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Abstract. When choosing the optimal complexity of the method for constructing deci-
sion functions, an important tool is the decomposition of the quality criterion into bias
and variance.

It is generally assumed (and in practice this is most often true) that with increasing
complexity of the method, the bias component monotonically decreases, and the variance
component increases. The conducted research shows that in some cases this behavior is
violated.

In this paper, we obtain an expression for the variance component for the kNN method
for the linear regression problem in the formulation when the “explanatory” features
are random variables. In contrast to the well-known result obtained for non-random
“explanatory” variables, in the considered case, the variance may increase with the growth
of k.
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Anvoraumsa. s meroma 6mmkaidimux coceneit (kNN) cymecrByer obrienssecTHoe
AHAJIUTUIECKOE BBIPDAXKEHME JIJIsT PA3JIOXKEHMsT OIMMOKA PErPpECCHOHHON MOJIE/N HA CMe-
menre u pasdpoc. OQHAKO JAHHOE BBIPAXKEHHE CIPABEJINBO TOJIBLKO JJIsl KJIACCUIECKOIA
IOCTAHOBKH 33J]a49l PErPECCHOHHOIO aHAJIN3a, B KOTOPOH CIIydJalHON SBJIAETCA TOJIBKO
1eJieBasl IepeMeHHasi, a «00bICHANEe» epPeMeHHbIe Hec/ry4aiiubl. [lomydensl anasu-
TUYIECKUE BBIPAYKEHUS M1 PA3JIOKEHUs JIJIsT HEKOTOPBIX IMTOCTAHOBOK, KO BCE ITEPEMEH-
HbIE SIBJIAIOTCS CJIyYailHBIMU. B ominure OT KJIACCHYeCKOW HOCTAHOBKHU B IIOJIYYE€HHBIX
BBIPAXKEHUSIX KOMIIOHEHTa pa30poca JIEeMOHCTPUPYET PA3JIMIHOE MOBEJIEHNE MPHU PA3HOMN
Pa3MEpHOCTH IPOCTPAHCTBA, B YACTHOCTH, IPH pa3MepHOCTH 1 pa3bpoc NpakTUYIECKH
JIMHEWHO yBEJIUINBAETCS C POCTOM K, T.e. yMeHbIaercss ¢ poctoM ciaoxkuoctu. [lomobuoe
MOBeJIeHNE DAa3JIOYKEeHUsI Ha CMEIEHne U Pa3dbpoc sIBJISIETCsT HEXKEeJIATeTbHBIM €ro CBOi-
CTBOM IIPU HUCIIOJIB30BAHUU I OObSICHEHUS CTPYKTYpbl OmMHMOOK obOydenus. B cBszu
C 9THUM TMPEJICTABJISIETCS IE1eCOOOPa3HBIM HCIOJB30BATh PA3JIOXKEHNE OIMUOKU Ha II0-
TPENIHOCTD AINMIPOKCUMAIINU ¥ CTATUCTUYECKYIO IIOIPENIHOCTh. KKOMIIOHEHTBI TIOCIIeHEro
Pa3JI0KEeHUsT BCETIa MOHOTOHHBI.

KuroueBbie cjioBa: pas3iioxKeHne Ha CMEIeHne U pa3bpoc, MAInHHOE 0OyJeHrne, METO
k-6nmekaitinux cocesieit, mpobjaeMa nepeodydeHust

BaaromapaocTu: Pabora BbINo/iHEHAa B paMKax rocsajanusi MHcTuTyTa MareMaTwKu

um. C.JI. CobomeBa CO PAH, npoekr FWNF-2022-0015.

Ccouika agis nurupoBanusi: Nedel’ko V. M. On the Properties of Bias-Variance De-
composition for kNN Regression // UsBectusa pKyTCKOro rocy1apcTBEHHOTO yHUBEPCH-
tera. Cepust Maremaruka. 2023. T. 43. C. 110-121.
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1. Introduction

When analyzing the effectiveness of methods for constructing decision
functions [18], the error decomposition into bias and variance [19] is widely
used.

