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1. Introduction

In this paper, we are interested in the existence of solutions for an
original nonlinear fractional difference equation

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) �̇� (𝑡) , 𝑥 ∈ 𝐷, 𝑡 > 0, (1.1)

subject to the initial condition

𝑢 (𝑥, 0) = 𝜙 (𝑥) , 𝑥 ∈ 𝐷, (1.2)

and the Dirichlet boundary condition

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕𝐷, (1.3)

where 𝐷 ⊂ R, 𝑢 (𝑥, 𝑡) represents the velocity field of the fluid, the state
𝑢 (·) takes values in a separable real Hilbert space 𝐻 with inner product
⟨·, ·⟩, 𝑔 (𝑥, 𝑡) continuously differentiable function, 𝑔 (𝑥, 0) = 0, the term
𝑔 (𝑥, 𝑡) �̇� (𝑡) = 𝑔 (𝑥, 𝑡) 𝑑

𝑑𝑡𝑊 (𝑡) describes a state dependent random noise,
where 𝑊 (𝑡)𝑡∈[0,𝑇 ] is a 𝐹𝑡−adapted Wiener process defined in completed

probability space (Ω, 𝐹, 𝑃 ) with expectation 𝐸 and associate with the nor-
mal filtration

𝐹𝑡 = 𝜎 {𝑊 (𝑠) : 0 ≤ 𝑠 ≤ 𝑡} .

The operator Δ is the Laplacian. Here, 𝑐
0𝐷

𝛼
𝑡 denotes the Caputo type

derivative of order 𝛼 (0 < 𝛼 < 1) for the function 𝑢 (𝑥, 𝑡) with respect time
𝑡 which is defined by{︃

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑡, 𝑥) =

1
Γ(1−𝛼)

∫︀ 𝑡
0
𝜕𝑢(𝑥,𝑠)
𝜕𝑠

𝑑𝑠
(𝑡−𝑠)𝛼 , 0 < 𝛼 < 1,

𝜕𝑢(𝑥,𝑡)
𝜕𝑡 , 𝛼 = 1,

where Γ (·) is the Euler gamma function and Caputo fractional derivative
of order 𝛼 also defined as

𝜕𝛼𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐼𝑛−𝛼𝑡

𝜕𝑛

𝜕𝑡𝑛
𝑢 (𝑥, 𝑡) . (1.4)
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Fractional stochastic equaions have been considered in the literature, first
by introducing a stochastic forcing term which cames from a Brownian
motion see [1;22]. The addition of the white noise driven term to the basic
governing equations is natural for both practical and theoretical applica-
tions to take into account for numerical and empirical uncertainties, and
have been proposed as a model for turbulence. Later on other kinds of
noises have been studied. Stochastic differential equations have attracted
great interest because of their applications in characterizing many prob-
lems in physics, mecanics, electrical engineering, biology, ecology and so
on. On this matter, we refer the reader to [6; 14] and references therein.
We quote also stochastic partial differential equations, for more details
see [4;10;15–17]. To identify a few models, there has been a widespread in-
terest during the last decade in constructing a stochastic integration theory
with respect to fractional Brownian motion (FBM) and solving stochastic
differential equations driven by FBM. In fact, stochastic perturbation fac-
tors, such as precipitation, absolute humidity, and temperature, have a
significant impact on the infection force of all types of virus diseases to
humans. Taking this into consideration enables us to present randomness
into deterministic biological models to expose the environmental variability
effect, whether it is environmental fluctuations in parameters or random
noise in the differential systems, for more details, see [18]. The reason
that we use Caputo type fractional-order time derivative is not only to
make the equation original but also to employ the advantages of fractional-
order operators in an equation having a noise term. The most-well known
advantage of Caputo derivatives with respect to the classical derivatives is
its capability of taking into account the previous historical effects of model
at each time step. This feature of fractional-order operators makes them
more accurate and appropriate in modeling of the systems.

