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Abstract. Constant or nonessential extensions of elementary theories provide a pro-
ductive tool for the study and structural description of models of these theories, which
is widely used in Model Theory and its applications, both for various stable and ordered
theories, countable and uncountable theories, algebraic, geometric and relational struc-
tures and theories. Families of constants are used in Henkin’s classical construction of
model building for consistent families of formulas, for the classification of uncountable and
countable models of complete theories, and for some dynamic possibilities of countable
spectra of ordered Ehrenfeucht theories.

The paper describes the possibilities of ranks and degrees for families of constant
extensions of theories. Rank links are established for families of theories with Cantor-
Bendixson ranks for given theories. It is shown that the e-minimality of a family of
constant expansions of the theory is equivalent to the existence and uniqueness of a
nonprincipal type with a given number of variables. In particular, for strongly minimal
theories this means that the non-principal 1-type is unique over an appropriate tuple.
Relations between e-spectra of families of constant expansions of theories and ranks and
degrees are established. A model-theoretic characterization of the existence of the least
generating set is obtained.
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It is also proved that any inessential finite expansion of an o-minimal Ehrenfeucht
theory preserves the Ehrenfeucht property, and this is true for constant expansions of
dense spherically ordered theories. For the expansions under consideration, the dynamics
of the values of countable spectra is described.
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ordered theory, spherical theory
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Awnsoranusi. Onucanbl BO3MOXKHOCTH PAHIOB M CTEIEHEH JJis CeMeiCTB KOHCTAHTHBIX
pacIiupeHuit Teopuii. YCTaHOBJIEHA CBSI3b PAHTOB JIJIsi CEMEMCTB Teopuii ¢ panramu KanTo-
pa — Bennukcona nyia nanabix Teopuii. Ilokazano, 4T0 e-MHHIMAIBHOCTD CeMefiCTBa KOH-
CTaHTHBIX 0DOTAINEHUI TEOPHUU PABHOCUJIbHA CYIIECTBOBAHUIO U €MHCTBEHHOCTH HETJIaB-
HOI'O THUIIA C JIAHHBIM YHCJIOM IepPEMEHHBIX. B YacTHOCTH, /I CUJIBHO MHHUMAJILHBIX
TEOPUil 3TO O3HAYAET €JUHCTBEHHOCTH HEIVIABHOI'O 1-THITa HAJI TOJIXOISAIINM KOPTEZKEM.
VcraHoBIIeHA CBSI3b €-CIIEKTPOB CEMENCTB KOHCTAHTHBIX OOOTAIEeHM TeOpHuil ¢ paHraMu
u creneamu. llosydena TeopeTnko-mMoneIbHAS XapAKTEPUIAIMS CYIIECTBOBAHMS HAW-
MEHBIIEr0 IIOPOXKJAIOIIEr0 MHOXKECTBA.

Tak>ke J0Ka3aHO, 9TO JIFOOOE HECYIIECTBEHHOE KOHEYHOE ODOTaIleHue O-MUHUMAJIbLHON
9peH(MOUXTOBON TEOPUM COXPAHSIET IPEHMONXTOBOCTH, W ITO BEPHO JJjIsi KOHCTAHTHBIX
oborarreHui JI0THBIX c(pepUuecKn yIOPsTOUeHHBIX Teopuit. s paccMaTpuBaeMbIX 000-
ralleHni onucaHa AWHAMUKA 3HAYEeHUIl CIETHBIX CIIEKTPOB.

KuroueBble cjioBa: ceMeiicTBO TEOPHil, pAHT, CTEIIeHb, KOHCTAHTHOE PACIIUPEHNE, SPEH-
boIIXTOBa TEOpHsl, YIOPsIIOUYeHHAsT TEOpUsI, CheprudecKasl TEOPUST
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1. Introduction

Constant, or nonessential expansions of elementary theories give a pro-
ductive tool for the study and structural descriptions of models of given
theories. It is broadly used in Model Theory and its applications, both
for various stable [5;21;22] and ordered [36] theories, countable and un-
countable theories [2;3;8;12;35], algebraic, geometric [20] and relational [4]
structures and theories. Families of constants are used in the classical
Henkin construction of models for consistent families of formulae [7], for
the classification of uncountable [6;22] and countable models of complete
theories [29], and for some possibilities of dynamics for countable spectra
of Ehrenfeucht ordered theories [17].

