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Abstract. The paper continues a long series of our research and considers a second-
order nonlinear evolutionary parabolic system. The system can be a model of various
convective and diffusion processes in continuum mechanics, including mass transfer in
a binary mixture. In hydrology, ecology, and mathematical biology, it describes the
propagation of pollutants in water and air, as well as population dynamics, including the
interaction of two different biological species. We construct solutions that have the type
of diffusion (heat) wave propagating over a zero background with a finite velocity. Note
that the system degenerates on the line where the perturbed and zero (unperturbed)
solutions are continuously joined. A new existence and uniqueness theorem is proved in
the class of analytical functions. In this case, the solution has the desired type and is
constructed in the form of characteristic series, the convergence of which is proved by the
majorant method. We also present two new classes of exact solutions, the construction
of which, due to ansatzes of a specific form, reduces to integrating systems of ordinary
differential equations that inherit a singularity from the original formulation. The ob-
tained results are expected to be helpful in modeling the evolution of the Baikal biota
and the propagation of pollutants in the water of Lake Baikal near settlements.
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Hayunasa crarbsa

Pentenuns HesimHeliHON mapaboJMYeCcKOi cuCTeMbI BTOPOTO I10-
psaaKa, Moaeaupyolnue aBuxKeHne quddPy3noHHON BOJHBI

A.JI. Kazakos'?™, A. A. Jlemnepr!-?

1 WucruTyT nuramMuky cucreM U Teopun yupassenns umenn B. M. Marpocosa CO PAH,
Upkyrck, Poccuiickas @eneparms

2 WpkyTckuit HAIMOHAIBHBIN MCCIIEIOBATEIbCKUI TEXHUIEeCKNil yHIBEepcuTeT, pKyTCK,
Poccuiickas ®Penepariyst

= kazakov@icc.ru

Amnsnoranus. B crarbe, mpogospkarorieil 60IbINON UK UCCIeIOBaHUil aBTOPOB, pac-
CMOTpEHa HeJMHEHAs IBOIIONUOHHAS TapaboInTIecKasi CHCTEMa BTOPOTO IMOPSIKA, KO-
TOpasi MOJIEJINPYET Pa3JInYHble KOHBEKTUBHBIE U JU((y3NOHHBIE MIPOIECCHl B MEXAHUKE
CIJIOIIHBIX CpeJl, BKJIIOYash MaccooOMeH B OMHApPHON cMmecu. B ruaposiorwu, 3KOJIOrAn
¥ MaTeMaTUYeCKOW OMOJIOTMH CHCTEeMa MPUMEHSIETCSI /I OMMCAHUs IPOIECCOB PacCIpo-
CTpaHeHMs] 3arPA3HSIONIMX [IPUMEceil B BOJIE M BO3JyXe U IOIYJISIUOHHONW JINHAMUKH,
BKJIFOYas B3AMMOJIEHCTBIE JBYX PA3JIMIHBIX OMOJIOTMYECKUX BUIOB. [ljis1 yKazaHHOM cu-
CTeMBbl PacCMATPHUBAIOTCS PENIeHus], uMeomue TUI 1uddy3uoHHON (TeIIoBo) BOJIHBL,
PpacCIpOCTpaHSIONIENCss 0 HyJIeBOMYy (OHY € KOHEUHO# ckopocTbio. Ilpm srom ma mm-
HUH, BJIOJIb KOTOPOIl HEIPEPBIBHO CTHLIKYIOTCS BO3MYIIEHHOE U HyJIeBoe (HEBO3MYIIIEHHOE)
pelllenusi, CUCTeMa UCIBITBIBAET BBIPOXKIeHUe. J{oKa3bIBaeTCs HOBas TeOpeMa CyIeCTBO-
BaHUs U €IMHCTBEHHOCTHU B KJIACCE aHAJIUTHUIECKUX (DyHKIwmii. Pemenue npu srom nmeer
HMCKOMBIl THUII U CTPOUTCS B BHJIE XaPAKTEPUCTUIECKUX PSAJIOB, CXOAMMOCTb KOTOPBIX JI0-
Ka3bIBAETCST METOJOM MasKOpaHT. Takzke HallJIeHbl JBa HOBBIX KJACCA TOYHBIX PEIEHUIT,
IIOCTPOEHUE KOTOPBIX 32 CYET UCIOJb30BAHUS aH3AIEB CIEIUAIBHOIO BUIA CBOJUTCI K
WHTEIPUPOBAHUIO CUCTEM OOBIKHOBEHHBIX JIudpepeHInaIbHbIX YpaBHEHU, HAC/IELYIO-
el 0cOGEHHOCTh OT UCXOIMHON 1MOCTaHOBKH. llosydueHHbIE PE3yJIbTaThl MPEIIIOIAraeTCs
KCIIOJIb30BaTh JJIsT MOJETMPOBAHUS IBOJIIOINN OaflKaIbCKON OHOTHI U PACIIPOCTPAHEHUST
3arpsI3HAIONMX IpuMeceii B Bojie Baiikasia BOJIN3M HACEJIEHHBIX IIyHKTOB.

