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1. Introduction

In the 1970s and 1980s, an active research of the main types of prege-
ometries and geometries for classes of 𝜔-stable and 𝑜-minimal structures
has begun. This research includes works by B.I. Zilber [17–20], G. Cherlin,
L. Harrington, A. Lachlan [4] and A. Pillay [12]. In the 1970s B.I. Zilber
has obtained a series of results and formulated hypotheses on uncountably
categorical theories, among which the key one was on the possibility of
classifying such theories up to biinterpretibility. In 1986, A. Pillay showed
that if an 𝑜-minimal theory is modular, then weak elimination of imaginaries
follows it [12]. It is known that in the strongly minimal case, again under
the modularity, geometric elimination of imaginaries holds [11]. In 1996,
E. Hrushovski [7] proposed an original construction of a strongly mini-
mal structure that is not locally modular and for which it is impossible
to interpret an infinite group. Today pregeometries and geometries con-
tinue to attract the attention of scientists, for example, in the description
of the types of geometries of various objects [1–3], in particular, Vamos
matroids [10]. Therefore, natural questions arise on the classification of
pregeometries and geometries for various significant classes of structures
and their theories.
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This article contains necessary and sufficient conditions that have been
found for the types of pregeometries of acyclic theories with an algebraic
closure operator. Definitions of pregeometry and its types have been taken
from the paper [11]. It has been also noticed in the article that the exchange
property is violated for the pregeometry of acyclic theories. Taking this into
account, new concepts that do not rely on this property are introduced:
𝑎-pregeometry and 𝑎-dimension. Using 𝑎-dimension, a new definition of 𝑎-
modularity was introduced: an analogue of 𝑎-modularity for 𝑎-pregeometry.
For acyclic theories, dependences of the 𝑎-modularity and 𝑎-local finiteness
of the 𝑎-pregeometry on the number of non-isomorphic trees and special
points were established. Sufficient dependence conditions for the 𝑎-local
finite 𝑎-pregeometries on the vertices of the 𝑎-type were also stated.

2. Pregeometry. Types of pregeometry

In this paper we use the definitions from [4–6;9; 11;13;14] and [15].

Definition 1. A pregeometry is a set 𝑆 together with a certain closure
operation cl : 𝑃 (𝑆) → 𝑃 (𝑆) satisfying the following conditions:

1) for any 𝑋 ⊆ 𝑆, 𝑋 ⊆ cl(𝑋) is executed;
2) for any 𝑋 ⊆ 𝑆, cl(cl(𝑋)) = cl(𝑋) is executed;
3) for any 𝑋 ⊆ 𝑆 and for any 𝑎, 𝑏 ∈ 𝑆 if 𝑎 ∈ cl(𝑋 ∪ {𝑏}) − cl(𝑋) then

𝑏 ∈ cl(𝑋 ∪ {𝑎});
4) for any 𝑋 ⊆ 𝑆 if 𝑎 ∈ cl(𝑋) then 𝑎 ∈ cl(𝑌 ) for some finite 𝑌 ⊆ 𝑋.

Having a pregeometry ⟨𝑆, cl⟩, each subset 𝑋 ⊆ 𝑆 has a minimal set 𝑋 ′ ⊆
𝑋, under inclusion, such that cl(𝑋) = cl(𝑋 ′). This minimal set 𝑋 ′ is called
the basis of the set 𝑋. In this case, the cardinality |𝑋 ′| does not depend on
the choice of the basis in the 𝑋, and it is called the dimension of the set 𝑋
in the pregeometry ⟨𝑆, cl⟩, denoted by dim(𝑋). By the definition we have
dim(𝑋) = dim(cl(𝑋)), i.e. the dimension is preserved under the transition
to the closure of the set 𝑋 in the pregeometry ⟨𝑆, cl⟩. If dim(𝑋) ∈ 𝜔 then
set 𝑋 is called finite-dimensional.

Definition 2. A set 𝑋 ⊆ 𝑆 is called closed if 𝑋 = cl(𝑋).

Definition 3. A pregeometry ⟨𝑆, cl⟩ is called trivial or degenerate if for
every 𝑋 ⊆ 𝑆, cl(𝑋) =

⋃︀
{cl({𝑎}) | 𝑎 ∈ 𝑋}.

A pregeometry ⟨𝑆, cl⟩ is called modular if for any closed sets 𝑋0, 𝑌0 ⊆
𝑆, 𝑋0 independent from 𝑌0 with respect to 𝑋0 ∩ 𝑌0, i.e. for any finite-
dimensional closed sets 𝑋 ⊆ 𝑋0, 𝑌 ⊆ 𝑌0 is true

dim(𝑋) + dim(𝑌 )− dim(𝑋 ∩ 𝑌 ) = dim(𝑋 ∪ 𝑌 ).