Recall that for a theory 7" and a cardinality A the value I(T,\) of
spectrum function is the number of pairwise non-isomorphic models of T’
in the cardinality A. A theory T is Ehrenfeucht if T has finitely many but
more than one countable models, i.e., 1 < I(T,w) < w.

In the present paper, we continue to study families of theories [24-28;
30; 31] and their rank [10; 13-15; 18; 19; 32; 33] describing possibilities of
ranks and degrees for families of finite constant expansions of theories,
their links with Cantor-Bendixson rank and e-spectra (Section 1). We
apply a general approach of constant expansions for ordered Ehrenfeucht
theories showing that the Ehrenfeuchtness and o-minimality are preserved
under finite constant expansions (Corollary 3.6), and describe the dynamics
of countable spectra I(T,w) for these theories T' (Theorem 3.5). These
results are modified for finite constant expansions of Ehrenfeucht spheri-
cally ordered theories showing the possibilities for dynamics of countable
spectra (Theorem 3.9) and the preservation of Ehrenfeuchtness under these
expansions (Corollary 3.10).

Throughout the paper we consider complete first-order theories T in
predicate languages 3(7) and use both the terminology on combinations
of theories, families of theories, and their ranks in [24-28;30;31;33], and on
ordered theories in [1;9;11;16].
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2. Expansions theories by tuples of constants and their families

Let T be a theory in a language L, @ be a tuple of new constant symbols,
of length [(@) = n. We denote by 775 the set of all expansions T'(a) of T
by constants in a.

Clearly, there is a one-to-one correspondence between 77z and S™(T)
preserving the topological space.

Notice that 775 is E-closed since theories in 775 preserve the theory T’
and have realizations of all types in S"®(T) so that accumulation points for
realizations of types in SU®(T') are again realizations of types in SU®(T).

Clearly, if T = Th(M) for a finite model M then 775 is finite. More-
over, Trg is finite if 7" has finitely many [(a)-types, in particular, if T" is
w-categorical. Conversely, if 775 is finite then there are finitely many
possibilities to substitute @ as a realization of a type p(Z) € S'@(T).
Therefore, '@ (T) is finite.

Since |Tra| > w means that 775 contains an approximating subfamily
by [31, Theorem 6.1], we obtain the following:

Proposition 2.1. For any theory T and a tuple a the following condi-
tions are equivalent:

(1) Trg contains an approzimating subfamily;

(2) S'@(T) is infinite.

Ryll-Nardzewski Theorem and Proposition 2.1 immediately imply:

Corollary 2.2. For any theory T the following conditions are equiva-
lent:

(1) for some tuple @, Trg contains an approximating subfamily;

(2) S(T) contains nonisolated types, i.e., T is not w-categorical and does
not have finite models.

Since |T7.| = [S'@(T)| and RS(T) = 0 if and only if 7 is finite with
ds(T) = |T|, we have the following:

Corollary 2.3. For any theory T and a tuple a with finite S'@(T),
RS(Trg) = 0 and ds(Tra) = |S"@(T)|.

Following [23], for a type p € S™(T'), we denote by CB,,(p) the Cantor—
Bendixson rank for the type p in the compact topological space on S™(T),
CBy(T) = sup{CB,(p) | p € S™(T)}.

Theorem 2.4. (1) For any type p € S™(T') and a tuple @ with l(a) = n,
CBn(p) = RS7.,(T'Up(a)).

(2) For any tuple a, CByg)(T) = RS(Tra)-

(3) For any tuple @, if CByg)(T) = RS(Tra) is an ordinal then ds(Tra)
equals CB-degree of SU@(T).

Proof. (1) We show CB,,(p) = RS7;..(TUp(@)) by induction on ordinals.
If p is isolated then both CB,(p) = 0 and RSz, .(T'Up(a)) = 0 witnessed

WsBectusa VMpkyTCcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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by the principal formula ¢(Z) € p: p is an isolated point in S™(T") by ¢(T)
and T'U p(a) is an isolated point in 7757 by ¢(a). For limit ordinals o
the equalities CB,,(p) = a = RS, (T'Up(a)) are followed immediately by
induction. Now if we assume that CB,,(p) > a+1 then p is an accumulation
point for some types ¢ € Q with CB;,(¢) > o. Having RS7;..(T'Uq(a)) > a
by induction hypothesis and since T'U p(a) is an accumulation point for
{T' Uq(a) | ¢ € Q}, we obtain RSy, _(T'Up(a)) > a+ 1. And vice versa, if
RS7,..(T'Up(a)) > a+ 1 then T'Up(a) is an accumulation point for some
TUq(a), q € Q, with RSt (T'Ug(@)) > . Thus, p is an accumulation point
@, and having CB,,(¢) > « by induction hypothesis, we obtain CB, (p) >
a+1.

