2. Using (4.5), (4.6),
and the Birkhoff solutions yg(x, p) = exp(pwyx), k = 1,4, of the equation
y™® = p*y, we obtain the relation

AV(N) = sinh(p)zp—3 sin(p)

for the characteristic function of Eg.
Using the Taylor series
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we show that A%(p?) # 0 for |p| < 5. It is sufficient to consider 0 < arg p <
5. For 0 <argp < 3, |[p| > 5, we have

2] sinh(p)| > | exp(p)| — | exp(—p)| > exp(5 cos &) — exp(—5) > 100,
2[sin(p)| < |exp(ip)| + | exp(—ip)| < exp(5sin§) + 1 < 10,
so |sinh(p)| > |sin(p)| and A%(p*) has no zeros in this sector. Analogously

in
A%(p*) # 0 for 3; argp < 5. Hence, all the zeros of A(p?) lie in the
region

G:={p:lp| >5 5 <argp<

Consider the functions

f(p) == 2sinh(p) — 2sin(p) = g(p) + s(p),
9(p) = exp(p) —iexp(—ip), s(p) = iexp(ip) — exp(p).

Obviously, in G, the function g(p) has the zeros

- ™
pg = exp (%) <\f27rn—|— 2\/§> , n>1,

which coincide with the main term of (4.8), and
|s(p)] < 2exp(—5sing) <0.3, peg.
Define the region
Gs={peG:lp—pd|>6k>1}, 6:=0.1.

For p = p¢ + 2z € Gs, |z| > 6, we obtain the estimate

2|

19(0)] = |exp(pS + 2)|[1 — exp(—(1 +)2)] = exp(5 cos 22) oL > 0.4,

V2
[s(p)]

Therefore, we get m < 1in Gs. Applying Rouché’s theorem to f(p)
g\p

and g(p), we conclude that f(p) has only the simple zeros {p)},>1 in G
such that [0 — p¢| < 0.1, and, obviously, so does A%(p?*). This concludes
the proof of (4.2).

The asymptotics (4.3) is proved analogously. O

Remark 1. The main part of the asymptotics (4.3) coincides with the
one obtained by Polyakov [20] for the case 7; € W{t'[0,1], 7;(0) = 75(1)
for 5 = 0,2, m; = 0. Sharp eigenvalue asymptotics for the fourth-order
boundary value problems with the boundary conditions (1.2) and (1.4), to
the best of the author’s knowledge, have not been investigated before, so the
asymptotic formula (4.2) is novel even for the case of regular coefficients.
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5. Weight numbers

In this section, we recall the definition of the weight numbers from [§]
and derive for them precise asymptotics, which play an important role in
the spectral data characterization (see [9]).

For k = 1,2, 3, define the functions

47
Ap() = det (€} L N]2 o)
4—
AN = det((CH (L N, iy —wirad):
where Cj(z,A), j = 1,4, are the solutions of equation (1.1) satisfying the
initial conditions (4.4). One can show in the standard way that, for each
k € {1,2,3}, the zeros of Ay(\) coincide with the eigenvalues {\;, ; }n>1 of
the corresponding boundary value problem L;. The weight numbers are
defined as follows:

A+
_ Res k()‘)7
A=Ak Ag(N)

Bk = n>1, k=1,23.

According to the asymptotics of Theorem 2, the eigenvalues A, are
simple for n > ng with a sufficiently large ng. Hence, we have

B A:()‘n,k)
%Ak()‘n,k)

The main result of this section is provided in the following theorem.

Bk = n>ng, k=1,2,3. (5.1)

Theorem 3. For n > ng, the weight numbers satisfy the asymptotic
relations

to+ 0 o,
osl = —dNn0ur (1 ) 5.2
Bn,2+1 A ,Qil( +8( n)2+n2> (5.2)
to+20 ¢,
o= —Ago (14 224 22 .
Bna = —4X ,2< +4(7Tn)2+n2) (5.3)

Proof. Similarly to Theorem 2, let us focus on the proof of 5.2 for 3,, 3. The
proofs for 3,1 and 8,2 are analogous.
Consider p € T'y j, p+, A = p*. For brevity, put A()) := Ag(\) and

AT = AF(A) =

Analogously to (4.5), we obtain the relation
A*(A) = —D* (p) det(A(p)), (5.4)
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where
Y1 (07 )\) y2(07 )‘) y3(07 )‘) y4(07 )‘)
oy 0,0 y5(0,0)  w5(0,A)  w4(0, )
D™ (p) = | 3 3 3 3 :
yl (O’ )‘) y2 (07 )‘) y3 (O’ )‘) y4 (07 )‘)
y1(17)\) y2(17)\) y3(17)\) y4(17)\)

Similarly to (4.7), we derive

D*(p) = p* exp(pwa)d* (p), (5.5)
d*(p) =11 (p) — 3 (p) exp(p(ws — wa)) + &(p),

i 2ic  i(to—t1) 16>
2p? 8p2
0 2o  i(tg—t1) i6?

P 2p? 8p?
Substituting (4.5), (4.7), (5.4), and (5.5) into (5.1) for & = 3, we obtain
d* (pn
By = Adng 9 P1) (5.6)
Tpd(pn)
where A\, 3 = pt and p, satisfies (4.8). Calculations show that
d*(p) _ r1 (p)ra(p) — 73 (p)r1(p) L el)
Ldlp)  Erilp)ra(p) — Eralp)ri(p) — (ws — wa)ri(p)ra(p)
i(to +0)
=—(14+ —-—= . .
< + 17 +€(p)> (5.7)
Combining (4.8), (5.6), and (5.7), we arrive at (5.3) for 3, 3. O
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