The stability theory for functional equations developed and it got pop-
ularity so quikly. Subsequently, a large number of mathematicians took
differents types of stabilities. In particular, the stability theory of stochastic
differential equations has been popularly applied in variety fields of science
and technology. Several authors have established the stability results of
mild solutions for these equations by using various techniques. Govindan [8]
considered the existence and stability for mild solution of stochastic partial
differential equations by applying the comparison theorem. Caraballo and
Liu [12] proved the exponential stability for mild solution to stochastic par-
tial differential equations with delays by utilizing the well-known Gronwall
inequality. The exponential stability of the mild solutions for semilinear
stochastic delay evolution equations have been discussed by using Lyapunov
functionals in [13]. The author in [12] considered the exponential stabil-
ity for stochastic partial functional differential equations by means of the
Razuminkhin-type theorem. Further, Sakthivel et al. [20] established the
asymptotic stability and exponential stability of second-order stochastic
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evolution equations in Hilbert spaces. The study of this area has grown
to be one of the central and most essential subjects in the mathematical
analysis area. For more details on the recent advances on the study of
stability solution one can see the research papers [3; 21;25].

The classical Duhamel principle, established nearly two centuries ago
by Jean-Marie-Constant Duhamel, reduces the Cauchy problem for an in-
homogeneous partial differential equation to the Cauchy problem for the
corresponding homogeneous equation. In [23; 24], Umarov generalized the
classical Duhamel principle for the Cauchy problem to general inhomoge-
neous fractional distributed differential-operator equations. In this paper
we formulate and prove fractional analogue of this famous principle for
the stochastic time-fractional partial differential equation. We first es-
tablish a fractional Duhamel principle for the nonhomogeneous stochastic
time-fractional partial differential equation. Then based on it and the
superposition principle, the solution of the above initial value problem
is represented. Finally, we obtain the stability and boundedness of the
solution. To the best of the authors knowledge, literature on study of
stability by fractional Duhamel principle for stochastic fractional problems
is rather limited and even remain open. For this raison and motivated by
the above articles, the aim of this paper is to derive stability and boudedness
of solutions for initial value problems of an original stochastic fractional
equations (1.1) − (1.3). Furthermore, The goal of this paper is to enrich
this academic area. Hence, this paper will contribute a slightly general way.
The current paper is organized as follows. In Section 2, we shall present
basic definitions, lemmas and preliminary results that are needed in the
sequel. In Section 3, we develop a fractional version of Duhamel’s principle
and conditions for existence, boundedness and stability of mild solution are
establish for the problem (1.1)− (1.3).

2. Preliminaries

In this section, we give some notions and certain important preliminaries,
which will be used in the subsequent discussions.

Let
(︁
Ω, 𝐹, 𝑃, {𝐹}𝑡≥0

)︁
be a filtered probability space with a normal fil-

tration, where 𝑃 is a probability measure on (Ω, 𝐹 ) and 𝐹 is the Borel
𝜎−algebra. Let {𝐹}𝑡≥0 satisfying that 𝐹0 contains all 𝑃 -null sets.
The operator 𝐴 is the infinitesimal generator of a strongly continuous semi-
group on a separable real Hilbert space 𝐻 = 𝐿2 (𝐷).
Denote the basic functional space 𝐿𝑝 (𝐷) , 1 ≤ 𝑝 < ∞ and 𝐻𝑠 (𝐷) by the
usual Lebesgue and Sobolev space, respectively. We assume that

𝐴 = −Δ, 𝐷 (𝐴) = 𝐻1
0 (𝐷) ∩𝐻2 (𝐷) ,
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since the operator 𝐴 is self-adjoint, i.e. there exist the eigenvectors 𝑒𝑘
corresponding to eigenvalues 𝜆𝑘 such that

𝐴𝑒𝑘 = 𝜆𝑘𝑒𝑘, 𝑒𝑘 =
√
2 sin (𝑘𝜋) , 𝜆𝑘 = 𝜋2𝑘2, 𝑘 ∈ N+.

