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Annortauus. Vceneayercss MHTepBaJIbHAs MOJAIbHAS JIOTUKA, B KOTOPOI JieficTBre MO-
JAaJbLHOTO oneparopa & OrpaHUYeHO I'PAHUIAMU UHTEpBaJa. KpoMe TOro, si3bIK MOJajlb-
HOI Jioruky pacimpen omneparopoM D(«, ), HCTUHHOCTH KOTOPOT'O OINPEJE/eTcs Ka-
YECTBEHHO: OH HCTUHHEH, TOJIBKO €CJIM YHCJIO TOYEeK Ha OTPe3Ke [¢j,Cit1], B KOTODPBIX
nctuHHa HPOPMYJIa (v, CTPOTO MEHBIIE YUCJIa TOYEK TOrO OTPE3KA, B KOTOPBIX MCTUHHA
dopwmyna (. Permaercst mpobsiema BBITOJHIMOCTH (HOPMYJ, U KaK CIEICTBUE, PA3PEIIn-
MOCTb JIOTMKH.
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1. Introduction

Nowadays Symbolic Logic is an active tool in research concerning Infor-
mation Sciences and Artificial Intelligence. Several domains are in active
use, for example these are temporal logic [4;5;12], multi-modal logics, multi-
agent logics [1-3;6-9]. For example linear temporal logic LTL after its
invention by Pnually [12] got to be very popular (cf. [6;7; 15; 16; 18-20].
Multi-agent logics used in areas of analysis of information on reliability
and safety by many authors (cf. [21;22]).

Therefore, instruments of temporal logic are rather popular in such kind
of research and usually to be combined with elements of multi-agency, par-
allel computing and multi-agent logics (in a sense of a multi-modal logics).
It seems the first substantive example of a two-modal logic is Arthur Prior’s
tense logic, with two modalities, F and P, corresponding to ”sometime in
the future” and ”sometime in the past”. A logic with infinitely many
modalities is dynamic logic, introduced by Vaughan Pratt in 1976, it has a
separate modal operator for every regular expression.

In multi-agents’ logic modalities are interpreted often as agent’s tempo-
ral accessibility operations, or the ones oriented to model checking, they
were used widely for study interaction and autonomy, effects of cooperation
(cf. e.g. Babenuschev and Rybakov [1-3], Woldridge and Lomuscio [21],
Woldridge [22], Lomuscio et al [9], Rybakov [16;18]).

Working with knowledge representation also often deals with analysis of
information by logical instruments (e.g. description logics) close to tempo-
ral and modal logics (cf. Horrocks, Satler et al [11;13], Baader et al [6-8]).
Representation of agents interaction (as a dual of common knowledge) was
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suggested also using it as a base of agents’ knowledge (S5-like) modalities.
Knowledge, as a concept itself, came from multi-agency, since individual
knowledge may be received only from interaction of agents, learning.

In this paper we wish to touch rather novel approach to information
concerning reasoning about implicit knowledge on truth of statements,
which might be expressed by modal like logical information. This considers
a comparison which statements are looking more close to be true regarding
them to each other. We use a language of modal logic extended by a new
logical operation D(«, ) which compare the truth of formulas a and 5 on
time intervals in terms the possible amount of states where they may be
true. Mathematically we work with ways to invent algorithms recognizing
satisfiability of such modal formulas and find a deciding algorithm.

2. Denotation, Preliminary Facts

We assume our reader to be familiar with the algebraic and Kripke
semantics for modal logics and to have basic knowledge concerning inference
rules and their admissibility (though we briefly recall all necessary facts
below). Following modern trends by a logic we understand the set of all
theorems provable in a given axiomatic system, or the set of valid formulas
for a certain class of Kripke frames. In particular, a normal modal logic A is
a set of modal formulas which is closed under substitution, modus ponens
{a, a — B/B} and necessitation rule {ov / Oa}, and contains all theorems
of the minimal propositional modal logic K. In what follows by a modal
logic we understand an algebraic propositional logic extending S4.

