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Аннотация. Метод обнаружения вероятностных законов — логический метод ма-
шинного обучения, представляющий собой вариант выучивания вероятностных пра-
вил. В ряде аспектов он близок к таким методам,как деревья решений / случайный
лес, но существенно отличается от них тем, как определяются значимые прави-
ла. Процедура обучения решает задачу оптимизации, связанную с поиском пра-
вил (называемых вероятностными законами), которые имеют минимальную длину
и относительно высокую вероятность. Для предсказания используются ансамбли
таких правил. Вероятностные законы удобочитаемы для человека, а получаемые
модели — прозрачны и изначально интерпретируемы. Приложения метода вклю-
чают задачи классификации, кластеризации, регрессии, а также анализ временных
рядов, обнаружение аномалий и адаптивное управление. Излагаются основные прин-
ципы метода, определяются его преимущества и ограничения и предоставляются
некоторые рекомендации по применению.
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1. Introduction

Despite the popularity of neural network based and boosting models,
there is still a big interest to logic based methods of Machine Learning,
which support explicit representation of learned hypotheses. The inherent
interpretability of these methods is what makes them particularly useful
in critical domains such as, e.g., information security, medicine, automated
control, etc.

Of particular interest in the field of logic based Machine Learning is
Probabilistic Law Discovery (PLD) [5], which is a variant of probabilistic
rule learning. It allows for balancing between the completeness of the set
of the learned hypotheses and computational expenses, and in the limit it
guarantees learning the complete set of hypotheses true on data.

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 43. С. 91–109



MACHINE LEARNING WITH PROBABILISTIC LAW DISCOVERY 93

While having some similarities with Decision Tree/Random Forest meth-
ods, PLD based models uniquely combine ensembling features with the
property of being inherently interpretable. The explicitness of hypotheses
learned by PLD allows for building glass-box classification, clusterization,
regression, or adaptive control models, which also support straightforward
integration of domain knowledge. The transparency of PLD based mod-
els makes them accessible for post-hoc meta-analysis to support transfer
learning, conceptual abstraction, symmetry detection, etc. Similarly to
some other logic based ML methods, the disadvantages of PLD are due to
the complexity of rule learning, which is related to NP-hard problems and
thus, direct implementations of PLD face efficiency problems when applied
to datasets with big numbers of features.

Currently several implementations of PLD are known, which combat the
dimensionality problem with the help of heuristics. They have been bench-
marked on different ML tasks against other well-known models, e.g., deci-
sion tress, neural networks, associative rules, in domains such as medicine
[13], finance [7; 8; 12], bioinformatics [15], adaptive control [2; 3; 9–11].

The aim of this paper is to provide a concise and accessible intro-
duction into Probabilistic Law Discovery, which covers the base learning
algorithms, optimization techniques, and application guidelines. The ex-
position is based on the latest implementation of PLD, which provides a
reasonable balance between the completeness of the learned hypotheses and
computational complexity.

2. Principles of Probabilistic Law Discovery

Probabilistic Law Discovery is based on learning probabilistic rules on
data as expressions in a human-readable formal language. Conceptually
close to PLD are the decision tree/random forest methods, but the main
difference is in how the most informative rules are defined and how they
are learned.

2.1. Probabilistic Rules

A (probabilistic) rule is an expression of the form

𝑃1(𝑥), . . . , 𝑃𝑛(𝑥) → 𝑅(𝑥) (2.1)

where 𝑥 is a variable and 𝑅,𝑃1, . . . , 𝑃𝑛, 𝑛 > 0, are predicates. 𝑃1(𝑥), . . . ,
𝑃𝑛(𝑥) is the premise of the rule and 𝑅(𝑥) is the conclusion. The rule size is
the number of predicates in the premise. It is a common requirement that
all predicates must be “simple enough” to compute. In applications, this
requirement is specified as the existence of a polynomial/linear/logarithmic
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algorithm (wrt the size of the dataset) to compute the predicates. For in-
stance, if there is a predicate 𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 then there must be a procedure
to compute in at most polynomial time (wrt the input data) for any object
𝑜 whether 𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑜) holds on data.

In general, a predicate can be given as a formula of first order logic with
one free variable (called the object variable). Complex predicates (such
as, e.g., 𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥) ∨ 𝐻𝑎𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥) or ∃𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦)) can be
written in terms of base predicates (𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝐻𝑎𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟). In order
to use PLD, one must first define a set of base predicates and procedures to
compute them and then (if needed) one can introduce complex predicates
as formulas over the base predicates.