KuroueBrie cioBa: napabosuyeckue ypaBHEHUS C YACTHBIMU IIPOM3BOJIHBIME, AHAJIN-
TUYIeCKOe perenne, audy3noHHAs BOJHA, TEOPEMa CYIIECTBOBAHUS, TOYHOE PEIEHNUE,
MaTeMaTu4IeCKoe MOIeJIMPOBaHne

BaarogapHocTu: VccienoBanne BbIIOJHEHO Ipu GUHAHCOBOH nogep:kke PODI (npo-
ekt Ne 20-07-00407 A); POOU u Munucrepcrsa Hayku n Texuosoruu, TaiiBasb (11poekT
Ne 20-51-S52003).
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1. Introduction

Let us consider the system of second-order nonlinear evolutionary para-
bolic equations

Ti = [®2(T)]aa + [@1(T)]e + Po(T, 5),

(1.1)
Sy = [Wo(S)]ae + [U1(S)]a + To(T, S).

Here t, x are independent variables: time and a spatial coordinate, respec-
tively; T'(t,z) and S(t,x) are unknown functions; ®;, ¥;, ¢ = 0,1,2 are
sufficiently smooth specified functions.

System (1.1) and its generalizations are often used as models of various
convective [1;2] and reaction-diffusion [6;24] processes. Also, such systems
arise in mathematical biology [16] when describing population dynamics,
in particular, the interaction of two different biological species [16;21], as
well as when modeling pollution propagation [17]. A particular mention
deserves the fact that the well-known porous medium equation [19;23] is a
particular case of equations (1.1). Special attention should be paid to the
case when system (1.1) degenerates [4]. For example, if the equalities hold

B} (0) = @4(0) = Bp(0,0) = Wy(0) = ¥y(0) = B(0,0) = 0. (1.2)

If (1.2) holds, system (1.1) may have solutions having the type of heat [19]
(filtration [20], diffusion [10]) waves that describe disturbances propagating
along the zero background with a finite velocity. Such a situation, as you
know, is not typical for equations and systems of parabolic type [15] and
arises due to singularity. The boundary between the unperturbed zero
background and the perturbed positive solution is called a wavefront. The
joined solution is called a HDW-type solution [10].

We have been studying such solutions for the long time. At the beginning
we considered the porous medium equation and its generalizations in one-
dimensional [7;12] and non-one-dimensional [9;14] cases. Then the results
were expanded to reaction—diffusion systems [10]. Our approach includes
three directions. The first is a proving of new existence and uniqueness
theorems for HDW-type solutions in the class of analytical functions. The
proof is carried out in the traditions of the scientific school of Academician
A.F. Sidorov [5;20]: the solution is constructed as a characteristic series, its
convergence is proved by the majorant method. Since these theorems, as all
the similar, starting with the Cauchy-Kovalevskaya theorem [3], are local,
the questions of the domain of existence of the solution and its properties
outside a small neighborhood of the diffusion wavefront are relevant. We
can answer this question using exact solutions [18], the construction of
which forms the second direction. Such solutions are also helpful for ver-
ifying the results of numerical algorithms operating [22], the development
of which is the third direction.
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Previously [8;10;11;13], we considered systems having form (1.1) without
convective terms, i.e., [®1(T)]z = [¥1(5)]z = 0. At the same time, each
of the papers is devoted to the specific formulation. In [10;13], the plane
symmetric case for power functions ®o, Uy was studied in detail. In [11],
we considered the cases of cylindrical and spherical symmetry. Finally, in
the article [8], the functions ®9, U5 are analytical and have a general form.

