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Hayunasa crarnsa

O06 ynpaBJ/ieHUU BEPOSITHOCTHBIMU ITOTOKAMU
B yCJIOBUSIX HEOIIPeeJI€HHOCTU

J. B. Xaonuu'™

1 WNucruryT maremarnku n Mexanuku uMm. H. H. Kpacosckoro YpO PAH, Exarepunbypr,
Poccuiickas Penepariyst
= khlopin@imm.uran.ru

Awnnoranusi. PaccmarpuBarorcst 3a/1a9u ynpaB/ieHUsI CPEIHIM TIOJIEM B CJIydae HEemoJi-
Hoit mHpopmarmu. VMeercss HECKOJIBKO MOJXO/IOB K OMUCAHUIO JUHAMUYECKON CHUCTEMBI
B IIPOCTPAHCTBE BEPOATHOCTHBIX Mep. [loaxos, Bocxomsmuit K Ditepy, OMUCHIBAET MOTOK
3a/IaHHBIX BEPOSITHOCTHBIX Mep KaK PellleHHe HEKOTOPOrO yPAaBHEHUsI HEPA3PBIBHOCTH.
Tonxon, nasBannbiii B [6] nmenem KanTopoBnva, 3amaeT Takoil MOTOK KakK IOTOK 00-
pa30B OJIHOI M TO Ke MepbI, 3aJJaHHON Ha MHOYKECTBE BCEX JIOIMYCTUMBIX TPAEKTOPHUIA.
XOPpOIII0 U3BECTHBIN TTPUHIIMII CYTIEPIIO3UIUN CBA3BIBAET ITH JBA MOJX0/a B CJIydae OTCYT-
CTBUsT ynpaBjeHusi. B pabore mpemnoaraeTcsi, YTO U B TOH, U B JAPYroil (bopMyTMpOBKe
[IOTOK BEPOATHOCTHBIX MEP JIOJKEH ObITH HOPOXK/IEH YIIPABJIEHUEM, COOJIIOIAIONINM BCe
OrpaHWYeHs], BK/IIOYasi WHGOPMAIMOHHBIE. [Ipr 9TOM HEMOJTHON MOXKeT 0Ka3aThCs Kak
nuadOpMaIrs O MO3UIMH, TAK U MHMOPMAIMs O PeaIn30BaBIIeliCs BEPOsITHOCTHON Mepe.
Hutst Takux 337189 yIpaBJIeHUs CPEJHUM IOJIEM HCCJIEIYIOTCS B3aUMOCBSI3U MEXKY yKa-
3aHHBIMU BBIIIE II0J[XO/JIaMHU, B YaCTHOCTH HAJIEHBbI YCJIOBUsl, IIOMUMO IIPEJIIOJIOKEHS
BBIYKJIOCTH, TAPAHTUPYIONINE SKBUBAJEHTHOCTD 9TUX MTOIXO0I0B. JTO PAa3BUBAET PE3YIb-
Tart, nokasaHHbli B [6, Theorem 1|, B ToM uncie st cirydasi HenosiHO# nHMOPMAIMK.

KurouyeBbie cjioBa: MOTOKU BEPOSITHOCTHBIX MEP, ypaBHEHNE HEPA3PBIBHOCTH, HEITOJIHAS
nHOOPMAINS, YIIPABIEHNE CPEIHUM OJIEM

Baaromapuoctu: Pabora BITIO/IHEHA B paMKaX UCCAEIOBAHUM, TPOBOJAUMBIX B ¥ pajib-
CKOM MaTeMaTH4YeCKOM IE€HTpe Npu (PUHAHCOBON INOjiepKKe MuHHCTEpCTBA HAYKU U
BoICIIero obpasosanus Poccuiickoit Penepanum (momep cormamenus 075-02-2022-874).