The following are examples of rules:

𝐶ℎ𝑒𝑎𝑝𝐼𝑡𝑒𝑚(𝑥) → 𝐻𝑖𝑔ℎ𝐷𝑒𝑚𝑎𝑛𝑑(𝑥)

𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥), ∃𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦) → 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑥)

For object-feature datasets, the base predicates can be taken as corre-
sponding to the features. However, with complex predicates one can formu-
late more expressive rules. For example, the predicate 𝐻𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥) ∨
𝐻𝑎𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥) gives the set of objects that have at least one of the fea-
tures. The predicate ∃𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦) employs a relationship of objects.
Depending on the choice of predicates we can see more or less information
in the data.

For an object-feature dataset 𝒟 = ⟨𝒪,ℱ⟩, let 𝑝 be a probability measure
on the set of objects 𝒪. The probability of a rule 𝑃1(𝑥), . . . , 𝑃𝑛(𝑥) → 𝑅(𝑥)
on 𝒟 is defined as the value of 𝑝(𝑃1, . . . , 𝑃𝑛, 𝑅) divided by 𝑝(𝑃1, . . . , 𝑃𝑛),
where 𝑝(𝑃1, . . . , 𝑃𝑛, 𝑅) is the probability measure of those objects 𝑜 ∈ 𝒪,
for which all 𝑃1(𝑜), . . . , 𝑃𝑛(𝑜), 𝑅(𝑜) hold (the meaning of 𝑝(𝑃1, . . . , 𝑃𝑛) is
defined similarly). In applications of PLD, the frequency probability mea-
sure is typically used, and thus, the rule probability reflects the number of
objects for which both, the premise and conclusion hold, in relation to the
number of objects, for which only the premise is true.

2.2. Probabilistic Law Learning

Given a predicate language, the natural question is which rules best
reflect the regularities hidden in the data. One can enumerate rules in a
brute-force fashion and estimate their probabilities, but the number of all
rules in the given language is large and for many rules the probability may
be close to zero, which means they are not too informative.

PLD is based on the assumption that important are those rules, which
have a minimal size and relatively high probability. This corresponds to
the classical trade-off between the size and informativeness of compressed
data representation (the so called Minimum Description Length principle).

Известия Иркутского государственного университета.
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Essentially, PLD is solving a certain optimization problem of minimizing
rule length, while maximizing the probability.

A rule 𝑃1(𝑥), . . . , 𝑃𝑛(𝑥) → 𝑅(𝑥) is said to be a probabilistic law on a
given dataset if it has a non-zero probability 𝑝 and the following holds: the
probability of any other rule with the same conclusion and a premise given
by a proper subset of predicates 𝑃1, . . . , 𝑃𝑛, is strictly less than 𝑝.

Thus, 𝑃1(𝑥), . . . , 𝑃𝑛(𝑥) → 𝑅(𝑥) is the shortest rule (by inclusion of
premises) with conclusion 𝑅, which has probability 𝑝. Note that the def-
inition leaves the possibility that there may exist a rule with a superset
of predicates in the premise and with the same conclusion, for which the
probability is greater than 𝑝.

It is known that the problem to find short rules having a given prob-
ability is computationally difficult. There may be exponentially many
shortest rules, which have probability 1 on data [16], and the problem
to decide whether there exists one with at most 𝑘 predicates in the premise
is NP-complete [14]. This implies that it is hard to compute the set of all
probabilistic laws on a given dataset. The learning procedure of PLD is
implemented by a heuristic algorithm, which has the following properties:

− for a given dataset and a predicate language, it outputs a set of rules
in this language, which are probabilistic laws on this dataset

− in general the algorithm does not guarantee to find all the probabilistic
laws on the dataset

− it allows for balancing between the completeness of the obtained set of
laws and computation time

− in the limit (having unbounded computational resources) the algorithm
computes the complete set of probabilistic laws on the given data

The algorithm implements a directed enumeration. For a predicate 𝑅, it
outputs a set of probabilistic laws with conclusion 𝑅. In practice, however,
the computations can be organized in such a way as to obtain probabilistic
laws for all conclusion predicates in one pass. The algorithm enumerates the
rules with conclusion 𝑅 in a directed manner, starting from the rule with
the empty premise (∅ → 𝑅), by refinement (i.e., by adding predicates one-
by-one to the premise). Clearly, refining a rule may change its probability.