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 46. С. 110–120
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A pregeometry ⟨𝑆, cl⟩ is called local modular if, for any 𝑎 ∈ 𝑆, the
pregeometry ⟨𝑆, cl{𝑎}⟩ is modular, where cl{𝑎}(𝑋) = cl(𝑋 ∪ {𝑎}).

A pregeometry ⟨𝑆, cl⟩ is called projective if it is modular and not-trivial,
and is called locally projective if it is locally modular and not-trivial.

A pregeometry ⟨𝑆, cl⟩ is called locally finite if for any finite subset 𝐴 ⊆ 𝑆,
the set cl(𝐴) is finite.

Definition 4. Let 𝑀 be a model of a theory 𝑇 . Then the algebraic closure
operator for the model 𝑀 is an operator acl : 𝑃 (𝑀) → 𝑃 (𝑀) such that for
every subset 𝑋 ⊆ 𝑆, acl(𝑋) = {𝑎 ∈ 𝑆 | 𝑆 |= ∃<𝜔𝑥𝜑(𝑥, �̄�) ∧ 𝜑(𝑎, �̄�) for some
formula 𝜑(𝑥, 𝑦) and �̄� ∈ 𝑋}.

Throughout we consider ⟨𝑆, acl⟩-type pregeometries only.

3. Kinds of pregeometries of acyclic theories

Definition 5. An acyclic structure is a graph Γ = ⟨𝑋;𝑅⟩, in which each
connected component is a tree. A theory 𝑇 of a graph signature {𝑅(2)} is
called acyclic if 𝑇 = Th(𝑀) for some acyclic structure 𝑀 . In this case,
the structure 𝑀 is called an acyclic model of the theory 𝑇 .

Definition 6. In a graph a vertex 𝑎 is called a 𝑛-vertex (∞-vertex) if it
is incident with 𝑛 edges (infinitely many edges).

Remark 1. For a structure ⟨𝑆, acl⟩ in an acyclic theory 𝑇 , the exchange
property does not always hold, for instance, if a model contains a tree
consisting of ∞-vertices only.

Indeed, let the model contain a tree with all infinite degree vertices.
Then any three different elements lying on the same path will violate the
exchange property.

By virtue of the remark, for a structure ⟨𝑆, acl⟩, the dimension of a trees
should be considered as the dimension of a structure and we should talk
about the 𝑎-modularity of the pregeometry, i.e. about the connection of
the dimensions of a trees without relying on the exchange property. In
this case, an acyclic structure ⟨𝑆, acl⟩ satisfying the conditions 1), 2), 4) of
definitions of a pregeometry will be called an 𝑎-pregeometries.

Definition 7. For an acyclic theories 𝑇 , the 𝑎-dimension 𝑑𝑖𝑚𝑎(𝐴), where
𝐴 ⊆ 𝑀 |= 𝑇 , is considered to be the value 𝜇𝐴 +

∑︀
𝐷′ 𝜈𝐴∩𝐷′, where 𝜇𝐴 is

the number of a finite trees 𝐷 ⊆𝑀 with condition 𝐴∩𝐷 ̸= ∅, and 𝜈𝐴∩𝐷′ is
the number of vertices of the smallest subtrees of 𝐾 a infinite trees 𝐷′ ⊆𝑀
with condition 𝐴 ∩𝐷′ ⊆ 𝐾.
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Definition 8. An 𝑎-pregeometry ⟨𝑆, cl⟩ is called 𝑎-modular if for every
acl-closed sets 𝑋0, 𝑌0 ⊆ 𝑆, 𝑋0 is independent from 𝑌0 relating to 𝑋0 ∩ 𝑌0,
i.e. for every finite-dimensional acl-closed sets 𝑋 ⊆ 𝑋0, 𝑌 ⊆ 𝑌0 is true:

1) if there exists an infinite tree 𝐷 for which 𝑋 ∩𝑌 ∩𝐷 = ∅, 𝑋 ∩𝐷 ̸= ∅,
𝑌 ∩𝐷 ̸= ∅, then the equality holds:

dim𝑎(𝑋 ∩𝐷) + dim𝑎(𝑌 ∩𝐷)+

+𝜌(𝑋 ∩𝐷,𝑌 ∩𝐷) = dim𝑎((𝑋 ∪ 𝑌 ) ∩𝐷), (3.1)

where 𝜌(𝑋∩𝐷,𝑌 ∩𝐷) is the number of vertices of the shortest path between
the vertices 𝑥 ∈ 𝑋 ∩ 𝐷 and 𝑦 ∈ 𝑌 ∩ 𝐷 (without counting the vertices of
these sets);