Ccoinka ags npuruposaHusi: Khlopin D. V. On Control of Probability Flows with In-
complete Information // Ussectust UpkyTckoro rocyapersennoro yuusepceurera. Cepust
Maremaruka. 2022. T. 42. C. 27-42.

https://doi.org/10.26516,/1997-7670.2022.42.27

The article deals with a control of a dynamic system in a space of
probabilistic measures in the case of incomplete information. The dynamics
in a space of probability measures can be described in various ways [1], [6].
In this paper, the Eulerian and Kantorovich frameworks [6] are considered.
Eulerian framework suggests that each velocity field sets the continuity
equation, and a flow of probability measures is only its distributional so-
lution. In Kantorovich framework we track all trajectories generated all
velocity fields; then, we suggest that a flow at every time instance is the
push-forward of some distribution on such trajectories by the evaluation
map at this time instance. In this paper, based on the superposition
principle [1], we investigate the conditions that guarantee the equivalence
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ON CONTROL OF PROBABILITY FLOWS WITH INCOMPLETE INFORMATION 29

of these frameworks if the control is determined by a given observation
function z and, in addition, the corresponding total resource g is assumed
be finite. This result expands the result [6, Theorem 1] to mean-field type
control system [4] with information constraints.

The rest of the paper is organised as follows. First, in Section 1, we
introduce some general notations. The next two sections are devoted to the
assumptions on dynamics f, total resource g, and observation z (Section 2)
and its various interpretations (Section 3). The basic definitions of Eulerian
and Kantorovich frameworks are given in Section 4. The links between them
are investigated in Section 5 (the general case) and Section 6 (the convex
case). The applications to the mean-field optimal control are considered in
Section 7.

1. Preliminaries

Let Z be a Polish space, i.e., a separable completely metrizable topolog-
ical space. By B(Z) denote the set of all Borel subsets of Z, the o-algebra
generated by all opens subsets of Z. Then, by P(Z) denote the space of all
Borel probabilities over Z. We also endow this probability space with the
topology of narrow convergence [1]. Now, for every interval K, denote by
C(K,P(Z)) the set of all narrowly continuous functions from K to P(Z).

By B(Z1,Z3) denote the set of all Borel measurable maps from a Polish
space Z; to a Polish space Z;. For a Borel map ¢ € B(Z;,Z2) and a
probability v € P(Z;) the pushforward measure ¢fr € P(Z,) is defined by
the rule:

(pfv)(A) = v{x € I; | p(x) € A} VA € B(Zs).

Further, for every Polish space Z, an interval K, and a time instance t € K
denote by e; the evaluation map B(K,Z) 3y — ei(y) = y(t) € T.

Let consider a real p > 1. Denote by P,(Y') the set of all Borel measures
over a Banach space Y with finite p-th moment. This space is endowed
with the metric ), defined by the rule: for all m’,m” € P,(Y)

A
Wytm'om’) Sint { [ I~ Pt
Y XY
m/,m” are marginal measures of v € P(Y2)}.

Let A be a set and let B be its subset. The symbol 15 denotes the
indicator function of the subset B. This function from A to {0,400} has
value 0 on B and +oo elsewhere.
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2. The dynamics, observation, and resource

Let an Euclidean space R? and a time interval [0; 7] be given. Let also

R? and the space T 2c ([0; T],R%) are equipped the usual norms.

Let a control set U as well as a set of observation Z be given. Assume
that U and Z are Polish spaces.

Denote by U the set of all LB-measurable maps from [0;7] x Z to U.
Recall that the LB-measurability is the measurability with respect to the
o-algebra generated by the products of Lebesgue measurable subsets in
[0; T] and Borel subsets in Z. Every u € U is called an admissible control.
Notice that every u € U also is an admissible control.

Let a general dynamics function f : [0;7] x R? x P(R%) x U — R be
given; assume that this function is Borel.

Let an observation function z be a given Borel mapping from R? x P(R%)
to Z.

Notice that each admissible control u € U generates the function f, :
[0; 7] x R x P(R?) x U by the following rule:

fult,z,v) = f(t,z, v, u(t, z(z,v)))

whenever (t,z,v). All these functions are also LB-measurable.