The principle hyperparameter of the algorithm is the base rule enumer-
ation depth (denoted as 𝑑). The algorithm enumerates all rules whose
premise consists of at most 𝑑 predicates and selects those ones which are
probabilistic laws. Since the base enumeration is complete, it is guaranteed
that all probabilistic laws with at most 𝑑 predicates in the premise are
computed.

After that, the algorithm selects from the obtained probabilistic laws
those ones, which have exactly 𝑑 predicates in the premise, and it starts
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base enumeration

additional enumeration

Figure 1. Probability change for rules with conclusion 𝑅 and different premises

refining only these rules (by successively adding predicates one by one to the
premises), while checking whether their probability increases (i.e., whether
the resulting rule remains a law). This stage of the algorithm is called
additional enumeration.

The premise of a rule is extended with new predicates as long as its
probability increases. If, after an addition of a predicate, the probability
is not increased, then such a refinement of the rule is discarded. Figure 1
illustrates the situation when the algorithm computes the probabilistic law
𝑃1, . . . , 𝑃4 → 𝑅. When the predicate 𝑃5 is added, the probability drops
down, but as the predicate 𝑃6 is added, it reaches a value that dominates
the probabilities of all the rules with shorter premises (by set inclusion).
That is, the rule 𝑃1, . . . , 𝑃6 → 𝑅 is a longer probabilistic law. In this
situation, the algorithm does not find the rule 𝑃1, . . . , 𝑃6 → 𝑅 at additional
enumeration and thus, it does not guarantee to find global maxima (note
the red point in Figure 1 vs the local maxima depicted by the green point).
In this sense, the algorithm can be classified as a hill-climbing one.

The heuristic used in the algorithm is based on the assumption that
probabilistic laws are typically arranged into chains, in which each sub-
sequent law is obtained from the previous one by refinement with a single
predicate, for example: { 𝑃1, 𝑃2 → 𝑅 , 𝑃1, 𝑃2, 𝑃3 → 𝑅 , 𝑃1, 𝑃2, 𝑃3, 𝑃4 → 𝑅
}. At the base enumeration step, the algorithm tries to capture the begin-
ning fragments of these chains, and then, in the additional enumeration, it
tries to find other laws from these chains.

2.3. Requirement to Input Datasets

The input data must be converted into a tabular object-feature repre-
sentation. Categorical features must be converted to Boolean ones (e.g.,
by using one-hot encoding). Numeric features must be quantized and con-
verted to Boolean ones, for example, by using an iterative splitting into
ranges of values greater/smaller than the median.

Известия Иркутского государственного университета.
Серия «Математика». 2023. Т. 43. С. 91–109
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2.4. Application Scenarios

PLD based models are used for the following tasks:

− probabilistic prediction of features (the classification task) [6; 13;15]

− identification of features/specific feature values that an object must
have in order to be assigned to a particular class (abductive classifica-
tion)

− combining features into subsets closed wrt probabilistic laws and com-
puting subsets of objects corresponding to these closed subsets (hier-
archical object and feature clusterization) [1; 18;19]

− prediction of value intervals for numeric features (interval regression)

− anomaly detection and time series analysis [7; 8; 17]

− building self-learning agent systems that interact with environments
(reinforcement learning) [4]

− control of modular systems with many degrees of freedom, in particu-
lar, adaptive robotic control [2; 3; 9–11]

We comment on solutions to these tasks in Section 5.

3. The PLD Algorithm

The implementation of the Probabilistic Law Discovery algorithm is
based on the construction of a rule derivation graph. The nodes in this
graph are the rules enumerated by the algorithm and there is an edge from
a rule 𝑟 to 𝑟′ if 𝑟 is a subrule of 𝑟′, i.e. they have the same conclusion and
the set of predicates from the premise of 𝑟 is a proper subset of predicates
from the premise of 𝑟′. Figure 2 illustrates an example derivation graph
over some dataset and the predicate language {𝑅,𝐴,𝐵,𝐶,𝐷,𝐸, . . .}. In
this figure, only those edges are shown, which correspond to refinements
computed by an (example) run the PLD algorithm.

base enumeration additional enumeration

Figure 2. An example rule derivation graph for base enumeration depth 𝑑 = 2
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Probabilistic laws in Figure 2 are marked with the red color and those
rules, which are not refined, are marked with a cross. In particular, 𝐴→ 𝑅
is not a probabilistic law (i.e., it has a probability less or equal to the
probability of∅ → 𝑅). In this example illustration, all rules up to the depth
𝑑 = 2 are enumerated and it turns out that there are probabilistic laws
𝐴,𝐶 → 𝑅 and 𝐵,𝐶 → 𝑅 of depth 2. At the additional enumeration phase,
these rules are refined, thus giving the probabilistic law 𝐵,𝐶,𝐷 → 𝑅, which
is refined further.