This paper deals with the formulation where [®1(T)], Z 0, [¥1(S)]s Z0
for the first time. A new existence and uniqueness theorem for the HDW-
type solution in the class of analytical functions is proved. In two different
cases, the problem is reduced to the Cauchy problem for a system of ordi-
nary differential equations (ODEs) that inherits all the specific features of
the original one. At the same time, the theorem and form of the ODEs differ
significantly from those obtained earlier and generalize the corresponding
results from [8;10;13].

2. Problem Formulation

If the functions ®1(7T'), ®2(T"), ¥1(S), U2(S) are differentiable, system
(1.1) takes the form
T; = [95(T)Tz]o + @1(T) T + o(T, ),

(2.1)
Sy = [U4(S)Sa]s + W (S)Sy + Uo(T, S).

Let us consider the case of power nonlinearities, which is most often found
in the literature. Let

) (T) = MT7, (T) = AT, W4(S) = ju S, Wh(S) = po5,  (2.2)

where 0y, ;, \;, 1,7 = 1,2 are positive constants.
The substitution u = AT, v = 5% brings system (2.1), (2.2) to the
form
Ut = Uy + u2 )0 + Auuy + f(u,v),

) (2.3)
Vp = Vg + 07 /0 + BvPu, + g(v,u).

Here A, B, a, 3, §, o are positive constants, f(u,v), g(u, v) are specified func-

tions,
g1

77"4: ﬁ)ﬁz évB:&
g9 )\(21 52 7

l/o 1/o ,1/8 1/6 /o ,1/8
oA U v Oty u v
flu,v) = 1§1q>0< 1o 16>,g(v,u): o120\ 1o 1gs |
ul/ >‘2/ Mz/ vt/ )‘2/ Mz/
For system (2.3), we consider the following boundary conditions:

u(t, 2)|z=aqy = 0, V(t, 2)|3=a@) = 0 (2.4)

0=09,0 =0y, x =

NsBectust VIpKyTCKOro rocyapCTBEHHOIO yHUBEPCUTETA.
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The function x = a(t) is sufficiently smooth. Due to the specifics of the
system, we can assume that a(0) = 0 without losing the generality.

A function is called analytical at a point (on a set) if it coincides in some
neighborhood with its Taylor expansion. If f(0,0) = ¢(0,0), it is easy to
see that problem (2.3), (2.4) has the trivial solution v = 0,v = 0, which is
analytical at any point in the Oxy plain.

The next section is devoted to an existence theorem for a nontrivial
analytical solution to problem (2.3), (2.4), in which the functions u and v
have the same sign on both sides of the line 2 = a(t). This property makes
it possible to construct a piecewise analytical function of variables t,x,
composed of the trivial and positive parts of the non-trivial solutions, con-
tinuously joined along the line a(t). The function is a HDW-type solution,
the curve z = a(t) is a diffusion wavefront.

3. Existence Theorem

Theorem 1. Let the functions f(u,v), g(v,u), and a(t) are analytical at
the points w = 0,v = 0, and t = 0, respectively; o, 3 € N; f(0,0) = 0,
g(0,0) =0, 0 > 0,0 >0, d'(0) # 0. Assume also u;(0,0) and v,(0,0)
sitmultaneously vanish or not vanish.

Then problem (2.3), (2.4) has the unique analytical solution v = u(t, ),
v =v(t,x) in some neighborhood of t = 0,x = 0, and uv|yrq) > 0.

Proof. The case o = 8 = 0 leads to the problem from [10], where we proved
the corresponding theorem. It thus becomes a particular case of this one.
The proof of the theorem is carried out in three stages. At the first stage,
a formal solution is constructed in the form of a characteristic series. The
second stage proves its local convergence. At the end, we show that the
functions u and v outside the line z = a(t) have the same sign and do not
vanish. In order not to repeat the reasonings already repeatedly published,
the justification of the second stage is given briefly.

Let us change the independent spatial variable as z = = — a(t). Then
problem (2.3), (2.4) takes the form

up =tz + uZ/o + [a/(t) + Aufu. + f(u,v), 3.1)
vr = vz +02/6 + [a (1) + Bo7Jos + g(v, u). '

u(t, z)|2=0 = 0,v(t, 2)|,=0 = 0. (3.2)
The solution to problem (3.1), (3.2) is constructed as the Taylor series

o0 o

U (t)2" d"u vp (t)2" d™v
u(t,z)zz nn' yUn = o ; v(t,z)zz nn' YUn = o .
n=0 ’ 2=0 n=0 ) #=0

(3.3)
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One can easily verify that series (3.3) are characteristic [3]. Let us determine
their coefficients by a recurrent procedure.