2) in other cases, for the connectivity components 𝐷 is satisfied the
following equality:

dim𝑎(𝑋∩𝐷)+dim𝑎(𝑌 ∩𝐷)−dim𝑎(𝑋∩𝑌 ∩𝐷) = dim𝑎((𝑋∪𝑌 )∩𝐷). (3.2)

Remark 2. According to the definitions of 𝑎-dimension and 𝑎-modularity,
when summing the relations (3.1) and (3.2) over all connected components
of 𝐷 , some generalized analogue of the modularity formula in pregeometry
for 𝑎-pregeometry is obtained:∑︁

𝐷

dim𝑎(𝑋 ∩𝐷) +
∑︁
𝐷

dim𝑎(𝑌 ∩𝐷)−
∑︁
𝐷

dim𝑎(𝑋 ∩ 𝑌 ∩𝐷)+

+
∑︁
𝐷

𝜌(𝑋 ∩𝐷,𝑌 ∩𝐷) =
∑︁
𝐷

dim𝑎((𝑋 ∪ 𝑌 ) ∩𝐷). (3.3)

Theorem 1. Let 𝑇 be an acyclic theory with an infinite saturated model
𝑀 = ⟨𝑆,𝑅⟩. Then the 𝑎-pregeometry of ⟨𝑆, acl⟩ is 𝑎-modular.

Proof. Due to the fact that every non-empty intersection of trees in the
model of acyclic theory is again a tree we note that with the exception
of the first case in the definition of 𝑎-modularity under the conditions of
the second point of the theorem, the equality (3.2) holds, defining the
modularity.

If there is an infinite tree 𝐷: 𝑋 ∩ 𝑌 ∩𝐷 = ∅, 𝑋 ∩𝐷 ̸= ∅, 𝑌 ∩𝐷 ̸= ∅. In
this case, 𝜈𝑋∩𝑌 = 0. 𝜈(𝑋∩𝐷)∪(𝑌 ∩𝐷) is equal to the number of vertices of the
smallest subtrees, that containing 𝑋 ∩𝐶, 𝑌 ∩𝐶 and the number of vertices
of the shortest path between the sets𝑋∩𝐶 and 𝑌 ∩𝐷. Denoted by 𝜌(𝑋,𝑌 ).
If the sets 𝑋 and 𝑌 intersect in an infinite tree 𝐷, i.e. 𝑋 ∩𝑌 ∩𝐷 ̸= ∅, then
𝜌(𝑋,𝑌 ) = 0 and the equality

𝜈𝑋∩𝐷 + 𝜈𝑌 ∩𝐷 − 𝜈𝑋∩𝑌 ∩𝐷 = 𝜈(𝑋∩𝐷)∪(𝑌 ∩𝐷)

holds.
Thus, the 𝑎-pregeometry is 𝑎-modular.

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 46. С. 110–120
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Definition 9. Let G be a group of substitutions on the universe of the
model S, with the condition ∀𝑔 ∈ 𝐺 ∀𝑎, 𝑏 ∈ 𝑆 𝑅(𝑔(𝑎), 𝑔(𝑏)) = 𝑅(𝑎, 𝑏). Then
a vertex 𝑎 is called special, if its orbit 𝑎𝐺 = {𝑔(𝑎)|∀𝑔 ∈ 𝐺} is finite.

Definition 10. Let 𝐺𝐴 be a group of substitutions on the universe of the
model S, with a fixed set 𝐴 ⊆ 𝑆, i.e. ∀𝑔 ∈ 𝐺 ∀𝑎 ∈ 𝐴 𝑔(𝑎) = 𝑎. And with
the condition ∀𝑔 ∈ 𝐺 ∀𝑎, 𝑏 ∈ 𝑆 𝑅(𝑔(𝑎), 𝑔(𝑏)) = 𝑅(𝑎, 𝑏). Then a vertex a is
called A-special, if its orbit 𝑎𝐺 = {𝑔(𝑎)|∀𝑔 ∈ 𝐺} is finite.