Using the graph structure to represent rules allows for optimizing the
search for probabilistic laws in several ways. By using the graph, one can
quickly find subrules of a given rule when checking the conditions for being
a probabilistic law. Also the graph allows one to store the statistics on the
calculated rules so as not to count them twice. Since the same rule can be
a subrule of several other child rules, its statistics (the data to compute the
probability and significance of the rule) can be reused.

Let 𝑅 be some target predicate (e.g., a feature to be predicted). To
compute a set of probabilistic laws with conclusion 𝑅, the derivation graph
is used by the PLD algorithm as follows.

Initially, the root node of the graph is generated with the rule ∅ → 𝑅.
Statistics for this rule, such as probability, confidence, etc., are computed.
Auxiliary sets 𝑅𝐸𝐺0 and 𝑁𝑜𝑑𝑒𝑠0 are initialized to consist of this single
rule.

At step 1 6 𝑘 6 𝑑, where 𝑑 is the base enumeration depth (𝑑 > 1),
the next graph level is built, which consists of the nodes obtained as
the refinement of the rules from 𝑁𝑜𝑑𝑒𝑠𝑘−1 with a single predicate. The
resulting nodes is the set 𝑁𝑜𝑑𝑒𝑠𝑘. For each node 𝑁 from 𝑁𝑜𝑑𝑒𝑠𝑘:

− statistics for 𝑁 is calculated

− 𝑁 is connected by an edge to each subrule of 𝑁 from the previous
graph layer

− it is verified whether 𝑁 is a probabilistic law; the set 𝑅𝐸𝐺𝑘 is defined
to consist of all probabilistic laws from𝑁𝑜𝑑𝑒𝑠𝑘, which meet a statistical
criterion

At step 𝑘 > 𝑑 (additional enumeration), the set of all single-predicate
refinements of probabilistic laws from 𝑅𝐸𝐺𝑘−1 is computed. The resulting
nodes is the set 𝑁𝑜𝑑𝑒𝑠𝑘. For each node 𝑁 from 𝑁𝑜𝑑𝑒𝑠𝑘:

− it is checked whether 𝑁 meets a statistical criterion

− subrules of 𝑁 size 𝑘 − 1 are searched in the previous graph layer by
using 𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠 procedure as follows. If there is a subrule 𝑟, for
which 𝑝(𝑟) 6 𝑝(𝑁), then 𝑁 is not a probabilistic law and the procedure
stops. Otherwise, each found subrule 𝑟 is connected with node 𝑁 by an

Известия Иркутского государственного университета.
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edge. If some subrule of node 𝑁 is not found in the previous layer, then
a node 𝑁𝑠𝑢𝑏 is created for this subrule in the graph and its statistics
is calculated. If 𝑝(𝑁𝑠𝑢𝑏) 6 𝑝(𝑁) then the procedure stops. Finally,
𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡𝑠 is applied recursively to each subrule node of 𝑁 .

The set 𝑅𝐸𝐺𝑘 is defined to consist of the probabilistic laws 𝑁 which
meet a statistical criterion.

The PLD algorithm stops at a step 𝑘 > 𝑑 (and it outputs the union of
𝑅𝐸𝐺𝑖, for all 0 6 𝑖 6 𝑘) if either of the following conditions holds:

− the set 𝑅𝐸𝐺𝑘 is empty (i.e., there are no probabilistic laws at level 𝑘
in the graph);

− the number 𝑘 equals to the maximal rule size 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 (a hyperpa-
rameter for setting the maximal number of predicates in premises of
rules considered by the algorithm).

We note that the rule ∅ → 𝑅 in 𝑅𝐸𝐺0 provides some basic information
about how likely the objects from the dataset are to have feature 𝑅 (under
no further conditions). It is used, for example, in the classification task,
in order to avoid prediction failure in cases where the attributes of an
object being classified “cover” none of the premises of probabilistic laws
with conclusion 𝑅.