It follows from (3.2) that ug = vgp = 0. Assuming in 3.1) z = 0, we
obtain the system of two quadratic equations to find u(¢) and vy (t):

ul/o +d (tyu; =0, v}/ +d (t)v; =0, (3.4)

which has four solutions. Two of them, in which one of the desired variables
vanishes, do not satisfy the condition of the Theorem.

From the remaining two solutions, let us consider the case u; = 0,v; = 0.
Then us = vy = ... = up = vy = ... = 0, therefore, we obtain the unique
trivial solution © = 0,v = 0.

The last solution to (3.4) is

ur(t) = —od'(t), vi(t) = —dd'(t). (3.5)

This case corresponds to a nontrivial analytical solution to problem (3.1),
(3.2). To determine the coefficients ua, ve, we differentiate (3.1) with
respect to z and set z = 0. It brings us to

1 _
Uy = m [O'a//(t) + OzAug 1u% + f170u1 + fO,lvl] ,
_ 1 5 " ¢ B B—1 2
vg = m a’(t) + fBvg vi + g1,0u1 + go,1v1| -
Here
Fio = of (u,v) Fou = of (u,v)
o= ou u:O,v:O7 0.1 = ov u:(],v:O’
_ 0g(u,v) _ 0g(u,v)
91,0 = ou u:O,v:O7 go.1 = ov u:O,v:OI

Assume the coefficients of series (3.3) up to n are found. To determine
Up4+1 and vp41, we differentiate (3.1) n times with respect to z and set
z = 0. After collecting terms and resolving with respect to the desired
variables, we obtain

1 - N
Upy1 = m kZ_Q <C’n + gCn Uk Unt2—k+
n k ) )
+ AZC’,’fbunH,k Z Crlug wiy iy |+ fo—up |, > 2
k=1 ST
(3.6)
1 i 1
- ko, L k-1
,UTLJFI - a,/(l + TL(S) kz_2 <Cn + O_Cn ) Ukvn+2—k:+
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n k
k ilv"'vi /
+B E Crnt1—k E C ﬁvilviQ Vi | Fgn—vp |, n 22

k=1 DY 5eens 'LB:O
i1+ tig=Fk
(3.7)
Hore o f(u,v) o g(v,)
U, v g(v,u
= —— ' 7 = — 7 =1.2,...
fn 82’” z:07 n 82’” Z:O’ n b b b

where the derivatives of f(u,v) and g(u,v) are found according to the rule
of differentiation of complex functions.

Thus, the coefficients of series (3.3) are uniquely determined by formulas
(3.6), (3.7). This completes the first stage of the proof.

The proof of convergence for the trivial case is not required, but for the
nontrivial case it is carried out by the classical majorant method. Let us
introduce the auxiliary unknown functions U and V' by the formulas

U(t, Z) = —aa'(t)z + U(ta Z)227 U(ta Z) = —5(1/(15)2 + V(ta Z)Z2'
The correctness of such a replacement follows from conditions (3.2) and

equalities (3.5).
The replacement brings the first equation of system (3.2) to the form

—od" 2 + z2Ut =
1
= (—od'z + 22U)(2U + 42U, + 2°U..) + —(—0od’ + 22U + 2°U,)*+
o

+A[d +(—0od 2+ 2°U)*|(—0d +2:U +2°U,) + f(—0d 2+ 22U, —6d 2+ 22V).

(3.8)

After carrying out standard transformations, including collecting terms
(see [8]), equation (3.8) can be rewritten as

2(1 4+ 0)U + (40 + 1) 2U, + 022U, = fo(t, 2)+

3.9
+Zf1(t727U7 Utav)+z2f2(taz7U7‘/7UZ)+Z3f3(t727U7‘/7U27U22)- ( )

The second equation of system (3.2) is similarly transformed to
214 0)V + (40 + 1) 2V, + 622V, =

= gU(ta Z) + 20 (ta Z, Vvv V;ﬁv U) + 2292(ta 2 ‘/7 Uv VYZ) + ngS(ta 2, Vv Ua ‘/27 sz)-
(3.10)
Here fi,g;, i = 1,...,3 are already known analytical functions of their
arguments, whose explicit forms are not given due to cumbersomeness.
The boundary conditions for U and V follow from the compatibility
conditions for equations (3.9), (3.10) and have the form
fo(t,O) go(t,())

U|Z=0 = m, V|z:0 = m (311)
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Problem (3.9)—(3.11) is equivalent to problem (3.1), (3.2) in the class of
analytical functions. Thus, these problems are solvable (and unsolvable) in
the specified class simultaneously.