The language of modal logics consists of a countable set of propositional
variables p1,...;py ..., logical connectives of classical logic =, A, V, — and
the unary modal operator <. A normal modal logic is a set of modal
formulas L that contains all propositional tautologies, an axiom scheme
O — B) = (Oa — 0Op), and closed with respect to substitutions, the
modus ponens {a, a — [/8} and necessitation rule {« / Oa}. The
minimal modal logic is denoted as the logic K. If L is a normal modal
logic, then for formulas o € L we write - a or L - « (i.e. there is a
theorem of logic - it is deduced from the axioms using the postulated rules
of inference). If the logic L is fixed or clear from the context, then we
denote F « for simplicity.

A frame F := (F,R) is a pair, where F' is a non-empty set and R is a
binary relation on F. The frame and its underlying set are often denoted
by the same letter for simplicity. Further, we consider only frames where
R is a transitive and reflexive relation.

A model is a triple M = (W, R, V), where F := (F, R) is a frame and
V' is a valuation of a set of propositional letters P in the frame F that is
V:P —2W. Dom(V) = P is called the domain of V.
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A frame F = (F, R) is called an open subframe of frame G = (G, R)
(denoted F C G) if F C G and Va € FVb € G (aRb = b € F) holds. If
My = (Wh, Ry, Vi), Mg = (Wa, Rg, Vo) are models then we call M,
an open submodel of My (denoted M; T My) if : 1) (Wi, R;) is open
subframe of (W, Ra) ;2) Dom(Vi) = Dom(V3) and Vp € Dom(V1) Vi(p) =
Va(p) N Wh.

A mapping f : (F, R) — (G, S) is called a p-morphism if (1) aRb =
f(@)Sf(b); (2) f(z)Sz= Ty € F: fly) =z&aRy.

We say a mapping f : My = (W1, Ry, Vi) = Mo = (W, Ry, Va) is
a p-morphism from the model M; into the My if 1) f is a p-morphism
of the frame F; = (Wi, R;) into the frame Fo = (Wa, Ry) ; 2) the
valuations Vi, Va are defined on the same set of propositional letters; 3)
Vp e Dom(Vi),Ya € Wi(a |y, p <= f(a) Ew p).

We say a frame F' is an A—frame for a logic A if all theorems of X are valid
at ', and A(F') — the set of all formulas valid in F' — is the logic generated
by F.

A logic A satisfies the finite model property (FMP) if for any o ¢ A there
exists a finite A-model on which « is not valid.

We fix an interval partitioning In of the set of natural numbers

N = U [Ci,Ci+1],Ci < Ci41-
i€ln

The interval linear F P-frame represents a special structure

FP = (U len cin]

i€ln

where < is the standard linear order relation on natural numbers. The
language of our logic is the standard language of modal propositional logic
extended by a binary logical operation D(z,y), which may be applied to
any (arbitrary) formulas - cf. - D(a, ).

The valuations V of a set Prop of propositional variables in frames F'F
from models M¥P here Vp € Prop V(p) C |J;[ci, ci+1]. The basis of any
such model is |J;[c;, ¢i11] - the set of natural numbers N. If a € M¥P and
a € V(p) then write (M¥F a) =y p and say that p is true on element a
when V is valued.

Valuations of variables Prop to be expanded to formulas as follows:

— Truth of Boolean connectives =, A, V, — is defined in the standard way;

(MIP ) By Do < 3Ji € N :x € [e,c41] = Vy €
[ci; cipa] (z Sy < i1 =y v o)

(
- MFIP ) Ey ©a <= Fi € N :z € [¢,c01] = (Fy €
[cisciv] (# <y < eipr & (MPPLy) v a));
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(MFP 2) By D(a,8) < 3Ji € N :x € [¢;,cit1] and the number
of states on the segment [c;, ¢i4+1] in which the formula « is true, is
strictly less then the number of states of this segment at which the
formula § is true.