(2) is immediately implied by (1) since both CByg)(T') = sup{CByg)(p) |
p € S'@(T)} and RS(Tra) = sup{RS7, (T Up(a)) | p € S"(T)}.

(3) is again implied by (1) since it confirms that there are equally many
limit points in S“@(T) and in Trz of rank a = CBy(g)(T) = RS(Trg). O

Corollary 2.5. For any theory T and a tuple @ the following conditions
are equivalent:

(1) Trg is e-minimal;

(2) T has unique nonprincipal l(a)-type.

Proof. If 775 is e-minimal then it contains a unique accumulation point
by [31, Theorem 7.3], with CByg)(T) = RS(Tr3) = 1 and ds(7rg) = 1 in
view of Theorem 2.4. Since CByg)(T) = 1 with CB-degree 1, there is a
unique nonprincipal type in SY@(T"). Conversely, having a unique accumu-
lation point in S'@ (T') we again apply Theorem 2.4 obtaining RS(775) = 1
and ds(7rg) = 1, i.e., Trg is e-minimal. O

Since strongly minimal theories have at most one non-principal 1-type
over finite sets, Corollary 2.5 immediately implies the following criterion
for an expansion T'(@) of a strongly minimal theory T by a tuple @:

Corollary 2.6. For any strongly minimal theory T, a tuple @ and an
element b the following conditions are equivalent:

(1) Tr@)p is e-minimal;

(2) T has a nonprincipal 1-type over G.

Remark 2.7. For any strongly minimal theory 7', a tuple @ and an
element b, either Tr(g) is finite or e-minimal. At the same time, clearly,
these conditions do not characterize the strong minimality, since they do
not guarantee that the sets of solutions for formulas ¢(z,a) are finite or
cofinite. For that characterization it suffices to use the requirement that for
any formula ¢(x,a) and sets A there are finitely many possibilities, with
respect to n € w, for T U {p(b,a) | be Ay U{“|A| =n"} or T U {—p(b,a) |
be Ay U{“A|=n"

Theorem 2.8. (1) If Trg is finite then e-Sp(Trg) = 0.
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(2) If Tra is infinite and has finitely many accumulation points then
e-Sp(Tra) = ds(Tra)-

(3) If Trg is infinite and has infinitely many accumulation points then e-
Sp(Tra) < min{2/"1 RS(T74)}, and e-Sp(Tra) = |RS(Tra)| if RS(Tra) is
an ordinal. Moreover, if T is countable, then e-Sp(Trz)=min{2*RS(T13a)}.

Proof. (1) If 775 is finite then 775 consists of finitely many isolated
points which do not produce new theories. Hence e-Sp(775) = 0.

(2) Assuming that 775 is infinite and has finitely many accumulation
points, 77 contains the least generating set 7 consisting of isolating
points. Since by Theorem 2.4, CBy (1) = RS(775) = 1 and 7o produces
ds(77,2) new points, we have e-Sp(Trg) = ds(T7.a)-

(3) Let 77,5 be infinite and have infinitely many accumulation points. It
implies that CBy(g)(T") > 2. If CBy(g)(T') is an ordinal then by Theorem 2.4,
Tr,a contains the least generating set 7y consisting of isolating points. The
set 7o generates |CByq)(T)| < 217 accumulation points. Since CBy)(T) =
RS(71,a), we obtain e-Sp(Trg) = [RS(Tr3)|- If CByg)(T) = oo then the
inequality e-Sp(Trz) < min{2/"| RS(T74)} is obvious, since Trg can not
have more than 271 accumulation points.

If T'is countable then CByg) (1) = RS(7rg) is either a countable ordinal,
with countably many [(@)-types, of equal infinity, with continuum many
l(a)-types. In the latter case, by [33, Theorem 4.5], e-Sp(Trg) = 2¥. O

The following example shows that the inequality in Theorem 2.8, (3)
can be strict.