Note also that probabilistic laws are filtered out wrt a statistical cri-
terion. For example, it can be the case that there is a single object in a
dataset with the feature 𝐶ℎ𝑒𝑎𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and this object has also the feature
𝐻𝑖𝑔ℎ𝐷𝑒𝑚𝑎𝑛𝑑. In this case the rule 𝐶ℎ𝑒𝑎𝑝𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑥) → 𝐻𝑖𝑔ℎ𝐷𝑒𝑚𝑎𝑛𝑑(𝑥)
has probability 1 on the data, but it applies only to the single object and
therefore is not informative for generalization to new samples. Because of
this the PLD algorithm estimates the statistical significance of probabilistic
laws. In implementations of PLD a statistical significance test with a
confidence interval 𝑎 is used, which is a hyperparameter of the algorithm.

To further restrict the number of considered rules, the algorithm imple-
ments several optimizations, which we discuss below.

3.1. Optimizations

The PLD algorithm faces two principal computational problems. The
algorithm implements a search in a rule space of size exponential wrt the
number of predicates (features) from the given predicate language. Despite
the additional enumeration heuristic, the number of rules considered by the
algorithm may still be too large to complete computation within reasonable
resources. The second problem is related to the estimation of rule statistics.
For instance, computing rule confidence (the number of objects, for which
the premise of a rule is true), when implemented naively, requires a full
scan of the dataset.
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To solve the first problem, the following additional criteria and hyper-
parameters are used to reduce the number of probabilistic laws considered
at additional enumeration:

− Probability threshold. If the probability of a law is below a given
threshold, then it is dropped (and is not further refined).

− Statistical significance threshold. If the statistical significance of
a probabilistic law is under a specified threshold, then it is dropped.

− Probability gain threshold. Those refinements of a probabilistic
law 𝑟 are dropped that give a probability gain (wrt the value of 𝑝(𝑟))
less than a specified threshold.

− Probability gain thresholds for each level in the derivation
graph. Similar to the previous criterion, a probability gain threshold
can be set separately for each level in the graph. This allows for
restricting the number of laws specifically for each level, in case there
is a blow-up in the number of laws at certain graph levels.

To solve the second computational problem, the derivation graph is used
to speed up subrule search and statistics computation. In particular, the
algorithm employs index caching for dataset objects: for a rule 𝑟, references
to all those objects are stored, which 𝑟 is applicable to (i.e., on which the
rule premise is true). Then to compute statistics for a refinement 𝑟′ of 𝑟
only these objects are used, one does not need to scan the complete dataset.
This optimization significantly speeds up computations in practice. Clearly,
the downside of caching is the need to store multiple indexes, which requires
additional memory.

4. Hyperparameters and Tuning

The following list summarizes the main hyperparameters of PLD:

− base rule enumeration depth 𝑑

− maximum rule size (maximal enumeration depth) 𝑀𝑎𝑥𝑆𝑖𝑧𝑒

− probability threshold for rules

− confidence (statistical significance) threshold for rules

− probability gain threshold (global threshold) for laws

− probability gain thresholds for each level of the derivation graph and
for each law size (level/size specific threshold)
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One of the shortcomings of the current PLD implementation is related to
the problem that it is hard to tell in advance how much time/memory will
be required for searching probabilistic laws up to a given size 𝑀𝑎𝑥𝑆𝑖𝑧𝑒. It
might happen that there are too many probabilistic laws at some enumer-
ation level. When iterating over refinements of these laws at the next level
one faces combinatorial explosion: it is impossible to complete the search
within acceptable time or memory limit for storing the derivation graph
and caching statistics.

One of the important aspects here is hyperparameter tuning, for which
we recommend the following approach. One can make first a test run of
PLD on a given training data with all thresholds set to zero. If an explosive
growth in the number of rules is observed the thresholds are increased.
Either the global probability gain threshold is increased or the level/size
specific ones, if explosion occurs at a specific level of the derivation graph.
The procedure is repeated until the algorithm is able to iterate to the
specified size 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 within acceptable time/resources.

Another way is to adjust hyperparameters wrt the quality of predictions
based on the computed probabilistic laws. In situation when PLD cannot
enumerate laws up to a given size 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 we have a choice: either find
shorter probabilistic laws by reducing𝑀𝑎𝑥𝑆𝑖𝑧𝑒, or implement enumeration
up to the required size by dropping some shorter laws rules by adjusting
other thresholds. In this case, one can proceed in the standard way: select
a small test subset of the training data and choose a option which provides
the best prediction on this test subset.

5. Applications

The rule learning approach implemented by PLD is employed in different
ML tasks as follows.