Let a total resource g be a tuple (g1,¢2,...,9r), here every function
gr: [0;T] x R* x P(R?) x U — RU {400} is Borel.

3. Cases of z and ¢

Now we will consider different information and resource constraints.
These lists are not claiming to be full.
Let’s list several classes for observation z.

complete information: z(z,v) = (z,v), here Z 2 R? x P(RY);

no information: z(z,v) = 0, here Z = {0}; the programmed controls,
corresponding to this case, is considered in [§].

only state z(z,v) =z with Z 2 RY;

only distribution z(z,v) = v, here Z 2 P(RY);

only the support: z(x,r) = supp v, here the Polish space Z is the set of
all non-empty closed subsets of R?, equipped Wijsman convergence [5];

only barycenter: z(z,v) = [zqyv(dy), here Z 2 R?;

WsBectus VpkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
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only some average: z(z,v) = [za #(y) v(dy) for a given Borel function
¢ from R? to a Banach space Z;

only some pushforward measure: z(x,v) = ¢fiv for a given Borel func-
tion ¢ from R? to a Polish space Z and for Z 2 P(I);
only deviation of state: z(x,v) =1z — [zayv(dy), here Z 2 Re.

only one observable: z(z,v) = (¢(x), ¢tv) if a given Borel function ¢
from R? to a Polish space T is observable with Z 27 x P(Z); e.g.

— Z = R and ¢(z) = x; is the first coordinate of x; in this case
the probability ¢ffir coincides with the first marginal distribution
T1fv;

— T =R%and ¢(z) is a nearest to x point of a given e-net of RY.
Recall that the total resource is g = (g1,...,9r). A such map
(t,z,v,u)— gi(t,x,v,u)
may be

phase constraints: 1) (z,v) for a given multi-valued mapping G from
[0; 7] to R? x P(R?) that is nonempty-valued and measurable;

control constraints: 15 (u) for a given multi-valued mapping G' from
[0;T] to U that is nonempty-valued and measurable;

velocity constraints: 1 ,)(f(t,z,v,u)) for a given multi-valued map-
ping G from [0; 7] x P(R?) to R? that is measurable;

mixed constraints: 1) (z, v, u) for a given multi-valued mapping G from

[0; T to R? x P(R?) x U that is nonempty-valued and measurable; e.g.,
the proximal normal cone condition in [3];

running cost: a lower semicontinuous function from [0; 7] xR x P(R%) x U
to R;

energy condition: either ||ul||?, or ||z||?, or ||f(¢, z, v, u)||P, or an interac-
tion potential [7, (2.11)], or some its sums.

Thereinafter, we prescribe that g; is a runnung cost.
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4. Eulerian and Kantorovich frameworks

In this section we formulate deterministic mean-field dynamics within
Eulerian and Kantorovich frameworks. The Eulerian approach describes a
probability flow as the evolution of distribution of agents by the controlled
continuity equation. The Kantorovich approach identifies each agent by its
trajectory in I' = C(]0; T],R?) and allows to consider the probability flow
as some distribution of a random process on I'.

Definition 1. For a certain Borel velocity field v : [0;T] x R — R? we
say that a probability flow u € C([0;T), P(RY)) is a distributional solution
of the continuity equation

Bup(t) + div(v(t, 2)p(t)) = 0 (4.1)

if, for every smooth function ¢ in C°((0;T) x R%), one has

T
/0 /R [ [00(t) + Vo(t, 2)u(t, 2)] p(t, dx) dt = 0. (4.2)

Here, C°((0;T) x RY) is the set of all smooth compactly supported
functions from (0;T) x R? to R.