The solution to (3.9)-(3.10) is constructed as the Taylor series

Ut,z) =Y Un(t)%l, Vit,z)=>_ Vn(t)'%, (3.12)
n=0 ’ n=0 ’

whose coefficients are determined according to the described above recursive
procedure. We don’t give their exact form since it is not important in this
case. For a simpler case, the corresponding formulas are presented in [8].

Let us construct a uniform majorant for both equations of system (3.9),
(3.10). If the majorant estimates

Uo(t), Vo(t) < Wo(t); Ur(t), Vi(t) < Wi(t);
filt,z, U U, V), g1(t, 2, V, Vi, U) < hy(t, 2z, W, W, W);
fo(t,z, UV, U,), go(t, 2, U, V,U,) < ha(t, z, W, W, W.,);
f3(t,2,U,V,U;,Usz), 93(t, 2, U, V, Uy, Usz) < hs(t, 2, W, W, W, W)

hold, then the solution to the problem

W Ohy(t, W, Wy, W)

822 0z —i—hg(t,VV,W, Wz)+2h3(tvzaVVaVV7W27WZZ)’

(3.13)
W|Z:0 - WO(t)7 Wz’zzo = Wl(t) (3.14)

is a majorant for series (3.12). This fact is easy to verify by constructing
the solution to (3.13), (3.14) in the form of the Taylor series.

Next, we prove that problem (3.13), (3.14) has a unique analytical so-
lution majorizing zero. To do this, let us differentiate (3.13) by z, resolve
the resulting expression with respect to W,,, and add the third bound-
ary condition W,,(t,0) = Wa(t). Then we arrive to the problem of the
Cauchy-Kovalevskaya type

PwW
023 = H(t7z7WWt7W27WtZ7sz)g (315)
Wl.—0 = Wo(t), Wy |.—0 = W1(t), W..|.—0 = Wa(t), (3.16)

where H is an analytical function that majorizes zero. According to the
Cauchy-Kovalevskaya theorem, problem (3.15), (3.16) has a unique analyt-
ical solution majorizing zero. In turn, this solution is a majorant for series
(3.13) by constructing procedure. Thus, we finally obtain that series (3.3)
are convergent. The second stage of the proof is completed.

It follows from (3.5) that the functions u(¢, ) and v(¢, z) have the same
sign on both sides of the line x = a(t) in some neighborhood of x = 0,¢ = 0.

NsBectust VIpKyTCKOro rocyjapCTBEHHOIO yHUBEPCUTETA.
Cepusi «Maremarukas. 2022. T. 42. C. 43-58



DIFFUSION WAVE TYPE SOLUTIONS OF THE PARABOLIC SYSTEM 51

In fact, ui(t)[x — a(t)] and v1(t)[z — a(t)] are the first terms of the charac-
teristic series, i.e., in some small neighborhood of the diffusion wavefront,
they determine the signs of the unknown functions.

Thus, the third stage of the proof is completed. O

Remark 1. The counterexample constructed in [10] shows that if the con-
ditions of Theorem 1 are not satisfied, when (0, 0)v,(0,0) = 0, u2(0,0) +
v2(0,0) > 0, problem (2.3), (2.4) may or may not have an analytical
solution. In the second case, the convergence radii of series (3.3) are zero.

4. Exact solutions

This section pertains to finding such nontrivial exact solutions to prob-
lem (2.3), (2.4), which constructing reduces to integrating the Cauchy
problems for systems of ordinary differential equations (ODEs). Previously,
this problem was studied in the particular case when A = B = 0 [10] (see
also [8;13]).

We specify the type of the functions f and g. Let

f(’LL, U) = A1U7—5u57g(v’ U) = Bluk_nvn’

where Ay, B1,7,§&,n €R, v>0,A> 0,0 <¢,n <~.Problem (3.1), (3.2)
takes the form

U = Uty +u/o + [d(t) + Auu, + AT Eus,

2 / A (4.1)
v = v, +v2/6 + [ (t) + BvPlu, + Biur ",

u(t,0) =0, v(t,0) = 0. (4.2)

As we showed in [7;12], the main ansatzes that allow us to perform the
mentioned reduction have the form z — a(t) and z/a(t). Let us con-
sider these cases separately. Note that if £, n7,€ NU{0},7,A € N, then
with proper selection of the function a(t), problem (4.1) has an analytical
solution represented by the Taylor series (3.3) according to Theorem 1.