5.1. Classification

For each class label, a predicate (called predictor) is introduced into
the language and the PLD algorithm is run to learn probabilistic laws
with these predicates in the conclusion. The resulting laws are used for
classification of data objects in the following way. For an object, a subset
of laws applicable to its features is selected. A law is applicable if the set
the predicates from its premise is a subset of the predicates corresponding
to the object features. Then the laws with maximal probability values are
selected. If there is a single law of this kind then the class label for the
object is defined by the predictor from the conclusion of the law. The
probability for this label is defined as the probability value of the law. If
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there are several such laws then the object is not assigned a label (in this
case classification fails).

5.2. Clusterization

Object and predicate (feature) clusters are defined via probabilistic laws
in the following way. For a subset of predicates ℱ an agreement measure
of ℱ is calculated as the difference between the sum of probabilities of laws
𝑃1(𝑥), . . . , 𝑃𝑛(𝑥) → 𝑅(𝑥), 𝑛 > 0 s.t. {𝑃1, . . . , 𝑃𝑛, 𝑅} ⊆ ℱ and the sum
of probabilities of those laws, whose premise is in ℱ , but the conclusion
is not. The measure reflects the difference between the total probability
of laws true on ℱ and the total probability of laws false on ℱ . Predicate
(feature) clusters are then defined via local maxima of the agreement mea-
sure: adding or removing any single predicate from a cluster yields a lower
measure value. The set of laws true on a cluster ℱ is called a characteristic
set of ℱ . Then two objects are assigned to the same (object) cluster if
their feature sets have similar agreement measures wrt a characteristic set
of some feature cluster. The result of a PLD based clusterization obtained
this way is a partially ordered (wrt set inclusion) hierarchy of feature and
object clusters.

5.3. Regression

In terms of PLD, regression is solved in several ways. The first one
employs quantization: the rule language is extended with predicates, which
correspond to certain ranges of feature values. The PLD algorithm is
applied to learn probabilistic laws with these predictor predicates in the
conclusion. Then regression is reduced to classification with the predic-
tors being the class labels. Another approach employs averaging: if for
an object 𝑜 we have 𝑘 > 1 probabilistic laws with predictors 𝑅1, . . . , 𝑅𝑘
applicable to 𝑜 and the ranges, which correspond to predictors, support
averaging, then the average value for these ranges is returned as the re-
sulting value. The third approach employs rules with binary inequal-
ity predicates for interval regression. We provide here an illustrating ex-
ample. In general, PLD can support rules with n-ary predicates and
functional terms via grounding (we comment on this extension of PLD
in Section 7). If the language contains the predicate < and functions
𝑃𝑟𝑖𝑐𝑒,𝐷𝑒𝑚𝑎𝑛𝑑, a variant of PLD can be applied to learn laws of the form
𝑃𝑟𝑖𝑐𝑒(𝑥) < 𝑃𝑟𝑖𝑐𝑒(𝑦) → 𝐷𝑒𝑚𝑎𝑛𝑑(𝑥) > 𝐷𝑒𝑚𝑎𝑛𝑑(𝑦) (where 𝑥, 𝑦 are object
variables and 𝑃𝑟𝑖𝑐𝑒(𝑥) < 𝑃𝑟𝑖𝑐𝑒(𝑦) is a more convenient writing for the
atom < (𝑃𝑟𝑖𝑐𝑒(𝑥), 𝑃 𝑟𝑖𝑐𝑒(𝑦))). Then based on the laws 𝑃𝑟𝑖𝑐𝑒(𝑖𝑡𝑒𝑚3) <
𝑃𝑟𝑖𝑐𝑒(𝑖𝑡𝑒𝑚1) → 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚3) > 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚1) and 𝑃𝑟𝑖𝑐𝑒(𝑖𝑡𝑒𝑚1) <
𝑃𝑟𝑖𝑐𝑒(𝑖𝑡𝑒𝑚2) → 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚1) > 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚2) one obtains the inter-
val (𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚2), 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚3)) for 𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑡𝑒𝑚1), with concrete
values given by 𝐷𝑒𝑚𝑎𝑛𝑑 function.
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5.4. Anomaly Detection

Predicates are defined to correspond to the features of interest in the
input data. Those probabilistic laws learned by PLD are selected which
have probability above a certain threshold (for example, these can be laws
with a probability greater than 0.9). They are considered as the rules
describing the normal behavior of the system and thus, violation of these
rules should indicate an abnormal event. Then the task is reduced to
learning a parameter corresponding to the proportion of violated rules that
should indicate an anomaly.