Definition 2. We say that a pair (u,u) € C([0;T]),P(R?)) x U is an
Eulerian pair iff the flow p is a distributional solution of continuity equation

(4.1) coupled with the wvelocity field (t,x) — v(t,z) 2 Ju(t,z, pu(t)) that
satisfies the resource constraints:

T
/0 /Rd g(t,z, u(t),u(t, z(z, 1u(t)))) pt,dz) dt is finite. (4.3)

Definition 3. We say that a pair (n,ur) € P(I') x B([0;T] x T',U) is a
Kantorovich pair iff the probability n is concentrated on the set of absolutely
continuous curves, n-a.e. curves vy € I' satisfying the differential equation

d’;it) = f(t,v(t), etin, ur(t,7)) a.e. on [0;T];
furthermore,
T
/0 /F g(t,v(t), edin, ur(t,y)) n(dy) dt is finite, (4.4)

and one has the following implication: for n-almost all curves v,

(21(8), extin) = 2(+/(8), estm) a.e. on [0:7])
= (ur(t,'y) =ur(t,y) a.e. on [O;T]). (4.5)
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This implication guarantees that the coincidence of the observation on
[0; T'] gives the coincidence of the controls on this interval.

Notice that resource conditions (4.3) as well as (4.4) may be phase,
control and/or velocity constraints.

5. Links between Euler and Kantorovich pairs

The following statement generalizes [6, Proposition 7.4].

Proposition 1. Let (u,u) be an Eulerian pair and the flow p lies in
(ACY((0;T], Py(RY)).

Then, there exists a Kantorovich pair (n,ur) that satisfies ex#n = p(t)
for allt € [0;T] and

ur(t,y) = u(t, z(y(t), u(t))) (5.1)

for all v € T and almost all t € [0;T); furthermore, one has

T
/0 /pg(m(t)’etﬁ”v“F(t77))n(d7)dt
T
:/0 /Rdg(t,ac,M(t),u(t,z(:c,u(t))))u(t,daz)dt, (5.2)

In addition,

T
| 117 e doy i < o0 (53)

holds true.

Proof. Let a pair (u,u) be Eulerian. Define the velocity field [0;T] x R? >

(t,z) — v(t,x) 2 fu(t,z, pu(t)). Now, for almost all ¢ and p(t)-almost all x,
one has

vt ) = f (b, p(t), u(t, 2(z, p(t)))) (5.4)

and the flow u is a solution of continuity equation (4.1) with this field v.
Since u € (AC)P([0;T],Pp(R?)), due to the superposition principle [1,
Theorem 8.2.1], there exists a probability measure n € P(T") that is con-
centrated on the set of all curves v € (AC)P([0; T],R?) solving
dy ()

= v(t,y(t)) a.e. on [0; T

and e;#n = p(t) for all t € [0; 7).
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Define the control ur by the rule (5.1). Then, 1 is concentrated on
the set of absolutely continuous curves, n-a.e. curves v € I' satisfying

the differential equation dT = f(t,y(t), etin, ur(t,7)). Furthermore, the

control up satisfies implication (4.5) by the definition. Finally, by the
Tonelli-Fubini theorem, equality (5.2) as well as condition (4.4) are the
direct consequences of (4.3). O

Remark 1. The requirement p € (AC)?([0; T], Pp(R?)) for a given Eule-
rian pair (u,u) is satisfied if, one find an A € R that one has

max(||f (¢, z, v, w) |, lz|[") < A<1 + 191 (t, @, v, u) [+
+ g2t z,v,u)| + ... + g (L, 2, v, u)\) (5.5)

for all (t,x,v,u) € [0;T] x R? x P(RY) x U.

Indeed, in this case, from (4.3) and (5.5), it follows that () lies in
P,(R?) for almost all ¢ € [0; 7). In particular, one find # € [0; 7] such that
p(t') lies in P,(R?). Then, similar to the proof of [6, (6.7)], one has

/ P u(t', de) < / lelP (¢, do)
Rd Rd

maxt't"
+p/ /nvm | Y2l e, der) dt

min(t/,t"")

< /Rd 2| w(t”, dx) + Ap(1 +/O /Rd ‘gl(t,x,u(t),u)}
+...+ ’gr(t,x,,u(t),u)u wu(t, dx) dt.