In the classical version of the decomposition, the variance is understood
as the average variance of the predicted values, and the bias is called the
average square of the difference between the average forecast and the opti-
mal forecast. Averaging is performed over the space of variable values and
over samples (from which the decision function is constructed).

This decomposition is widely used to explain the characteristic shape of
the learning curve (the dependence of the quality [17] of the solution on
the complexity of the method [8]), and for justification [13;14] of ensemble
methods [3;6; 7], such as a random forest. In most of the examples [5]
the dependence of the decomposition components on complexity has a
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characteristic qualitative form: the bias decreases monotonically, the vari-
ance increases monotonically, the sum of these values has a characteristic
minimum. However, it is noted that in practice, the bias with a suffi-
ciently high complexity can also begin to grow [1], and the variance can
decrease [2;11;12;20].

In [15] some formal statements are proved that with increasing complex-
ity, the bias can grow, and the variance decrease.

In this paper, we investigate the behavior of the error decomposition
for the k nearest neighbors (kNN) method. This method has a relatively
low relevance in solving applied problems (although it is often used as an
ensemble component), however, it is one of the rare examples when an
analytical expression is obtained for the error decomposition.

At first glance, it may seem that this issue has been fully investigated.
Indeed, even on Wikipedia there is an analytical expression [4] for the
bias-variance decomposition for kKNN.

However, this expression is obtained for the “classical” formulation of
the regression problem, when the “explanatory” variables are not random.
But in real problems, the available data can most often be adequately
interpreted as a random sample. In this case, all variables are random, not
just the target one.

In the case of random “explanatory” variables, the expression remains
valid, but it ceases to be a decomposition into bias and variance, since one
of the terms ceases to be a constant and contributes to both the bias and
the variance.

In this paper, we will obtain an analytical expression for decomposition
of the error for the kNN method for the case of one-dimensional regression,
when all variables are random variables. It turns out that in this formu-
lation, the qualitative behavior of the variance component turns out to be
fundamentally different.

2. Problem statement

2.1. REGRESSION PROBLEM

Let X be the space of values of variables used for forecasting, and Y be
the set of values of the predicted variable.
All variables are random variables with some joint distribution function.
Decision function is a mapping f: X — Y.
The decision function is constructed based on some training sample of
size N
Sy = ((«*,y*),w=1,N).

The quality of the decision made [16] is evaluated by a given loss func-
tion: L:Y xY — [0,00). In this paper, we will consider the square of the
deviation as a loss function, i.e. L(y, f(x)) = (y — f(x))2.
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For the decision function as a whole, the quality criterion will be MSE,

ie.
2
R(f(-)) = Eayly — f(2))"
By this criterion, the optimal solution will be a regression function, i.e.
a conditional mathematical expectation.

2.2. THE CLASSICAL FORMULATION OF THE REGRESSION ANALYSIS
PROBLEM

In the classical statement of regression ploblem, the values of X are not
random. Only the target variable is random, which is represented as

y(z) = f(z) +9, (2.1)

where f(z) is some unknown function, and 4 is a random variable with zero

mean and variance 0'2.

3. Bias and variance

3.1. DECOMPOSITION FOR MSE

For arbitrary independent random variables u and v (if the correspond-
ing moments exist), the identity holds

E(u —v)? = Du+ (Eu — Ev)? 4 Do,

where D denotes variance, i.e. Du = Eu? — (Eu)?.

Let’s fix a point z of the feature space and substitute u = y|z, v = f(x).
Since f(x) is constructed on a random sample, v is a random variable.
Then we get

ESN,y|x(y - f(x))Q =

Dyja + (Eyjay — Esy f(2))? + Dsy f (). (3.1)

The notation Eg, ., means that the expectation is taken over all samples
of size N and over the conditional distribution on the target variable y at
the point z. So, a subscript at operators E or D indicates the domain for
averaging.