5.5. Time Series Analysis

The predicate language is defined to describe past states of the given
time series in terms of important features such as extreme points, technical
indicators, etc. The time series data is converted into a tabular form, where
each row represents predicate values for each slice of interest of the time
series. Then PLD is applied to learn probabilistic laws from the resulting
tabular data and the laws are used for prediction in the same way as in
classification.

5.6. Adaptive Control

One of the PLD based approaches is close to classical Reinforcement
Learning. The agent history is analyzed to infer the laws that best predict
the value of the reward based on the observed state and performed (series
of) action(s). The agent decides on the next action based on the rules
which are applicable to the observed state (given by a set of predicates)
and provide the maximal reward prediction. If no rule is applicable to the
observed state, the agent makes a random action.

In the second approach, PLD is used for learning laws that predict
transitions between states. The premise of every such law contains a state
description in term of agent’s sensor predicates and an action predicate,
which corresponds to one of the available actions. The conclusion consists
of predicates, which describe the state obtained after making this action.
Action strategies (policies) are learned from the transition rules by grouping
them into chains. The agent is able to reason about plausibility of these
policies even though some of them may represent unseen trajectories. This
approach is more sample efficient than the first one, but it consists of several
learning components which in general require more computing resources.

An important aspect in both approaches is that PLD allows for building
complex hierarchical control systems with support for automatic subgoal
discovery. An agent is able to dynamically extend the predicate language
with shortcuts (new sensor predicates) for important intermediate subgoal
states that must be achieved on the way to the primary goal. If a subgoal
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predicate is present in the premise of a transition rule used by the agent,
it switches to achieving this subgoal by using the appropriate policies for
the subgoal.

6. Advantages and Limitations

6.1. Limitations

− Probabilistic Rule Discovery is computationally expensive. The worst-
case complexity of the base enumeration phase of PLD algorithm can
be estimated as 𝑁𝑑, where 𝑁 is the number of predicates in the lan-
guage and 𝑑 is the base enumeration depth. It is problematic to use
PLD on datasets with large numbers of features (one can reduce the
complexity by lowering the parameter 𝑑, but then the algorithm may
miss many informative rules).

− It is problematic to use PLD for datasets containing a large number
of continuous features. This is due to the fact that PLD is a discrete
learning model and thus, every continuous feature has to be quantized
into a set of discrete ones (for example, by using one-hot coding and/or
iterative splitting by medians). This, in turn, leads to problems related
to the large number of discrete features and besides, with coarse split-
ting, some important information may be lost. In particular, because
of these reasons the application of PLD for audio/video/image data is
limited.

− Similarly, it is hard to use PLD for regression tasks in general. It is
required to either quantize data or predict the relationships of target
feature values to the values of other features in terms of comparison
predicates like 6.

− In order to apply PLD, one has to explicitly define the language of
predicates (features), which essentially requires feature engineering.
There exists a PLD based approach that supports feature discovery
by using the so-called Probabilistic Formal Concepts [18; 19]. These
combine base features into groups of interrelated ones, but anyway the
set of base features must be explicitly given.

6.2. Advantages

− Probabilistic laws learned by PLD are explicit and human readable.
PLD based solutions to ML tasks listed in Section 5 are inherently
interpretable and thus, PLD can be used as a basis for building ex-
plainable ML models.
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− The form of probabilistic laws resembles rules of decision trees. How-
ever, in general, for every target (predictor) predicate, the PLD al-
gorithm learns not just a single probabilistic law, but several ones.
In this aspect, PLD is closer to ensemble methods on decision trees.
However, many such methods, such as, e.g., Random Forest, rely
heavily on randomness in the construction of the trees and also they
employ non-trivial operators for combining predictions over an en-
semble. This makes these methods difficult to interpret and requires
additional mechanisms for explaining outputs. In contrast, PLD has
both advantages: interpretability and the feature of making decisions
based on an “ensemble” of probabilistic laws.

− In contrast to black-box models, the explicitness of the rule language
used by PLD allows for embedding domain knowledge into the model.
For example, the knowledge can be introduced as rules with probability
1 (ground truth), or with a lower probability. When injected into
the model, these rules are used for prediction together with learned
probabilistic laws.