Example 2.9. Let A be an infinite cardinality and T\ be a theory of
independent unary predicates P;, ¢ € w, expanded by A empty additional
predicates. For any tuple @ we have CByg)(Th) = RS(Tr,a) = oo, e-
Sp(Tr,a) = 2¢, whereas min{2/”1, RS(77.7)} = 2* can be unboundedly
large.

At the same time, taking a theory T in a language with A\ independent
unary predicates we obtain, for a tuple @, CB;g)(T') = RS(7r, @) = oo and
e-Sp(Try @) = 2171,

Now we consider a countable theory T. Since for any n € w the
Stone space S™(T') is either at most countable, with countable CB-rank
of each element, or |S™(T")| = 2 with CB-rank oo, we deduce the following
theorem.

Theorem 2.10. For any countable theory T and a tuple @ the following
conditions are equivalent:

(1) [S1O(T)] < w;

(2) [Tl < w;

(3) RS(T7,a) is a (countable) ordinal;

(4) e-Sp(Tra) < w.

WsBectus UpKyTCcKOro rocylapcTBEHHOTO YHUBEPCUTETA.
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Proof. (1) < (2) follows in view of [S'@(T)| = |Tral- (2) = (3)
holds since if |[RS(775)| > w then there is a 2-tree of sentences producing
|77l = 2¥. Assuming |RS(775)| < w we obtain at most countably many
accumulation points implying |775| < w and thus we have (3) = (2).
Finally, (2) = (4) is obvious, and (4) = (3) is satisfied in view of [33,
Theorem 4.5]. O

Theorem 2.10 immediately implies the following:
Corollary 2.11. For any countable theory T the following conditions
are equivalent:
1) T is small, i.e., |S(T)| = w;
2) for any tuple @, |Trg| < w;
3) for any tuple @, RS(Trg) is a (countable) ordinal;
4) for any tuple @, e-Sp(Trg) < w.

(
(
(
(

Recall the following theorem.

Theorem 2.12. [24]. If T is a generating set for an E-closed set Ty
then the following conditions are equivalent:

(1) 7y is the least generating set for To;

(2) 7y is a minimal generating set for To;

(3) any theory in Ty is isolated by some set (Ty)y, i.e., for any T € T
there is ¢ € T' such that (Tq), = {T'};

(4) any theory in T is isolated by some set (To)y, i.e., for any T € T
there is p € T' such that (To), = {T'}.

Applying Theorem 2.12 for the families 775, which are always E-closed,
we obtain the following:

Theorem 2.13. For any countable theory T the following conditions
are equivalent:

(1) for any tuple @, Trg has the least generating set;

(2) T has a prime model.

Proof. If the families 775 have the least generating sets then, by The-
orem 2.12; each consistent formula ¢(Z) is implied by a principal one.
Therefore, T has a prime model. Conversely, having a prime model we
obtain, for each @, a generating subset 7 C 775 consisting of isolated
points correspondent to principal formulas. Thus, by Theorem 2.12, Tr5
has the least generating set. O

Remark 2.14. Since there are many countable theories with prime
models and continuum many types (see, for instance [29, Chapter 7]), the
items in Theorem 2.13 are not equivalent to the items in Corollary 2.11.

At the same time, arguments of Theorem 2.13 for a fixed @ imply that
Tz has the least generating set if and only if each consistent 7T-formula
o() with {(Z) = [(a) is forced by some principal one.
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3. Constant expansions of ordered theories and dynamics of
their countable spectra

Definition. Let M is a weakly o-minimal structure, A C M, M is
|A|T-saturated, and p,q € S1(A) are non-algebraic types. We say that p
is not weakly orthogonal to q (p L™ q) if there are an L 4-formula H (z,y),
a € p(M), and S, B2 € (M) such that 81 € H(M,«) and 2 & H(M, «).

In other words, p is weakly orthogonal to q (p LY q) if p(x) U q(y) has a
unique extension to a complete 2-type over A.

Observe that in the o-minimal case p /" ¢ iff there exists an A-definable
strictly monotonic bijection f: p(M) — q(M).

Lemma 3.1. [1] Let T be a weakly o-minimal theory, M =T, A C M.
Then the non-weak orthogonality relation Y is an equivalence relation on

S1(A).

Let A be an arbitrary subset of a linearly ordered structure M. We
denote by AT (respectively, A~) the set of elements b € M with A < b
(b< A).