Generalized traveling wave. Let us construct a solution to system
(4.1) in the form

u = (Op(=),0 = B(B)a(z), = =z — at). (43)
Substituting (4.3) into (4.1) and dividing by 2(t), we obtain

7 w a/(t)
PP

+ AP )p™ | P+ AR (1) S — ng(é))p =0,
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" (q/)Q a/(t) ps—1 Bl 7 A—2
qq " + 5 + m + ByY" T (t)q" | ¢ + By (t)p

g Y0

2=

(4.4)
To turn (4.4) into ODEs with respect to p(z),q(z), it is necessary and
sufficient that the following conditions hold:

a'(t) /¢ (t) = const, ¢’ (t)/1%(t) = const, > ~1(t) = const,

YP72(t) = const, ¥ 72(t) = const, ¢ %(t) = const. (4.5)

Here, in turn, two sub-cases are possible: 1) ¢ (t) = const; 2) () #
const.

1. To begin with, assume 1 (t) = const. Then from the first equality
of (4.4), it follows that a(t) = ut, where u # 0. Without losing the
generality of consideration, we can set ¢» = 1, and then the system of
partial differential equations (PDEs) is reduced to the ODEs:

pp" 4+ (p)? /o + (n+ Ap®)p’ + A1q"5p* =0, (46)
aq" + (¢)?/6 + (u+ B®)d + Bip*~"q" = 0. ‘

2. Let now (t) # const. It follows from (4.4) that « = 8 =1, v =
A = 2. Solving the first two equalities of (4.4) as an ODEs, we get that
Y(t) = w/(ut+v),a(t) = win(ut+v), where w, p, v € Ryw > 0, > 0,v > 0.
Then the PDEs is reduced to the ODEs as

pp" + (V)0 + (u+ Ap)p’ + A1¢>*p* + pup/w = 0,

" 12 / 2—n m — (47)
qq¢" + (¢)?/6 + (u+ Bq)¢ + Bip* "q" + pg/w = 0.

The initial conditions for (4.6) and (4.7) are

p(0) =0, ¢(0) = 0. (4.8)

The conditions (4.4) are a direct consequence of (4.2).
Generalized self-similar solutions. Here we construct the solution
to system (4.1) in the form

u=o(t)r(y),v=9(t)s(y), y=—z/a(t) =1—x/a(t). (4.9)

Substituting (4.9) into (4.1) and multiplying by a?(t)/1?(t), we obtain

i 4+ 5 4 S A (0 +a () (1 — )] 7'+

o o(t)
i [A197 (1) 8¢ — ¢ (t)r] = 0,

(4.10)

ss’ + (s:s)Q + % [BeP(1)s” +d'(t)(1 —y)] s'+

SO [Big 1) 757 — ¢ (1)s] = 0.
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To reduce (4.4) to ODEs with respect to r(y), s(y), it is necessary and
sufficient that the following conditions hold:

a(t)a'(t)/¢(t) = const, a®(t)¢'(t)/¢*(t) = const, ¢*~1(t)a(t) = const,
¢ 2(t)a?(t) = const, ¢P~(t)a(t) = const, ¢*~2(t)a?(t) = const.
(4.11)
If ¥ (t) = const, we have sub-case 1 from the previous subsection. So,
let ¢'(t) # 0. Substituting the first equality of (4.11) to the second one, we
get
a(t)a” (t)/[a’ (t)]? = const = C. (4.12)

Here, as above, two sub-cases are possible: 1) C' =1; 2) C # 1.

