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Abstract. In this paper, problems of asymptotic behavior of non-autonomous controlled
systems with a matrix of derivatives and the feedbacks of relay type are considered.
The research is based on the method of limiting equations in combination with the
direct method of Lyapunov functions with semidefinite derivatives. The method of the
limiting equations has arisen in works G.R. Sell (1967) and Z. Artstein (1977, 1978) on
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The main results are bound up with development of this method for discontinuous systems
represented in the form of differential inclusions. In this case, specific methods of mul-
tivalued analysis and development of new methods for constructing limiting differential
inclusions were required. The structure of the systems under scrutiny makes it possible,
in particular, to study mechanical systems controlled on the decomposition principle of
E.S. Pyatnitsky, and systems with dry friction submitted by equations Lagrange of 2-nd
kind.

Keywords: limiting differential inclusion, Lyapunov function with semidefinite deriva-
tive, controlled mechanical systems, relay control, dry friction

Acknowledgements: The work was carried out within the framework of the state order
of the Ministry of Education and Science of Russian Federation under the project ” The
theory and methods for studying evolutionary equations and control systems with their
applications” (state registration number: 1210401300060-4).

For citation: Finogenko I. A. Method of Limiting Differential Inclusions and Asymptotic
Behavior of Systems with Relay Controls. The Bulletin of Irkutsk State University. Series



METHOD OF LIMITING DIFFERENTIAL INCLUSION 91

Mathematics, 2022, vol. 42, pp. 90-102.
https://doi.org/10.26516 /1997-7670.2022.42.90

Hayunasa crarbsa

Merona npeaeabHbIX auddepeHnnaIbHbIX BKJIIOYEHUN 1
ACUMIITOTUYECKOE MMOBEJeHNEe CUCTEM C peJieiiHbIMU
yIIpaBJIEHUSMU

. A. ®unorenko

Hnemumym dunamuru cucmem u meopuu ynpasienus um. B. M. Mampocosa
CO PAH, Upxymcxk, Poccutickas @edepayus
X fin2709@mail.Tu

Amnnoranusi. PaccmaTpuBaroTcst BOIPOCHI CTAOMIM3AINN HEABTOHOMHBIX YIIPABIISIEMbIX
CHCTEM C MaTPUIleil IPU MPOU3BOIHBIX U OOPATHBIMU CBI3sIMU pesieitHoro Tuma. OCHOBO
WCCJIEIOBAHMI CJIY?KUT METOJ| MPEIe/IbHbIX YPABHEHUN B COYETAHUU C MPIMBIM METO-
oM yHKImi JIsSmyHOBa CO 3HAKOMOCTOSIHHBIMU TPOM3BOAHBIME. MeTom mpeaenrbHbIX
ypasHeHuit Bocxoaut K paboram G. R. Sell (1967) u Z. Artstein (1977, 1978) no Tonosio-
TUYECKOM JUHAMUKE HEABTOHOMHBIX CUCTEM U B HACTOSIIIEE BPEMsI PA3BUT IJjIsl IITUPOKOTO
KJacca cucreM (B TOM YHC/E ISl CHUCTEM C 3alla3/bIBAIOIUM apryMEHTOM), HO He II0-
JIyYWJI PA3BUTHSI MIPUMEHUTEIBHO K HEABTOHOMHBIM JTU(DOEPEHITNATHHBIM BKIIOYEHUSIM
¥ Pa3pBIBHBIM CUCTEMAaM, IJjis KOTOPBIX OH HOCUT (parMeHTapHblii Xxapakrep. OCHOBHBIE
PEe3y/IbTATHI CBSI3aHBI C PA3BUTHEM 9TOT0 METOJA JIJIsT PA3PBIBHBIX CHCTEM, IIPE/ICTABJICH-
HBIX B dopMme quddepeHITuaIbHbIX BKIOYEHNNH. 3/1eCh TOTPEO6OBAIUCEH ClIeNU(pUIeCKHe
METO/bI MHOTO3HAYHOTO AHAJIN3a U pa3paboTKa HOBBIX CIIOCOOOB IIOCTPOEHUSI IIPEIETbLHBIX
muddepeHmanbHbIX BKIIOYeHnil. CTPYKTypa ypaBHEHUI CUCTEM MO3BOJISIET, B YaCTHO-
CTH, U3yYaTh MEXaHUYECKHE CHUCTEMBbI, yIpaBjseMble Ha npuHiumne aexomnosuu E. C.
IIATHUIIKOTO, M CHCTEMBI C CyXHM TPEHUEM, MPEJCTABJIEHHbIE YpaBHEeHUsIMU JlarpaHxka
2-ro pona.