Definition [1]. Let M be a weakly o-minimal structure, A C M, p €
S1(A) be non-algebraic. We say p is quasirational-to-right (left) if there is a
convex L g-formula Uy (z) € p such that for any sufficiently saturated model
N = M, Uy(N)* = p(N)* (Up(N)~ = p(N)7). A non-isolated 1-type is
called quasirational if it either quasirational-to-right or quasirational-to-left.
A non-quasirational non-isolated 1-type is called irrational.

Obviously, an 1-type being simultaneously quasirational-to-right and
quasirational-to-left is isolated. We say a quasirational-to-right (left) type
p is said to be rational-to-right (left) it Uy(x) = z < b (Up(x) = = > b) for
some b € dcl(A) U{oo,—oo}. Observe that in an o-minimal structure any
quasirational 1-type is rational.

Proposition 3.2 [1]. Let T be a weakly o-minimal theory, M = T,
ACM, p,q€ Si1(A) be non-algebraic, p * q. Then:

(1) p is irrational < q is irrational;

(2) p is quasirational < q is quasirational.

Example 3.3. We consider the known Ehrenfeucht’s example: M =
(Q, <, k) kew, Where ¢ < cp11 for each k € w and limy_, o cx = 0. Let p(z)
be a type closed under deducibility and isolated by the set {cx < z | k € w}
of formulas. Clearly, p € S1(0) and p is non-isolated. It is known that
Th(M) has exactly three countable models: in the first case the type p is
omitted; in the second case there is a countable model M7 >= M such that
p(Mi) has the order type [0,1) N Q; in the third case there is a countable
model My = M such that p(Mz) has the order type (0,1) N Q. Clearly, M
is an o-minimal structure, and p is rational-to-right.
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Now we expand the given theory by a constant a € M, distinguishing the
least element of p(M;). Then Ty = Th({M1,a)) DT = Th(M). Obviously,
T) is also o-minimal and I(T},w) = 3, i.e., T} is also Ehrenfeucht. Here
pi(z) :==p(x) U{z < a} € S1(T1) is also rational-to-right.

Example 3.4. Consider Example 1.1.4.2 of [29]: let

M= <Q7 <, Ck, C§c>/€€wa

where < is an ordinary relation of strict order on the set of rational numbers
Q, the constants ¢ form a strictly increasing sequence and the constants ¢},
form a strictly decreasing sequence, ¢, < ¢ for all k,! < w, and limj_,o0 ¢t =
V2 = limy_,e0 ¢;. The theory has 6 pairwise non-isomorphic countable
models, and M is also o-minimal.

Clearly, p(z) :=={cy <z < ¢} | k,l € w} € S1(0), and p is irrational.

Now we expand the given theory by a constant a € M7, where M; is a
model of T' = Th(M) with p(M1) = {a}. Let T1 = Th({M;,a)). Obviously,
T C 17 and T7 is o-minimal. Consider the following sets of formulas:

pi(x) :=p(x)U{x <a}, po(x):=plz)U{x>a}.

Clearly, p1,p2 € S1(T1) and they are rational 1-types. It can easily check
that I(T},w) =9, i.e. T} is also Ehrenfeucht.

We say I' C S1(0) is independent if for any set I” consisting of exactly
one realization of each type in I" for every ¢ € IV, ¢ & dcl(IV \ {¢'}). We
say p € S1(0) depends on T (or p and I" are dependent) if I' U {p} is not in-
dependent. The dimension of I' (denoted by dim(T")) equals the cardinality
of a maximal independent subset of I'. Obviously, if I' = {p1,p2,...,ps} be
a set of pairwise weakly orthogonal 1-types over () then in the o-minimal
case dim(I") = s.

For an arbitrary o-minimal theory T introduce the following notations:

my = dim{p € S1(0) | p is irrational}, kr = dim{p € S1(() | p is rational}.

Theorem 3.5. Let T be an o-minimal theory. If T is Ehrenfeucht then
for any M = T, for any n < w and for any a = (a1,...,a,) € M the
theory T1 = Th((M,a)) is also Ehrenfeucht.

Moreover,

(1) if each a; is a realization of an isolated or a rational 1-type over ()
then I(T1,w) = I(T,w);

(2) if there exist 1 < s <mn and 1 <i; <ig <...<is <n such that a;,
is a realization of an irrational type p;, over ) for every 1 <t < s, where
| = dim{pi,, pip, - - -, Di. }, then I(Ty,w) = 6mr—I3kr+2

Proof of Theorem 3.5. Firstly, (M, a) is also o-minimal.
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Suppose that T is Ehrenfeucht. Then both my and kr are finite. Laura
Mayer proved in [16] that I(T,w) = 673k,

Case n = 1. Obviously, a; € p(M) for some p € S1(0).