− The explicitness of probabilistic laws makes it possible to perform post-
hoc analysis of a trained PLD model. In fact, the learned laws can
be viewed as explicit instructions (an algorithm) for decision mak-
ing. These can be reused for building PLD models for other datasets
(transfer learning). The explicitness of the learned algorithm makes it
available for meta-analysis in order to identify, for example, deeply
correlated features (as implemented in the method of Probabilistic
Formal Concepts), or those features/specific feature values that an
object must have in order to be assigned to a particular class (abduc-
tive classification), or detection of symmetries in the structure of laws
and features, which is important for sample efficiency of self-learning
systems with many degrees of freedom.

7. Directions for Improvement

7.1. Support for n-ary Predicates

The choice of predicates has a direct impact on the expressiveness of
PLD models. In general, PLD allows for using use not only unary, but also
n-ary predicates to support laws of the form

𝑃1 (𝑥1) , . . . , 𝑃𝑛 (𝑥𝑛) → 𝑅 (𝑦) (7.1)

where 𝑥1, . . . , 𝑥𝑛 are (possibly non-disjoint) sets of variables and 𝑦 is a
subset of variables from the union of 𝑥𝑖, for 𝑖 = 1, . . . , 𝑛. Besides object
variables, functional terms can be used.
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Rules with n-ary predicates and functional terms are more expressive,
for example, they can express relationships of features for pairs of objects
like:

𝑃𝑟𝑖𝑐𝑒(𝑥) < 𝑃𝑟𝑖𝑐𝑒(𝑦) → 𝐷𝑒𝑚𝑎𝑛𝑑(𝑦) < 𝐷𝑒𝑚𝑎𝑛𝑑(𝑥) (7.2)

Support for the extended rule language in PLD is currently implemented
by grounding. For every combination of values for the variables of a n-ary
predicate, a unary base predicate is introduced into the language. Clearly,
this approach is computationally inefficient. More efficient ways to support
n-ary predicates would significantly increase the expressiveness of PLD. For
example, rule 7.2 with the binary comparison predicate is an example of a
regularity that is hard to express with models based on neural networks.

7.2. Learned Quantization

As PLD does not support continuous features, they must be converted
into Boolean ones, for example, by quantization. This implies additional
difficulties as the quantization granularity needs to be carefully adjusted for
each continuous feature so as to not discard information and avoid a blow-
up in the number of features. Quantization can be built into the learning
algorithm of PLD as follows. When enumerating rules by refinement, we
first take those predicates for addition into the premise, which divide the
range of the corresponding feature values by the median into two subranges.
Then, after some of these predicates corresponding to a value range 𝑟 is
added to the premise, for further refinement, we consider those predicates
that split 𝑟 into smaller subranges, and we proceed similarly in further
refinements. As a result, the range of feature values will be split up as long
as the rule probability increases and its confidence is maintained. Thus,
there will be no need to quantize the features in advance, the required
quantization granularity will be adjusted automatically in the process of
learning.

7.3. Enumeration Reduction

To improve the efficiency of learning, different hyperparameters are used
in PLD to control the form and significance thresholds for rules (Section
4). The disadvantage of this approach is that it is hard to know in advance
how much computational resources will be spent to search for probabilistic
laws under the specified parameters. One has to make several test runs of
the learning procedure to assess the complexity of computations, which is
inefficient. An alternative way would be to select some limited number of
the most promising rules at each level of enumeration according to some
criterion. The maximal number of rules considered in the enumeration
can be limited depending on the available computational resources and the
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selection criterion can be based, e.g, on the probability gain for rules after
refinement, the entropy criterion (like in decision trees), etc.

8. Conclusion

In this paper, we have presented the main concepts of Probabilistic
Law Discovery and discussed its advantages and limitations. Based on
our analysis, we can summarize recommendations on application of PLD
as follows:

− PLD can be used to build interpretable ML models for tasks, which
require explainable decision making

− it is not efficient to use PLD for tasks which do not require explainabil-
ity and which involve datasets with large numbers of features or which
contain many continuous features (for example, image/audio/video
datasets)

− PLD can be considered as an alternative to common ML methods in
tasks where explainability is not required, but where datasets contains
mostly Boolean or categorical features

The principle problem of rule learning can be attacked by improving
the optimization techniques already present in PLD, as well as by adopt-
ing other techniques from Operations Research and Machine Learning.
Applications of PLD to the variety of ML problems (including classifica-
tion/clusterization/regression, time series/anomaly analysis, and adaptive
control) evidence the high potential of models based on rule learning. We
believe that elements of PLD based models can be reused to build inter-
petable solutions to various ML tasks on top of logic based and rule learning
models like Decision Trees/Random Forests, and others.
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