So, all the p(t) lie in P,(R%); furthermore, u € C([0; T], Pp(RY)). Now, since
from (5.5) it follows (5.3), the solution p to the corresponding continuity
equation (4.1) lies in (AC)P([0; T}, P,(R?)) due to [1, Theorem 8.3.1].

Notice that similar to (5.5) inequalities are typical assumptions for con-
tinuity equation. See [6, (3.3)], [3, (4)], and [2, (H3)]. Thereinafter, for
simplicity’s sake, we assume that (5.5) holds

The following proposition shows that if a Kantorovich pair applies only
one admissible control, then one must generate some Eulerian pair.

Proposition 2. Assume that (5.5) holds true. Let a pair (n,ur) be a
Kantorovich pair satisfying

(U) one finds a Borel subset T" € B(T') with n(I") = 1 such that the images

V(O = fur(ty) |3y €T 2(v(t)et) = ¢} (5.6)
are singletons for all € {¢ € Z| Ty € " z(y(t), eiln) = ¢} and almost
all t € [0;T7.
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Then, there exists an Eulerian pair (u,w) that satisfies u(t) = ey#n for
all t € [0;T] and (5.1) for n-almost all v € T' and almost all t € [0;T].
Furthermore, (5.2) holds true.

Proof. Let (0, ur) be a Kantorovich pair. Define the flow j : [0; 7] — P(R%)
by the following rule: u(t) = e;#n for all ¢t € [0; T1.

Decreasing I if it is needed, we can propose that (4.5) holds for all
7,7 €T’

Since the images V (¢, () are singletons and up is Borel map, there exists
a LB-measurable control u : [0;T] x Z — U satisfying

{u(t, z(y(t), etn))} = {ur(t,7) |V € T" 2(v'(t), etin) = 2(7(t), esn) }

for all v € IV and almost all ¢ € [0; 7). It means that (5.1) holds true and
u is admissible.

Define the velocity field v by the rule (5.4). Further, by the Tonelli—
Fubini theorem, condition (4.3) with equality (5.2) are the direct conse-
quences of (4.4). Now, from (5.5) it follows that u(t) € P,(RY) for almost
all ¢t € [0; T]; further, the map

T
suppn 37+ R(y) 2 /0 ot ~(t))]] dt (5.7)

is m-summable, in particular, this map is finite n-a.e.
Notice that n is concentrated on the set of all solutions to dz—gt) =
v(t, (1)), therefore, for all ¢ € C°((0;T) x R?) and for n-almost all v € T,

one has

T
0= 0T (1) = 60 (T) = [ [Ar6tt.1(0) + Vot r) 5 v

Since the norms of all derivatives of ¢ are bounded by a number N, we
obtain

T
dy(t
| oot o) + Vot de < N+ R@)Ya+ .
Hence, since R is n-summable, the Tonelli-Fubini theorem yields

T
0= [ [ [owtere) + Tott. o) 2] denian)

T
_ /0 /F [0:6(1,(1)) + Vot (1)u(t,A(0)] () di

for all ¢ € C°((0;T) x R?). By the definition, we obtain that the flow p is
the distributional solution of (4.1) coupled with velocity field v.
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Finally, fix a sequence of t, € [0;T] converging to a time instance f.
Consider also a continuous and bounded real functions ¢ on R?. Then,
#(y(tn)) converges to ¢(y(f)) for all v € T'. Since ¢ is bounded, due to the
Lebesgue dominated convergence theorem, we obtain that

[ o) )= [ St nan = [ o0 ntdn= [ @ nti.o)

for all continuous and bounded real function ¢ on R?. Then, by the def-
inition, the sequence of u(t,) narrowly converges to ,u( lim tn) for every
n—oo

converging sequence of ¢,, € [0; T]. It means that p is a narrowly continuous
function, i.e. u € C([0;T], P(R?)). Thus, (i, u) is an Eulerian pair. O

6. Convex case

In this section we assume that
(C1) the set U is convex;

(C2) the maps U > u — f,(t,z,v) are affine for all z € R%, v € P(R?) and
almost all ¢ € [0;T);

(C3) the maps U > u + g(t,x,v,u) are convex for all z € RY, v € P(R?)
and almost all ¢t € [0; 7).