Firstly, suppose that p is isolated. By Proposition 3.2, p 1% ¢ for any
non-isolated ¢ € S1(0), i.e. dcl(ar) Ng(M) = 0. Therefore, each non-
isolated 1-type ¢ is uniquely extended to an 1-type ¢’ over {a;} so that
q(M'") = ¢ (M') for any M’ = M. Thus, mp, = mp and kp, = k.

Suppose now that p is non-isolated. Then p is either rational or irra-
tional. If p is rational then p is either rational-to-right or rational-to-left.
Without loss of generality, suppose that p is rational-to-right, i.e. there
exists b € M U {oo} such that for any M’ = M with p(M’) # () we have
sup p(M') = b. Then we have that the following set of formulas

p(z) :=px)U{z <a}

also determines a rational-to-right type over {a;}. And the formula a <
x < b determines an isolated 1-type over {a1}. By Proposition 3.2, p 1% ¢
for any irrational ¢ € S1(0), and whence we have mq, = mp. If p L r for
some rational € S1(()) then there exists an ()-definable strictly monotonic
bijection f : p(M') — r(M’) for any M’ »= M. If f is strictly increasing then
r'(x) == r(z) U{z < f(a1)} is rational-to-right. If f is strictly decreasing
then r”(z) := r(z) U {x > f(a1)} is rational-to-left. If p L™ r for some
rational r € S1(()) then r is uniquely extended to an 1-type 7’ over {a;} so
that r(M') = r'(M') for any M' = M. Thus, kp, = k.
Suppose now that p is irrational. Then the following sets of formulas

pl(x) =p@)U{zr <ai}, p'(2):=p(x)U{z>a}

determine rational 1-types over {a;}. By Lemma 2.17 [9] in the o-minimal
case p(M') is indiscernible over () for any M’ »= M, and therefore p’ L™ p”.
By Proposition 3.2, p L™ ¢ for any rational ¢ € S1()). Thus, we obtain
that mp, = mgp — 1 and kpy, = kr + 2, ie. I(T},w) = 6mr—13kr+2,

Case n > 1. If for any 1 < ¢ < n a; is a realization of an isolated or
rational 1-type over () then I(T1,w) = I(T,w).

Suppose now that there exist 1 < s < nand 1 < i1 < i9 < ... <
is < n such that a;, is a realization of an irrational type p;, over () for
every 1 < t < s. Let | = dim{pi,,pi,,.-.,pi.}. Then we assert that
I(Ty,w) = 6mr—igkr+2l,

Corollary 3.6. Let T be the family of all o-minimal Ehrenfeucht the-
ories, Tz be the family of all expansions T(a) of T by constants in a for
each T € T, where a is a tuple of new constant symbols. Then T preserves
o-minimality and Ehrenfeuchiness.

Now we consider possibilities for expansions of dense spherical orders
with countably many constants [11], generalizing possibilities for linear and
circular orders.
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Definition [11;34]. An n-ary relation K, C A" is called a n-ball, or n-
spherical, or n-circular order relation, for n > 3, if it satisfies the following
conditions:

(nsol) Vzq, ...,z (Kp(x1, 22, ... 20) = Kp(z2,. .., 25, 21));

(ns02) Vai,...,zn | (Kp(x1,..., 2. . T4, .., Tp)A

AN (21,0 Ty Ty, X)) \/ T le>
1<k<I<n

forany 1 <i < j < mn;

(nso3) Vaq,...,zn | Kp(z1,...,2,) —

— Vi <\/ Kn(fL'l,. cy Tim1, U T, - .,xn)> );

i=1
(nsod) Vai,...,zn(Kp(21, ..., Tiy ..., &, ..., Tn)V
VEp (21, .o Ty Ty, 2p)), 1 <i<j < n.

The structure (A, K,) is called the n-spherically ordered set, or the n-
spherical order, too.

An n-spherically ordered set (A, K,,), where n > 3, is called dense if it
contains at least two elements and for each (ai,a9,as,...,a,) € K, with
ay # ag there is b € A\ {a1,as,...,a,} such that

E Ky(ai,byas,...,an) A Ky(byaz,as,...,ap).
For a (dense) n-spherically ordered set (A, K,,) its elementary theory
and any expansion are called (dense) n-spherical.