1. Let C' = 1. Then the solution to (4.12) have the form a(t) = nexp(ut),
where p,7n are non-zero constants. You can easily make sure that the
necessary and sufficient conditions for the remaining relations from (4.11)
to be fulfilled are the equalities « = f = 1/2, v = A = 1, and then
¥(t) = n*exp(2ut). The system of equations for determining 7(y), s(y)
takes the form

P ()2 4 [AVE+ (1= )l + Aus' 60 = 2pr =0,

(4.13)
ss" + (r')2/6 + [By/s + p(1 — y)|s’ + Byrl=1s" — 2us = 0.
2. Let C # 1. Then the solution to (4.12) have the form a(t) = (ut+n)*,
where p # 0,m > 0,w > 0 are constants. The necessary and sufficient
conditions for the remaining relations from (4.11) to be fulfilled are the
equalities « = f = (w —1)/(2w — 1),v = 2a, A = 24, and then ¥(t) =
w(pt + n)*~1. This raises the additional restrictions o # 1/2,a # 1,
v # 1,7 # 2. The system of equations for determining r(y), s(y) takes the
form

'+ (1) fo + [Ar® + p(1 = y)lr' + ArsT 506+ 2ur /(2 — ) = 0,

58" + (8)2/6 + [Bs® + p(1 — y)]s’ + Byr?Y s 4+ 2us/(2 — ) = 0,
(4.14)
The condition o > 0 raises the extra restriction (w — 1)/(2w — 1) > 0,
therefore, w € (—00,1/2), (1, 400).
The initial conditions for (4.13) and (4.14) directly follow from (4.2) and
have the form
r(0) =0, s(0) =0. (4.15)

Discussion. Problems (4.6), (4.8); (4.7), (4.8); (4.13), (4.15), and
(4.14), (4.15) inherit a singularity from the original formulation, so the
issue of the existence and uniqueness of the solution requires additional
study.

First, it is necessary to extend the initial data to the Cauchy conditions.
Due to the degeneracy of the systems, the conditions for derivatives at zero
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cannot be chosen arbitrarily. Setting in both parts of the systems (4.6),
(4.7) z=p=q =0, and in (4.13), (4.14) y = s = r = 0, we get the same
type of systems of quadratic equations

[P'(0)? /o + u[P'(0)] = 0, [Q'(0)]*/8 + nlQ'(0)] =0, (4.16)

where symbol P can be either p or r, and symbol @ either ¢ or s. System
(4.16) has 4 real roots: P1(0) = 0,Q1(0) = 0; P»(0) = —op,Q2(0) = 0;
P3(0) =0,Q1(0) = =dp; Py(0) = —op, Q4(0) = —du. Each of them allows
us to set conditions on the first derivatives and obtain consistent Cauchy
conditions at zero.

The case P(0) = Q(0) = P'(0) = Q'(0) leads to the trivial solution
P =0,Q = 0. The second and third cases are also of no interest, since
for £ > 0,7 > 0, one of the unknown functions is identically zero, and the
second is determined from the Cauchy problem for a single ODE [7]. The
most significant is the fourth case, when the Cauchy conditions for systems
(4.6), (4.8) have the form

p(2)|:=0 = 0,9'(2)|:=0 = —op, q(2)]2=0 = 0,¢(2)]2=0 = —0p,  (4.17)

and for systems (4.13), (4.14) are

r(Y)ly=0 = 0,7 (y)ly=0 = —op, 5(y)|y=0 = 0,5 (y)|ly=0 = —0p.  (4.18)

The issue of the solvability of problems (4.6), (4.17); (4.7), (4.17); (4.13),
(4.18); and (4.14), (4.18) has not yet been solved in the general case, al-
though for integer values of the powers, their analytical solvability follows
from Theorem 1. Based on the results of previous studies, we make the
assumption that a solution will exist for a > 0,8 >0, v > 1, A > 1.

5. Conclusion

Summarizing the study, we note that convective terms first have been
taken into account for the problem of solution constructing to nonlinear
parabolic systems with singularity. This fact has entailed a significant
complication of the problem statement. In addition to proving the new
existence theorem that generalizes some known similar ones (see [10]), we
have found the exact solutions. Meaningful results have been obtained
for the first time for the case when the powers v and A in system (4.1)
are different (see [8;11]). Besides the theoretical significance, the results
obtained may be helpful from the applied point of view, in particular, in
frameworks of modeling the Baikal biota and the propagation of pollutants
in the water of Lake Baikal near settlements.
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Further research in this direction may be related to applying the results

obtained for developing and testing an efficient numerical algorithm for
constructing solutions to the considered problems [11], which can be based
on the boundary element approach or the collocation method. From a
theoretical point of view, the proof or refutation of the hypothesis expressed
at the end of the previous section of the paper is significant. Another
important and promising area of research is obtaining a desired (optimal)
boundary regime by controlling the diffusion front.
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