Theorem 2. Let 𝑇 be an acyclic theory. Then for the saturated model
𝑀 = ⟨𝑆,𝑅⟩ of the theory 𝑇 , the following conditions are satisfied:

1) if the model does not contain infinite connectivity components, but
there are an infinite number of finite connectivity components, then the
𝑎-pregeometry ⟨𝑆, acl⟩ is not 𝑎-locally finite if only the model contains an in-
finite number of trees that are isomorphic to a finite number of connectivity
components.

2) if there is an infinite component in the model, then the 𝑎-pregeometry
⟨𝑆, acl⟩ is 𝑎-locally finite if only the model does not have an infinite number
of special A-special vertices for every finite set 𝐴 ⊆ 𝑆.

Proof. 1) Let the model consist of an infinite number of finite connectivity
components.

We note that for any vertex of a finite tree (let’s denote it 𝑝), you can
make a formula for which this vertex will be the solution. Let 𝐻 be the
set of vertices of our tree. Then the formula is compiled according to the
following principle:

𝑎) We take all the edges with ends containing the vertices of our tree
𝑎, 𝑏 ∈ 𝐻. Denote the set of all such edges 𝐸;
𝑏) The formula for the vertex p will be

∃𝑎1...∃𝑎𝑛∃𝑏1...∃𝑏𝑚(
𝑛⋀︁
𝑖=1

𝑅(𝑝, 𝑎𝑖)

𝑘⋀︁
𝑗=1

𝑒𝑗) ∧ ∀𝑑∈𝐻𝑑∀𝑞 /∈𝐻𝑞(¬𝑅(𝑑, 𝑞))

, where 𝑎𝑖 are vertices from 𝐻 adjacent to 𝑝, 𝑏𝑖 are vertices from 𝐻 not
adjacent to 𝑝 and 𝑒𝑗 are edges from 𝐸 not incident to 𝑝.

It can be seen that the solution of these formulas (denote it K) will be
not only the vertex p, but also all the vertices into which p passes under the
action of a group of automorphisms. Moreover, there are no more precise
formulas exist. We mean formulas, which solution would be a proper subset
of the set K. We will prove the opposite. All formulas are constructed from
conjunction, disjunction, negation, quantifiers of existence and universality
of the relation R. If we remove the conjunction with relations from the
above formulas, then many solutions will expand. If we add a conjunction
or disjunction with relations to the formulas, we get a formula for another
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tree, and we already use these formulas. And in general, any compiled
formulas will find the vertices of isomorphic trees. The conjunct of the
relations R is a tree. The disjunction of such conjuncts will find the vertices
of trees, with each responsible corresponding conjuncture.

The algebraic closure of any nonempty subset 𝑋 ⊆ 𝑆 will consist of
𝑎𝑐𝑙(∅) and the vertices of the connectivity component 𝐷, which contain
the vertices of the set 𝑋, i.e. the vertices of 𝐷 such that 𝐷 ∩ 𝑋 ̸= ∅.
So whether, the closure of a finite set will be infinite depends only on
the dimension 𝑎𝑐𝑙(∅). Then the algebraic closure of any subset of the
universe, in particular the empty set, will be infinite only in the case of
presence an infinite number of trees that are isomorphic to a finite number
of connectivity components. Hence, only under this condition 𝑎-locally
finiteness will be violated.

2)Now let’s also consider infinite trees. For the vertices of these trees
we can obtain formulas similar to the previous case. But removing the
conjunct from the formulas ∧∀𝑑∈𝐻𝑑∀𝑞 /∈𝐻𝑞(¬𝑅(𝑑, 𝑞)). Now the solution of
the formula will be not only the vertices of the connected components
isomorphic to each other, but also the vertices of the subtrees. Here we
note that in an 𝑎-pregeometry with such trees the closure of an empty
set may not be infinite, and the closure of a finite set of vertices, on the
contrary, will violate 𝑎-locally finiteness.

By virtue of these formulas, if, as previous, we have an infinite number
of finite non-isomorphic connectivity components, then the closure of the
empty set is infinite.

All algebraic formulas, that can be composed from the relation R and
that do not depend on constants, will describe the vertices of some trees
that are isomorphic to each other. Moreover, the solution of the formula
(denote it K) will be vertices that pass into each other under the action of
a group of automorphisms of the entire model – means, that the solution
is the orbit of the element 𝑘 ∈ 𝐾 of the substitution group G with the
condition ∀𝑔 ∈ 𝐺 ∀𝑎, 𝑏 ∈ 𝑆 𝑅(𝑔(𝑎), 𝑔(𝑏)) = 𝑅(𝑎, 𝑏). If there are a finite
number of such vertices, then by definition they are called special. They
will always be contained in the closure of an empty set. It turns out that if
there is an infinite number of special vertices, then the closure of any finite
set will be infinite. Consequently, 𝑎-locally finiteness is violated.