KuaroueBrnie cioBa: npenenbHoe auddepeHimatbHoe BKIoYenHne, dpyuknns JIamnynosa
CO 3HAKOITOCTOSTHHOM TTPOU3BOIHOM, peJIeHOe yIIpaBJIeHNe, YIIPABJIsIEMbIE MEXaHUIECKUE
CHCTEMBI, CyX0€e TPEHHE

Baaromapuoctu: Pabdora BhimosiHeHa B pamkax roc3afanus Munobpuayku Poccun mo
MpoeKTy «Teopust U METOBI UCC/IETOBAHUIN SBOIOIMOHHBIX YPABHEHUI U YIIPABJISIEMbBIX
cucreM ¢ ux npuitoxkenusamu» (Ne roc. permerpanum: 1210401300060-4).

Ccrolaka aiist qurtupoBanusi: Finogenko I. A. Method of Limiting Differential Inclusions
and Asymptotic Behavior of Systems with Relay Controls // Wssectusi pkyrckoro
rocynapcrennoro yuusepcurerta. Cepus Maremaruka. 2022. T. 42. C. 90-102.
https://doi.org/10.26516/1997-7670.2022.42.90

1. Introduction

The main ideas of the method of the limiting differential equations for
the study of the asymptotic behavior of non-autonomous systems, were
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incorporated in the papers [1;16]. At present, this method is well devel-
oped [13] and extended to many classes of differential equations, such as
the delay equation [2;3;11]. For differential inclusions the first this method
was introduced in the paper [4], and later extended to non-autonomous
functional-differential inclusions [6] and differential equations with discon-
tinuous right-hand part. [5]. Solutions of these equations are understood
in the sense of Filippov, as solutions of differential inclusions [8].

The method of limiting equations is an effective method for studying a
group of problems that can be combined under one name, as the problem of
the asymptotic behavior of non-autonomous systems. These include prob-
lems of attraction, localization of right limiting sets, asymptotic stability of
solutions and a number of others. In the framework of the method of limit-
ing differential equations, all these problems are related to generalizations
of the Krasovskii-LaSalle invariance principle (for example, see [10]).

In this paper we consider a system of the form

P(z)i = R(t,x) + u, (1.1)

where t be a scalar variable and z = (z1,...,2,) be a vector in space
R™ with the Euclidean norm || - ||, P(z) — a continuous, symmetric, pos-
itive definite n x n matrix, R(t,z) = (R1,...,R,) — continuous vector
function, u = (u1,...,up), ui(t,z) = —H;(t,x) sign ¢;(t, ) under the con-
dition ¢;(t,z) # 0, Hi(t,z) >0, i = 1,...,n. While using well-known
methods of the theory of differential equations with a discontinuous right-
hand side, assume that w; = [—H;, H;] under the condition ¢; = 0 for each
i = 1,...,n. Then equation (1.1) may be represented in the form of a
differential inclusion

P(x)t € R(t,x) + U(t,x), (1.2)
where U(t,z) = uj X -+ X uy. Denote
F(t,z) = P Y(2)(R(t,z) + U(t,z)) (1.3)
and write the differential inclusion (1.2) in the standard form
&€ F(t ). (1.4)

The main problem for study differential inclusion is to construct the
limiting differential relations. For this purpose, specific methods of multi-
valued analysis were needed. New limiting differential relations were also
obtained in the form of differential inclusions [4] and were developed in [5]
for the general form for differential equations with a discontinuous right-
hand part. The result of this paper is the method of limiting differential
inclusions for equation (1.1).

WsBectus MpkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
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The structure of systems allows, in particular, to study mechanical con-
trolled systems of E.S. Pyatnitsky [14] and systems with dry friction wich
described by the Lagrange equations of the 2-nd kind [12].

2. General theorems

Let us introduce in consideration the following multivalued mapping

F*(z) = ﬂ@UF(t—i—a,x).

b>0  a>b
Note, the multivalued mapping F* does not depend on the variable ¢.

Definition 1. The differential inclusion
T € F*(x) (2.1)
1s called the limiting.

General properties and some equivalent ways of describing limiting dif-
ferential inclusions may be found in [4]. In particular, the set F*(x) at each
fixed point z is the convex closed hull of all limiting values of the functions
y(t) € F(t,x) under condition t — +oo. This fact is further used without
reservations.