So, we define the modal operator & almost as usual, but we limit
his action by the right end of the segment — “Focus Point” of available
information. The binary logical operation D(«, ) can be interpreted as
an expert assessments at this stage interval; that is a sort of comparision
statements in an implicite situation — when precise amount of states where
the statements are true is not known in precise numerical value.

The introduced constraint on the & modal operator causes, leads, for
example, to the implementation on the introduced M*T models of the
following properties’:

(1) Op A OO—p, and as consequence Op A OF—p, k > 1.
(2) O—p A <Op.
(3) D(a, B) AN OO=D(c, B).

In what follows we will consider only formulas where the operation
D(a, f) may occur only once. The reason for that is a technical one which
we will comment after all main proofs.

Definition 1. The logic L¥'T is the set of all such formulas that are true
on all models M*F defined above.

3. Satisfiability problem.

Recall some definitions. Let some class of models K and some formula
be given. A formula is said to be satisfiable (in a given class K) if it is true
at some element of some model from this class. In our case for logics LFP
the class of models is given by the set of models of the form M. Thus,
a formula ¢ is satisfiable in logic L if there exists a specific model MFF
with some valuation V, such that for some element € M of this model
(MEP 2) =y ¢ holds. Satisfiability is directly related to decidability: the
logic is decidable if there is an algorithm that checks for any given formula
¢ whether ¢ € LT is true. It is clear that ¢ € LFF if and only if the
formula —¢ is not satisfiable. And vice versa, ¢ is satisfiable if and only if
—¢ ¢ LEP.

Thus, it is necessary to find an algorithm that checks the satisfiability
of formulas at such finite models, where the size of which is limited by the
value of some computable function from the length of formulas ¢.
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Theorem 1. A formula f is satisfiable in a model M*T = (.., lci, civ1])
iff it is satisfiable in a model based at a frame of kind F¥F in the interval
[c1, o] size of which is computable from the size of f.

Proof. To start proof, let a modal formula f is given and it has propo-
sitional variables Prop(f) = {p1,p2,...,pr}. Assume that this formula is
satisfiable at some element = of the model M? e.g (MIF z) =y f. Let
us show that in this case the formula f also holds on some finite model
MM, whose structure and size of this model will be determined later in
the course of the proof. Without loss of the generality, we can assume that
S [1, Cl].

We denote by Sub(f) the set of all subformulas of the formula f, so
Sub(f) is closed w.r.t subformulas. Let SR := {A1, Ag,... Ax} C Sub(f)}
be the set of all sets of all subformulas of the formula f, which are true at
some elements of the interval [1, ¢1].

That is, for each subset A;, all formulas of A; are true on some element
x; of [1,¢1], and for any subformula of f if it is true at this element z; then
it belongs to A;. For each such subset A;, choose and fix the <-maximal
element x; with this property from the given segment [1;¢;]. Let’s arrange
all these elements z; in <-increasing order: t;, <t;, < --- <t;,. It is clear
that the number of such elements is not greater than 215Nl Let M, be
the set of all shown states t;, < t;; <--- <t;,.

Lemma 1. For any submodel M of our model M = MFT containing M,
and for all formulas g from Sub(f) without subformulas of sort D(«, 3) the
truth values of g at states from Mo and the original model M are the same.

Proof. 1t is an immediate induction of the length of formulas. Indeed,
for Boolean formulas inductive steps are obviously the case (we keep the
valuation when thinning).

Consider the case (M,t) Ey ©¢. By definition of truth for the modal
operator < this means:

HbE[l,Cl]itSbﬁcl&b):\/(ﬁ.

If 35 : b =t; € M; then everything is clear, by the inductive hypothesis
(Ms,b) Ev ¢ and (Ma,t) Fy O¢, the truth of the formula is preserved.

Consider now the case (*) when no such b, and for all such existing b,
where b =y ¢, b # t; for all t; € M.