We obtain that 3.1 in this formulation is the decomposition of MSE into
“noise”, bias and variance.

Note that this decomposition is done for each point z. If necessary, 3.1
can be additionally averaged over X.
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3.2. DECOMPOSITION FOR KNN WHEN EXPLANATORY FEATURES ARE
NOT RANDOM

A number of sources (e.g. [4]) provide the following decomposition for-
mula for the kNN method

0.2

k 2
Esy aley — (2))? = (f(a:) - f@(:c))) +T 40t (32
=1

where &;(z) is the coordinates of the i—th “neighbor” of a point x.

The second term in this decomposition is proposed to be interpreted as
a variance.

This expression is obtained for the case when the coordinates of z“ in
the training sample are fixed, i.e. for the statement 2.1.

Note that the conventional definition of the decomposition components
assumes complete averaging over random samples.

The variance component in 3.2 decreases monotonically with the growth
of k, i.e. it increases with increasing complexity, since the complexity
characteristic for kNN is opposite to k£ and can be, for example, %

4. Decomposition for kNN for random features

4.1. SINGLE DIMENSION

Let’s consider the problem of regression recovery in the one-dimensional
case.

Let X = [0,1] and y = = + J, where § is the so-called “noise”, i.e. an
independent random variable with variance ¢ and zero mean. We consider
the model f(z) = z as a linear regression model (single dimensional) with-
out loss of generality because any coefficient at x will give only a constant
factor in expressions.

Suppose that z is a random variable with a uniform distribution, i.e.
x ~ U(0,1). This assumption fundamentally distinguishes this problem
statement from 2.1.

Proposition 1. For the inner points of the segment X, there is:

(k+1)(k+2) o2 2

ESN,y\x(y_f(x))Q ~ 12N2k +?+O—

The decomposition is asymptotically exact as N — oo.

(4.1)

Here, the first two terms are variance, the last term is the noise. The
bias is approximately O.
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Proof. Let’s fix an arbitrary inner point x from the segment X.

Since the sample is random, the coordinates of the neighboring points
&i(z) are random variables. With the growth of IV, the distributions for
&i(x) become (approximately) symmetric with respect to z. It follows that

Ef(&(@) ~ f(z) = .

If z is significantly more distant from the edges of the segment X than
by %, then the distributions are almost symmetric and the equality can be
considered almost exact.

Thus, the bias component really tends to 0.

Let’s calculate the variance component

1 u o2
Df(rc):D[kizléi(@ + o

The values of §;(z) are not independent, but they are uncorrelated (due
to the symmetry of conditional distributions), so the variance of the sum
is equal to the sum of the variances.

It remains to find D&;(x).

Consider in X a certain segment of length A. The probability Pa(m)
that m points from the sample will fall into this segment is

NA)™
Pa(m) = CHA™(1 — A)YN™™ ~ (m‘)e_NA.

Let ¢; = 2|¢;(x) — x|. Then

DE;(r) = E(|&(x) — Elés(x))? = E(x) — 2)? = {EC

Let F;(A) = P(¢; < A) be a distribution function for (;(x).
Note that

N i—1
Fi(A) =Y Pa(m)=1-Y_ Pa(m).
m=i m=0
We have

et = [ a%an(8) = [T 280 - R(a)as -

1—1 1—1
0o 00 m4+1
2A Pa(m)dA = 2 Pa(m + 1)dA =
/O 3 Pam) > /0 L pam+1)

[ i(i +1)
221\7/0 PA(m)dA = ===
m=1

Now

D&i(z) ~ 1(1;21)
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Figure 1. The dependence of the variance component on k for o = 0 estimated
using the formula 4.2

k
Using the formula > i2 = W we get
i=1

1< 141 (k+1)(k+2)
D[kZ&W]—kzZ ANZ 12Nk

i=1
So, we obtained the desired expression. ]
In contrast to 2.1, the resulting decomposition has a monotonically in-

creasing (close to linear growth) term in the variance component. This term
provides the possibility of decreasing variance with increasing complexity.