Let us denote by

V¥ (x) = sup{(VV(z),y) : y € F*(2)}

the upper derivative of a continuously differentiable function V(x) by virtue
of the limiting differential inclusion (2.1).

Definition 2. We will say that a function Z(t,x) is continuous in x
uniformly with respect t, if for any xo and € > 0 there exists 6 = §(e,z9) > 0
such that

| Z(t,x) — Z(t,zo)|| < €

for all x satisfying the inequality ||z — xo|| < § and for all t € R

Definition 3. Set D is called semi-ivariant if for any point yo € D there
exists a solution y(t) of inclusion (2.1) with the initial condition y(0) = yo
such that y(t) € D for allt > 0.

Theorem 1. Let the functions R(t,x), H;(t,z) and the matriz P(t,z) be
bounded, continuous with respect to the variables (t,z) and continuous in
x uniformly with respect to variable t, H;(t,x) > 0, the functions ¢;(t, )

be continuously differentiable and V¢;(t,x) # 0 for each i € I(t,x) 2
{s = 1,....n : ¢s(t,x) = 0}. Let’s assume there exists a continuously
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differentiable function V(x) such that at the points of continuity of function
u(t,x) holds
V(t,x) & (VV(z), F(t,z)) <0,

Then the w-limit set AT (x) of any bounded solution of inclusion (1.4)
belongs to the largest semi-invariant subset of set

E*2 {2:V*(z) = 0.

Proof. Under the assumptions made for the multivalued mapping from the
right-hand part of (1.4) all conditions of Lemmas 2, 3 and Theorem 1
from the paper [5] are hold. Then the set F(tz) is upper semicontinuous
and bounded set-valued mapping with convex and compact values. The
Lyapunov function V' (z) satisfies the conditions of Theorem 5 from [5], from
which follows, that the set AT (x) is semi-invariant and A™(z) C E*. O

We denote sign™ ¢;(t,x) (respectively, sign™ ¢;(t,z)) the function
sign ¢;(t, x), extended with the value 1 (respectively, the value —1) for
ot,z)=0,i=1,....,m.

For each x,i=1,...,n let us put
a’($) :h:mt—>+oo(_Hi(ta :L‘)sign+¢7;(t, 1‘)), (2 2)
bi(z) = limy— 400 (—H;(t, x)sign™ ¢;(t, z)). ’

Let
R*(x) = (e | R(t+a,2)

b>0  a>b
and U™ (x) = Uy*(z) x ... x U}*(x), where

U™ (2) = [ai(x), bi()].

foreachi=1,...,n.
We will consider also the limiting differential inclusion of the form

i € F*™(t,z), (2.3)

where

F*(x)=1z€ P(:E)_l(R*(ZL') + U™ (x))
or, equivalent, differential inclusion of the form
P(z)i € (R*(z) + U™ (x)).

Remark 1. Due to Lemma 1 from [5], the limiting multivalued mapping
F*(x) for each fixed x is a convex closed hull of all limit points of the
mapping t — F(t,z). Then F*(z) C F**(z) and

V*(x) < V*(z), (2.4)

WsBectus MpkyTCcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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where

V*(2) = sup{(VV (x),y) : P(x)y € R*(z) + U™ (2)}

is the upper derivative of function V(z) by vertue of the differential inclu-
sion (2.3).

We denote ‘
E* ={z:V*™(z) = 0}.

Theorem 2. Let all the conditions of Theorem 1 be satisfied and
V*(z) <0. (2.5)

Then the w-limit set A (x) of any bounded solution of inclusion (1.4)
belongs to the largest semi-invariant subset of the set E**.

Condition (2.5) follows that E* C E**. Then proof follows from the
Theorem 1.

Remark 2. The Theorem 2 is a corollary of Theorem 1. They are
equivalent only in the one-dimensional case. But the functions (2.2) can be
easily computed and structure of the map F**(z) is simpler. In particular,
Theorem 2 is more constructive, if function R(t,z) does not depend on ¢
or has a limit under condition ¢ — +o00 at each fixed . We also note that
the structure of the original equations and the Lyapunov functions play an
important role. This will be seen below for the equations of mechanical
systems with friction

3. Mechanical systems

Let us consider the problems arising in dynamics of controlled mechani-
cal systems based on the E. S. Pyatnitsky decomposition principle [14] and
mechanical systems with dry friction represented in the form of Lagrange
2-nd kind equations [12].