Consider any b where ¢t < b and b =y ¢. It is clear that for some subset
Ap € SR all formulas of Ay are true at b, and for any subformula of f if it is
true at b then it belongs to As;. But then, due to the choice of elements t;,
<-maximal element for this A, was chosen, and the case (*) is impossible.
So the statement (M, t) v Oo¢ give us (Ma,t) =y O¢ is proven.
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Now let (Ms,t) |y <©¢. Then
db € [1,61] << & (MQ,b) ):V ¢.

By the inductive hypothesis we get (M, b) =y ¢ and hence (M, t) Ey Co.
This concludes the proof of Lemma 1. a

Lemma 2. Let M3 be any submodel of M := MY containing model on
My (from previous lemma). Then we may effectively extend My to a model
Ms, which has the following property: for any subformula B of f, for any
state x € M3, the truth of 8 at x in Mz and M is the same.

Proof. At the beginning consider itself the model M7 from the previ-
ous lemma. Then all formulas from the set Sub(f) of all subformulas of
formula f without subformulas of sort D(a, ) have the same truth values
at any state of M; and M by Lemma 1. For all subformulas of f without
subformulas of type D(ayg, fp) the statement of our current lemma holds.

Consider now a possible subformula D(ag, fy) of the formula f (notice
that then formulas oy and By do not have occurrences of subformulas of
kind D(a1,$1)). In this stage we possibly will extend the model.

If the formula D(ayg, By) is true at a state from [1,¢1] in M and it is true
in the model M7, we do not add to the model M; anything.

If the formula D(ayg, fo) is true at a state from [1,¢q] in M but it is not
the case for the current model M; then the following holds. The amount
of states in [1,¢1] where « is true in M; is not less then amount of states
in [1, ¢;| where §3 is true in M;.

This means that in the original model M there were some additional
amount of states in [1, ¢;] where the formula § is true in M and this made
the formula D(ayg, Bp) to be true at M. Then we may add these additional
states to the model My, by Lemma 1 this does not change the truth values
of subformulas of f with no formulas starting with D and this will make
the formula D(«g, By) true in the extended model.

Notice that we compare the amount of states in M, and those where «
and (or) fp is true in M. And the amount of states where « is true in M;
is finite and not bigger than the size of M; itself. Therefore we may need
add at most such much states for 5 as big is M7. After this extension of
the formula D(ag, By) will be true at the obtained model.

If the formula D(ag, 5p) is not true at a state from [1,¢1] in M our
extension the model works similar as above (but so to say in an opposite
site). This concludes the proof of our lemma 2 and theorem from left to
right.

The opposite is obviously true: if the formula f is satisfiable on a finite
model based at the frame of kind FI'” with the base set [1,c;] for some
valuation V', then this formula is also satisfiable on some infinite model
based on frame of kind M.
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The base set of this model M is defined as

FIP =11,¢]U U[Ci,6i+1]~

2<i

Valuation of V' into segments [1,¢;] is transferred from the model ME?,
on the remaining segments [¢;, ¢;11],2 < ¢ of arbitrary length, all variables
of the formula f are considered true. The theorem 1 has been proven. O

Therefore as a consequence we have

Theorem 2. The problem of satisfiability for formulas in the logic L**

1s decidable.

4. Conclusion

In this short paper we investigate the interval modal logic, in which the
action of the modal operator < is limited by the boundaries of the interval.
In addition, the language of modal logic is extended by the operator D(x;y),
the truth of which is determined implicitly and in a sense qualitatively: it is
true only if the number of points on the interval [¢;; ¢;+1] where the formula
x is true is strictly less than the number of points in this segment where
the formula y is true. The problem of satisfiability for formulas is solved,
and as a consequence, the decidability of logic. But we have to confess that
we do not allow nested or repeated occurrences of the operation D(z;y)
in formulas. Following our scheme of proof this would allow appearance of
infinite loop, and it would break our proof. So, the problem with nested
occurrences is yet open.
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