The following theorem describes possibilities for countable spectra of
constant expansions of dense n-spherical theories T;,.

Theorem 3.7. [11]. Let T be a countable constant expansion of the
dense n-spherical theory T, n > 3. Then either T has 2% countable models
or T has exactly [ (2% +2)™ countable models, where ), are natural

ken\{1}
numbers. Moreover, for any rg,...,rn_1 € w there is an aforesaid theory
T with evactly T[] (2F +2)"™ countable models.

ken\{1}

Remark 3.8. In view of Theorem 3.7, taking a dense Ehrenfeucht
3-spherical theory 7' with countably many constants we have I(T3,w) =
36" for some r1,73 € w, 1 + 79 > 0, and obtain the same dynamics, as
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in Theorem 3.5, for the values I(7T,w) under expansions by finitely many
new constants.

For a dense Ehrenfeucht 4-spherical theory T with countably many con-
stants we have I(T,w) = 36210 for some r1,79,73 € w, r1 +r9+7r3 > 0,
[11]. Adding a constant which realizes an isolated 1-type or a nonisolated
rational 1-type, i.e., a type responsible for 3 countable models we preserve
3 countable models as in Theorem 3.5, (1).

If new constant realizes a nonisolated “irrational” 1-type, which is re-
sponsible for 6 countable models, we obtain two rational 1-types each of
which is responsible for 3 countable models as in Theorem 3.5, (2), pro-
ducing 3> = 9 countable models. If new constant realizes a nonisolated
“irrational” 1-type responsible for 10 countable models we obtain three 1-
types each of which is responsible for 6 countable models, i.e., there are
62 = 108 countable models instead of 10 ones.

Continuing the process for dense n-spherical theories, n > 5, and taking,
for instance, an “irrational” 1-type p(x) responsible for 18 countable models
we can add a realization of p(x) which produces 10* = 10000 countable
models instead of 18.

In general case, if a 1-type g(z) is responsible for 2% + 2 countable
models, k € w\ {0, 1}, then new constant realizing q(x) produces (2F~14-2)"
countable models.

Having several new constants realizing same 1-type we obtain a chain of
replacements of some 2% + 2 countable models by (2¥~1 4 2)" countable
models, where i are the indexes for these replacements.

In view of Remark 3.8 we have the following modification of Theorem
3.5.

Theorem 3.9. Let T be an Ehrenfeucht constant expansion of a dense
n-spherical theory. Then for any M = T, for any m < w and for any
a={(ai,...,am) € M the theory Ty = Th((M,a)) is also Ehrenfeucht.

Moreover,

(1) if each a; is a realization of an isolated 1-type or a rational 1-type over
0, i.e., a 1-type responsible for 3 countable models, then I(Ty,w) = I(T,w);

(2) if there exist 1 < s <m and 1 < iy <ig <...<is <m such that a;,
is a realization of an irrational type p;, over 0, i.e., a 1-type, responsible for
2k 12 countable models, with k > 2 for every 1 <t <s, then each addition
of the constant a;, replaces its multiplier 28 + 2 in I(T,w) by (281 + 2)"
for I(Th,w).

Corollary 3.10. Let T be the family of all Ehrenfeucht constant expan-
sions of dense n-spherical theories, Tz be the family of all expansions T'(a)
of T by constants in a for each T € T, where a is a tuple of new constant
symbols. Then Tz preserves Ehrenfeuchitness.
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4. Conclusion

We studied possibilities of rank and e-spectrum values for families of
constant expansions of theories as well as their links with Cantor-Bendixson
rank and degree. Criteria for smallness of a theory and of the existence of
a prime model are obtained. A general approach of constant expansions is
applied for ordered Ehrenfeucht theories. It is shown that Ehrenfeuchtness
and o-minimality are preserved under finite constant expansions. The dy-
namics of countable spectra I(T,w) for Ehrenfeucht o-minimal theories T
is described. These results are modified for finite constant expansions of
Ehrenfeucht spherically ordered theories showing the possibilities for dy-
namics of countable spectra and the preservation of Ehrenfeuchtness under
these expansions. It would be interesting to apply the general approach
studying constant expansions and their characteristics for other natural
classes of theories.
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