3.1. CONTROLLED MECHANICAL SYSTEMS

Lagrange equations for the system under consideration write in the
expanded form as follows

A(Q)q = g(ta q, Q> + QA(ta q, Q) +u, (31)

where A(q) — positive definite, symmetric k x k& matrix of coefficients
of the quadratic form of generalized velocities; ¢(t,q,4) = (g1,---,9k),
QA(t,q,q) = (Q{‘, R Qj?) — continuous vector functions describing vari-
ous generalized forces acting upon the system; v = (uy,...,ux) — vector
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of generalized controls satisfying the following constrants |u;| < H;(t,q, ),
where H; = H;(t,q,¢) > 0 are continuous functions.

The structure of the controls is determined by the problem synthesis of
control systems for mechanical systems based on the decomposition princi-
ple [14]: find such controls w;, which (under some additional assumptions)
would keeps that motions of the system (3.1) on the target set

M:{(t7Q7q.>:Cji:fi(taq)vizl?"'7k}'

The controls are defined in the form u; = —H; sign (¢; — fi(t,q)).

With the use of appropriate replacements of the variables, equation
(3.1) may be rewritten in the form of the differential inclusion (1.2) and to
investigate the problems of attraction and stabilization.

3.2. SYSTEMS WITH FRICTION

We consider the equations of motion of a mechanical system with Cou-
lomb’s sliding friction in the expanded vector form

Al)i = 9(q,9) + QMg d) + Q" (t,4,9). (3.2)

The friction forces under the condition ¢* # 0 have the form

where | N;(q, q) | are the moduli of normal reactions at the points of contact
between the rubbing bodies. We suppose that the friction coefficients
fi(t,q,q) > 0 for all i = 1,...,k, ky < k. For all i = k*+1,...,k we
assume f;(t,q,q) = 0.

Friction is a very complex physical process, which has not been com-
pletely studied so far. The dependence of friction coefficients on the variable
t (time) may arise in virtue of various causes, such as variations of the
temperature of rubbing bodies.

We assume that the system’s kinetic energy is represented by the quadra-
tic form

T(q,q) = aij(q)d'¢, (3.3)

N =
]~

1

Z?]

where a; j(q) — coefficients of inertia (elements of matrix A(q)).
Extending the definition of the friction forces at the points of discon-
tinuity, we may obtain the general expression for the friction forces in
form ,
T : — fil Nilsign g, if ¢* # 0,
I'(t,q,q) = 7 3.4
Q; (t,q Q) { [—fi‘Ni’,fﬂNiH,lqu:O ( )
foreach i =1,... k*.

WsBectus VMpkyTcKOro rocy1apCTBEHHOTO YHUBEPCUTETA.
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Equations (3.2) with friction forces (3.4) describe the systems with sing-
le-degree kinematic pairs with friction (for example, the mechanisms con-
sisting of connecting rods and sliders, pendulum systems with friction in
hinges and supports).

Let us put

ai(qv q) = himt_>+oofi(t7 q, Q)a bl(Qa Q) = mt%Jroofi(t? q, Q)

for each 7 = 1 ,k* and define the multivalued function with the values
Q" (q,q9) = (q, q) x ... x Qi (q,4), where
[ai| N3, b3 Ni], if ' < 0,
Q:"(¢,q9) = § [=biNi|, —ai|Ni[],if ¢* > 0, (3.5)
[—bi|N;|, bi| N4 |], if ¢* = 0.

Let us consider the limiting differential inclusion the following form

A9)i € 9(q,4) + Q4a,d) + Q" (4, 9)- (3.6)
Let Q4 = Di(q,q) + Ki(q), where K;(q) = —011/9¢, TI(q) is sys-
tem’s potential energy, D;(q,q) — dissipative forces with the conditions

D;(q,0) =0, Zl 1 Di(q,¢)¢i < 0, which represent viscous friction or envi-
ronmental resistance forces.

The function g(q,q) = (91(g,4), - - -, 9x(q,¢)) in the Lagrange’s equations
of the second kind of motion of mechanical systems is determined by the
equalities

S DI T 3 pi P

1/1]1 j=1lv=1

In the capacity of the Lyapunov function we assume the complete sys-
tem’s energy: V =T +II. Direct calculations, definitions of derivatives V,
V* and formulas (3.2)—(3.7) lead to equalities

ks k
- Zﬁ(t,q,cj)lNi(q,q)Hqil + ZDi(q,qﬁf,

Zaz )INi( QQHQH‘ZD (44

=1

Under above assumptions the condition 1% < 0 and VA < 0 holds, and
due to Theorem 2, the problem of the asymptotic behavior of the system
(3.2) reduces to investigation of the set

M:{(q,q').z i(q,4)d" —Zaz )INi(g, 9)||d’| = 0},

=1
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which, in particular, may coincide with the set of equilibrium positions of
inclusion (3.6).