These assumptions are similar to [6, Assumption 3.4] and [2, (C1)—(C3)].
We also assume that

(Z) the set {x € RY| z(z,v) = ¢} is a singleton for (z(-,v))fv-almost all ¢
and all v € P(RY).
This condition guarantees that state x may be reconstructed by z(x,v)

and v. In particular, this condition is satisfied if either z(z,v) = (z,v), or

z(x,v) 2 x, or z(x,v) Sy Jray v(dy).
The following proposition expands [6, Proposition 7.5].

Proposition 3. Let inequality (5.5), conditions (C1)—~(C3) and (Z) hold.
Then, for every Kantorovich pair (n,ur) there exists an Fulerian pair
(e, w) that satisfies u(t) = er#n for all t € [0;T] and

T
/0 /Fg“vv@%etﬂn,w(t,v»n(dv)dt
T
S/O /Rdg(t,ac,u(t),u(t,z(ac,u(t))))u(t,d:c)dt7 (6.1)
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Proof. Let (n,ur) be a Kantorovich pair. Define the flow y : [0; 7] — P(R?)
by the following rule: u(t) = e;#n for all ¢t € [0; T1.

Recall that the map z is Borel map from Polish space R? x P(R%) to
Z: it follows that the map R? 3> x > z/(x) 2 z(x, u(t)) is also Borel. By
assumption (Z), there exists a Borel function X : [0;T] x Z — R? that
satisfies {X (t,¢)} = {x € R?| z(x, u(t)) = ¢} for ztu(t)-almost all ¢ and
almost all ¢ € [0; 7.

By the disintegration theorem [1, Theorem 5.3.1], for almost all ¢ € [0; T,
one find a Borel measurable family of probability measures p;, € P(I'),
x € RY, that satisfies y1 {7 |7v(t) = z} = 1 for all u(t)-a.e. + € R and

[ o matiy ot = [ owut.a)

for all Borel bounded functions ¢ : R — R.
Define

U(t,C)Z/FUF(tW) pe x (2,0) (dy)

for all ¢ € Z and almost all ¢ € [0;7T]. Since U, as U, is convex, this control
is well-defined; furthermore, by 2,(X (¢,()) = ¢ for (z(-,v))fr-almost all (,
this control is admissible and

u(t, zi(x)) = u(t, z(x, p(t))) Z/FUF(tm) pit.x (dy)

for p(t)-almost all z.
Define the velocity field v by the rule (5.4). Since, by the convexity of
g, from the Jensen’s inequality it follows

9(t73776tﬁ77:7~0(t=2t(37))) S/Fg(tvwvetﬁnaur(t7’7))/j’t,w(d7)

for p1(t)-almost all x and almost all ¢ € [0; 77, the relations (4.4) and (6.1)
are the direct consequences of (4.3). Now, (5.5) entails that the map R
(5.7) is n-summable.

Let’s consider a function ¢ € C°((0;T) x R?). The support of ¢ is a
compact subset of (0;T) x R?, therefore d;¢ and V¢ are bounded. Hence,
the function (t,7y) — Owp(t,y(t)) + V(]ﬁ(t,'y(t))dzl—gt) is A ® n-summable.
Integrating the identity

T
0= ¢(T-,7(T)) = ¢(0+,7(0)) = /0 [&tﬁb(t,’y(t)) + v¢(t,7(t))d’;$) dt
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and using Fubini—Tonelli theorem, we have

o_// Bid(t,y(1)) + Vo(t, y(t) }
//8t¢t7 )+ Vo(t,(t) }n

/ R 2162) /W) ()um(d’y)} ult, da) dt.

/\w

On the other hand, by ps {7 |7(t) = } = 1 and (C2), we also obtain
that

/F volt.