4.2. MULTI-DIMENSIONAL CASE

Let X =1[0,1]" and y = x1 + 9, where z = (x1,...,x,) € X.

We consider the model f (x) = x1 as a linear regression model without
loss of generality because any linear model may be converted to it via proper
transformation of features.

Suppose that x; are independent random variables, z; ~ U(0, 1).

Proposition 2. For the inner points of X, there is:

2
ESN,y|x(y - f(x))2 =D [;Zgz(‘r) + % +U27
i=1
where . -
1 ( *)_% — k—m
D [k;&(w)] YEERD D r< +n) (4.2)
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Figure 2. The dependence of the variance component on k for o = 0. Curve
“real” simulation result at N = 300, curve “estimate” estimate using the
formula 4.1. For convenience, the values are multiplied by 4N?

and
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The decomposition is asymptotically exact as N — oo.

Here V} is the n-dimensional volume of a Euclidean ball of diameter 1.

If X is an arbitrary finite interval from R”, then one need to take N* =
N %, where V' is the volume (measure) of X.

The proof for proposition 2 is is similar to the proof of proposition 1,
but is more cumbersome, so we will omit it.

For n = 2 the formula 4.2 get simple

1 k
D [k > &)
=1

We can see that the variance for kNN demonstrates different behavior
depending on dimensionality. By n = 1 the variance increases as k in-
creases. By n = 2 the variance tends to a positive constant when & — oo.
By n > 2 the variance tends to zero.

Some examples are shown on figure 1.

k+1
-~ 4n Nk’

5. Experimental results

To evaluate the accuracy of the estimate by formula 4.1 for finite N, we
performed statistical modeling on synthetic data (single dimension) using
the implementation of the kNN method from the scikit-learn library.

The synthetic data were drawn using the model from section 4.1: y =

f(x)+0, f(z) =z, x ~U(0,1).
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Figure 8. The dependence of the bias and variance on the depth of the tree (the
complexity parameter) in the problem of one-dimensional linear regression

In Fig. 2 the simulation result is given together with the theoretical
estimate 4.1.

As you can see, the qualitative behavior is consistent, but with the
growth of k, the discrepancy increases. The discrepancy is mainly ex-
plained by the fact that during modeling, the variance was averaged over
the entire segment X. At the same time, at the edges of the segment X,
the estimate 4.1 has a significant error due to the fact that the distributions
for & () become asymmetric.

In Fig. 3 the result of modeling (on the same regression model) for
decision trees is given.

We see that the variance also demonstrates “atypical” behavior, namely,
it decreases (on the first half of the plot) with increasing complexity.

6. Discussion

Based on the results obtained, the following conclusions can be drawn:
the variance with increasing complexity can not only grow, but also de-
crease; depending on the assumptions about the randomness or non-ran-
domness of X, qualitatively different results can be obtained in the regres-
sion problem.

The discovered facts make the explanation of the learning process, as well
as the justification of the effectiveness of collective methods for constructing
decision functions, using this decomposition less convincing.

Such undesired properties of bias-variance decomposition encourage to
search alternatives. As such alternative might be considered another de-
composition of the error: into a measure of adequacy and a measure of
stability, that was proposed in [9] [10]. Since the cited references are
hardly accessible, one can read brief statement of the concept in [15]. The
idea of the approach is to decompose the error into the approximation
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error and the statistical error. The components of this decomposition are
obviously monotonic. However, this decomposition also has disadvantages,
in particular, there is a difficulty in determining the adequacy measure for
methods containing regularization by sample size.

It is relevant to study the question to what extent and in what cases the

bias can be used as an assessment of the adequacy measure.

The topics for future work might be a generalisation of obtained results

to the case of non-uniform distributions, as well as the revealing the rela-
tionship between the bias-variance decomposition properties for kNN and
other methods.
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