Example 1. A body of mass m, considered as a material point, moves
along a horizontal line Ox under the action of an elastic force F¢(z) =
—kz (k > 0) with a point unstressed state x = 0, P = mg — weight of
body, F/"(t,v) = —f(t)Psgni — Coulomb’s dry friction force, which is
discontinuous under condition & = 0. The function f(¢) is continuous and
bounded. The equations of motion of the system have the form:

mi = —kx — f(t)Psgni. (3.8)

Our goal is to most accurately describe the set of points to which the
bounded solutions of the equation (3.8) are aimed.

In accordance with the above methods for studying systems with friction,
we pass to the differential inclusion

mi € —kx + FI"(t, %),

where F/7(t,#) = — f(t)Psgn & under the condition & # 0 and F/"(¢,0) =
[=f@)P, f)P].

Denote o
a= liimt—woof(t% b= limg oo f(2).

Let A = A" (z, 1) — w-limit set of solution (z(t),Z(t)) of system (3.8).
We will consider the limiting differential inclusion in the form

[—b, —a]P, if & > 0,
i€ —kz+Q™, Q™ =1 [a,b|P,if & <0, (3.9)
[—b,b] P, if & = 0.

under condition a > 0.
We take the Lyapunov function in the form

1
Vix, &) = i(m:vz + kz?).

Then V (t,x, &) = —f(t)P|¢| < 0 and V** = —a|z|. Thus, we get

E* = {(x,d) : & = 0}.

The conclusions that can be drawn from this are the following.

1. AT (x, ) consists of equilibria of (1).

2. Level lines of the Lyapunov function V(z,#) = 1 (mdi? + kz?) under
the condition # = 0 are two-point sets {(zo,0),(—z0,0)}. Due to the
connectivity property of the set A (x,), it can consist of only one point

WsBectus VMpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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and therefore always represents one equilibrium position. Obviously, this
could be the point (0,0).

Further analysis, not related to Theorems 1 and 2, shows that any
bounded solution (z(t),#(t)) of the equation (3.8) tends to a point (zo,0)
or to a point (—zg,0) such that |z¢| < Pa/k, if t — +o0.

4. Conclusion

The conclusion, which Theorems 1, 2 allow us to draw is that the w-
limit sets of system (1.1) belong to the set of zeros of the derivative of
the Lyapunov function due to the limiting differential inclusions. This
does not completely solve the problem of attraction, asymptotic stability
or stabilization of the system. Investigation of sets £* and E** in the
general form is not always possible and hardly ever expedient. Therefore,
further investigations shall take into account the structure of these sets,
which depends on the equation (1.1), the choice of the Lyapunov function
(which is ambiguous) and also relies on the properties of w-limit sets. This
can be seen from the example above.

Theorems 1 and 2 are new. We also note that the asymptotic behavior of
the systems with variable friction coefficients in such a degree of generality
as the Lagrange equation of the 2-nd kind (3.2) with friction forces (3.4)
not previously studied and received on the basis of the method of limiting
differential inclusions from the works [4], [5].

The total mechanical energy, as a Lyapunov function, has a semidefinite
derivative, and its use in the problems of stability and attraction causes
difficulties even in the autonomous case (see [12]).

Further investigations may be bound up with the study of controlled me-
chanical systems on the decomposition principle, which are simultaneously
under the action of Coulomb friction forces.

The method of limiting differential inclusions may be considered within
the frames of the universal method of implications of properties of related
mathematical models [17], when the initial systems and the limiting systems
are considered as structurally similar. In such a case the issue of choosing
an auxiliary system remains open. But the choice of the limiting differential
relation is also ambiguous.

In the present paper, we considered bounded solutions of differential
equations and inclusions. If solution is unbounded (but not infinite) then
it is possible to state only that their trajectories are weakly tending to the
w-limit set A(z). It means there exists a sequence of points ¢,, — 400 such
that d(z(t,), E*) — 0. This property, in combination with the property
of stability gives the asymptotic stability and is close to the property of
"invariance with the visit” from paper [17, Example 2].
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