Ntw / Vo(t,x)f(t,z,edin, ur(t,v)) pee(dvy)
= Vo(t,x f(t T, e, /w(t,v) ut,x(d7)>

= Vo(t,a)f (1@, edtn, ult, 2(w, u(1))
= V(ﬁ( ) )fu(ta$a€tﬁn)

for p(t)-almost all . Thus, we obtain

0= [ [, [rote.o) 4 Vit 0 futtascom)] i o)

for all ¢ € C°((0;T) x R?). By the definition, it means that the flow s is
a distributional solution of (4.1) coupled with the velocity field (5.4).
Repeating the last paragraph in the proof of Proposition 2 word-for-
word, we obtain € C([0; T], P(R?)) and (u,u) is an Eulerian pair. O
The following example will show that assumption (Z) in Proposition 3
is essential and can not be omitted.
d_ o2 A A A
Example 1. Put R* =R*, [0;7] = [0;2], U =R, Z =R. Define

AN AN
fl(t,xl,.TQ,V,U) =-3 \/3 $1/27 fQ(t>$17x27V7u) =u,
AN AN
Z(JZl,iUQ,V) =T, g(t,xl,x27y,u) = ||(x1’x2)”p + |u|P

for all (t,zy,xa,v,u) € [0;2] x R? x P(R?) x R. Notice that conditions
(C1)~(C3) hold.
For all t € [0;2] and v = (a, 3) € C([0;2],R?) consider also

0 € [0;1),
ur(t = 6.2
r(t,7) {5a(t—1)/2 te1;2]. (6.2)
WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Now, for every ¢ € [0; 1] define the solution . = (a., 5.) to the system

dzlit):(fl,h)(tﬁ() vour(t,)) = (=3¢/a(t)/2,5a(t = 1)/2)  (6.3)

that satisfies a.(0) = ¢3/2 and 3.(0) = 0. It’s easy to calculate that

alt) = {

(c—1)%2, te0;0),

0, tele2l;

0, t € [0;:1),
Be(t) =4 A2 —(c+1-1t)°2 te[l;1+0),

A2, tel+c¢2.

In particular, (a.(1),8.(1)) = (0,0) and z(ac(t), Be(t),v) = a.(t) = 0 for
all t > 1 and ¢ € [0;1].

Let C' be a random variable with the uniform (rectangular) distribu-
tion on [0;1]. Let n be the distribution of the random process yo(-) =
(e, Bo)(-). We claim that (n,ur) is a Kantorovich pair. Indeed, the
probability 7 is concentrated on solutions of (6.3), the total resource is
bounded; finally, since ur is a function depend on the time instance and
the map t — z(y(t), eifin), we obtain (4.5). So, (n,ur) is a Kantorovich
pair.

Define the flow u : [0;7] — P(R?) by the following rule: u(t) = e;#n
for all t € [0;2]. Then, for all ¢ € [1;2] the probability u(t) is concentrated
on {0} x [0;1 — (2 — t)>/?]. This yields that z; = 0, and z(z, u(t)) = 0 for
p(t)-almost all x = (x1,12) € R? if t € [1;2]. Now, z(z,u(t)) = 0 entails
that the map = — fao(t, z, p(t), u(t, z(z, u(t))) = u(t, z(z, u(t)) is constant
on supp p(t) for almost all ¢ € [1;2] for all admissible controls u € U.