Let’s analyze one more case. Let us have an infinite connectivity com-
ponent, in which there are vertices passing into a finite number of vertices
under the action of a group of all automorphisms over the universe of
this component. If the model has an infinite number of trees, that are
isomorphic to this component, then formulas without constants from these
components will not have a finite number of solutions. However, if we use
the above formulas, which depends from constants (the set of such vertices
is denoted by A)from these sets, then the closure of the finite set of vertices

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 46. С. 110–120
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A of these trees will consist of A-special vertices. The closure of such kind
set will be infinite, which will violate a-locally finiteness.

Thus, an 𝑎-pregeometry ⟨𝑆, acl⟩ is 𝑎-locally finite only if the model does
not have an infinite number of special and A-special vertices for any finite
set 𝐴 ⊆ 𝑆.

Definition 11. Let’s call the 𝑛-neighborhood of vertex 𝑎 the set of ver-
tices, connected to it through 𝑛 edges. This set is denoted by 𝑁𝑛(𝑎).

Definition 12. The sequence of integers and the symbol ∞ will be called
the code of vertex 𝑎 from vertex 𝑏 if the 𝑖 element of the sequence is the
degree of 𝑖 of the vertex on the path from element 𝑏 to element 𝑎.

Definition 13. We will say that vertices have the same 𝑎-type if each of
their neighborhoods has the same number of vertices of the same code.

Theorem 3. Let 𝑇 be an acyclic theory. Then the following conditions
are met for any model of 𝑀 = ⟨𝑆,𝑅⟩ theory 𝑇 :

1) if an infinite number of finite sets with vertices of the same 𝑎-type
can be distinguished in the model, then the 𝑎-pregeometry ⟨𝑆, acl⟩ is not
𝑎-locally finite.

2) if an infinite sequence of neighborhoods can be distinguished in the
vertex model, each of which contains a finite set of vertices of the same
𝑎-type, then the 𝑎-pregeometry ⟨𝑆, acl⟩ is not 𝑎-locally finite.

Proof. The formula for finding the vertices of code 𝑘0, ..., 𝑘𝑛 on the
𝑛-neighborhood of vertex 𝑝 has the form:

∃𝑘0−11 𝑎
(1)
𝑗 ...∃𝑘𝑛−11 𝑎

(𝑛)
𝑗 ∃𝑏(1)...∃𝑏(𝑛−1)(

𝑘0−1⋀︀
𝑖=1

𝑅(𝑝, 𝑎
(1)
𝑖 )

⋀︀
𝑅(𝑝, 𝑏(1))

⋀︀
...

...
𝑘𝑛−1⋀︀
𝑖=1

𝑅(𝑏(𝑛−1), 𝑎
(𝑛−1)
𝑖 )

⋀︀
𝑅(𝑏𝑛−1, 𝑥)

𝑘𝑛⋀︀
𝑖=1

𝑅(𝑥, 𝑎
(𝑛)
𝑖 ))

Hence, the formula for the a-type of vertex p is written as conjunctions
of formulas for finding the vertices of the corresponding codes with the
replacement of x in them by related variables. Also, p is replaced by x.

1. The first condition of the theorem means that an infinite number of
formulas will have a finite number of solutions. This means that the closure
𝑎𝑐𝑙(∅) will be infinite. Hence, the condition 𝑎-locally finite is violated.

2. Here, to the already prepared a-type formulas, you need to add
more information about the position on the neighborhood through the
conjunction

∃𝑝∃𝑙1...∃𝑙𝑟−1𝑅(𝑝, 𝑙1) ∧ ... ∧𝑅(𝑙 − 1, 𝑥)
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an 𝑎-type vertex is located on the r neighborhood of vertex p. The second
condition of the theorem says that there are an infinite number of our
formulas that have a finite number of solutions. This means that the closure
of an empty set or vertex p will be infinite. Hence, the condition is 𝑎-locally
finite is violated.

4. Conclusion

For acyclic theories we found conditions for violation of the exchange
property and there were introduced new definitions: 𝑎-pregeometry and
𝑎-modularity. We also established dependences of 𝑎-modularity and 𝑎-
locally finiteness of 𝑎-pregeometry on the number of non-isomorphic trees
and special points. In addition, sufficient dependence conditions have been
established for 𝑎-locally finite 𝑎-pregeometries on 𝑎-type vertices.
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