Let us prove that there no Eulerian pair (u,u). Suppose it is false,
there could be an Eulerian pair (u,u) for some admissible control u € U.
Then, by Proposition 1, there exists a Kantorovich pair (7', u[.) that satisfies
wu(t) = e;#n' and (5.1) for all t € [0;2]. On the one hand, from supp pu(t) C
{0} x R for t € [1;2], it follows that af;,9) = 0 for #’-almost all v = (a, 3).
Then, % — 0 for almost all ¢ € [1;2] and 7/-almost all v = (a, 8). On
the other hand, the map = — fao(t, x, u(t), u(t, z(x, u(t))) is constant on
supp p(t), therefore, by (5.1), (o, 8) — %&t) is constant map n’-a.e. on I’
for almost all ¢t € [1;2]. Thus, the map [1;2] x suppn’ > (¢,7) — ()

L s
independent of 7. However, since e1fn’ = p(1) is concentrated on {(0,0)},

the probabilities e’ = wu(t), t € [1;2], would be atomic. This would
contradict supp p(2) = {0} x [0; 1]. Thus, there are no Eulerian pairs (u, u).
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7. Application to mean-field type optimal control problem

Recall that g; is a running cost.
Fix an endpoint cost o : P(R?) x P(RY) — RU {+o0c}.

Definition 4. We say that an Eulerian pair (jii,4) is an Eulerian mini-
mizer (with cost (g1,0)) iff o(f(0), (7)) is finite and every Eulerian pair
(u,u) satisfies

T
[ o0 2o i0)) e o) e+ o0, )
T
< [ [ ot (o) ult, o u(9)) e, d) de + 0(u0),n(D)).
0 Rd

Let’s consider the following mean-field type optimal control problem:

T
minimize / / g1 (t, @, p(t), u(t, z(x, p(t))) p(t, dz) dt + o (u(0), u(T))

subject to Oyu(t) + div (f(t x, u(t), (tvz(ﬂﬁ,u(t)))),u(t)) —0, uel,
/ /Rd t a, pu(t ( ’Z(xvu(t))))ﬂ(t7 dx) dt is finite.

Then, every Eulerian minimizer (i, 4) (with cost (g1,0)) is its optimal
solution.

Definition 5. We say that a Kantorovich pair (), ur) is a Kantorovich
minimizer (with cost (g1,0)) iff (eofin, ertn) is finite and every Kantorovich
pair (n,ur) satisfies

T
/0 / gt (), e, i (£ 7)) A(dy) dt + oeot, exti)

T
< / / g1 (t1(1), extn, ur(t,7)) 1(dv) dt + o (eotn, ext).
0 T

So, a Kantorovich minimizer (7, 4.,) (with (g1, 0)) is the optimal solution
of the following mean-field type optimal control problem:

T
winimize [ [ g1(02(6) st ur(9)) (d) dt + o (eat, ert)
0 T
d(t
Zl(t ) _ f(t,z, eifin,ur(t,)) for n-a.a. y €T,
neP), urec B(0;T] xI,RY,

T
/ /g(t,’y(t), ein, ur(t, 7)) n(dvy) dt is finite and (4.5) holds.
0o Jr

subject to
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The following corollary is the direct consequence of Propositions 1-3 and
Remark 1.

Corollary 1. Assume that (5.5) holds true. Then the following statements
also hold true:

(1) Let a Kantorovich pair (n,ur) be a Kantorovich minimizer (with cost
(91,0)) and

— either U, f, and g satisfy convezity assumptions (C1)—(C3) and
z satisfies assumption (Z);

— orur satisfies the condition (U).

Then, there exists an Eulerian minimizer (u,u) (with (g1,0)) that
satisfies ey #n = p(t) for all t € [0;T).

(12) Conversely, for an Eulerian minimizer (u,u) (with (g1,0)), there exists
a Kantorovich minimizer (n,ur) (with to (g1,0)) that satisfies e;#n =
w(t) for all t € [0;T] and (5.1) for n-almost all v € T and almost all
t e [0;T].

8. Conclusion

Corollary 1 demonstrates the conditions guaranteeing the equivalence
between the Kantorovich and Eulerian frameworks in mean-field type op-
timal control problems. In the case of complete information this result
expands [6] by the condition (U). Example 1 does not allow to transfer di-
rectly the conditions [6, Theorem 7.3] for probability flows with incomplete
information. Is it due to non-Markovian strategy (6.2)7 Is it possible to
weaken the assumptions (Z) and (U)? This is another question the author
does not know the answer to.
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