For any 𝜎 > 0, let 𝐻𝜎 be the domain of the fractional power 𝐴
𝜎
2 = (−Δ)

𝜎
2 ,

which can be defined by

𝜎 > 0, 𝐴
𝜎
2 𝑒𝑘 = 𝛾

𝜎
2
𝑘 𝑒𝑘, 𝑘 = 1, 2, . . .

and

𝐻𝜎 = 𝐷
(︁
𝐴

𝜎
2

)︁
=

{︃
𝑣 ∈ 𝐿2 (𝐷) , 𝑠.𝑡. ‖𝑣‖2𝐻𝜎 =

∞∑︁
𝑘=1

𝛾
𝜎
2
𝑘 𝑣

2
𝑘 <∞

}︃
,

where 𝑣𝑘 = ⟨𝑣, 𝑒𝑘⟩ with the inner product ⟨·, ·⟩ in 𝐿2 (𝐷) and the norm

‖𝐻𝜎𝑣‖ =
⃦⃦⃦
𝐴

𝜎
2 𝑣
⃦⃦⃦
. Then we can rewrite the equation (1.1)− (1.3) as follows

in the abstract form{︃
𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡) +𝐴𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) 𝑑

𝑑𝑡𝑊 (𝑡) , 𝑡 > 0,

𝑢 (𝑥, 0) = 𝜙 (𝑥) ,
(2.1)

where {𝑊 (𝑡) , 𝑡 ≥ 0} is a 𝑄-Wiener process with linear bounded covariance

operator 𝑄 such that a trace class operator 𝑄 denote 𝑇𝑟 (𝑄) =
∞∑︀
𝑘=1

𝜆𝑘 <∞,

which satisfies that 𝑄𝑒𝑘 = 𝜆𝑘𝑒𝑘, 𝑘 = 1, 2, . . ., then the Wiener process is
given by

𝑊 (𝑡) =
∞∑︁
𝑘=1

√︀
𝜆𝑘𝛽𝑘 (𝑡) 𝑒𝑘,

where {𝛽𝑘}∞𝑘=1 is a sequence of real-valued standard Brownian motions.

Let 𝐿2
0 = 𝐿2

(︁
𝑄

1
2 (𝐻) , 𝐻

)︁
be a Hilbert-Schmidt space of operators from

𝑄
1
2 (𝐻) to 𝐻 with the norm

‖𝜑‖𝐿2
0
=
⃦⃦⃦
𝜑𝑄

1
2

⃦⃦⃦
𝐻𝜎

=

(︃ ∞∑︁
𝑛=1

𝜑𝑄
1
2 𝑒𝑛

)︃ 1
2

,

i.e.,

𝐿2
0 =

{︃
𝜑 ∈ 𝐿 (𝐻) :

∞∑︁
𝑛=1

⃦⃦⃦⃦
𝜆

1
2
𝑛𝜑𝑄

1
2 𝑒𝑛

⃦⃦⃦⃦2
<∞

}︃
,

where 𝐿 (𝐻) is the space of bounded linear operators from 𝐻 to 𝐻.
For an arbitrary Banach space 𝑌 , we denote

‖𝑣‖𝐿𝑝(Ω,𝑌 ) =
(︀
𝐸 ‖𝑣‖𝑝𝑌

)︀ 1
𝑝 , ∀𝑣 ∈ 𝐿𝑝 (Ω, 𝐹, 𝑃, 𝑌 ) , 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ≥ 2.
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We shall also need the following result with respect to the operator 𝐴
(see [26]).

Lemma 1. For any 𝜈 > 0, an analytic semigroup 𝑇 (𝑡) = 𝑒−𝑡𝐴, 𝑡 ≥ 0
generated by the operator 𝐴 on 𝐿𝑝, there exists a constant 𝐶𝜈 dependent on
𝜈 such that

‖𝐴𝑇 (𝑡)‖𝐿(𝐿𝑝) ≤ 𝐶𝜈𝑡
−𝜈 , 𝑡 > 0,

in which 𝐿 (𝑌 ) denotes the Banach space of all bounded operators from 𝑌
to itself.

Next, we will introduce the following lemmas and definitions which will
be used in the sequel.

Definition 1. [19]. The Laplace transform of the Caputo fractional
derivative 𝑐

0𝐷
𝛼
𝑡 𝑓 (𝑡) is

𝐿 [𝑐0𝐷
𝛼
𝑡 𝑓 (𝑡) ; 𝑠] =

∞∫︁
0

𝑒−𝑠𝑡
(︀
𝐶
0 𝐷

𝛼
𝑡 𝑓 (𝑡)

)︀
𝑑𝑡

= 𝑠𝛼 ̂︀𝑓 (𝑠)− 𝑛−1∑︁
𝑘=0

𝑠𝛼−𝑘−1𝑓 (𝑘) (0) ,

where 𝑛 − 1 < 𝛼 ≤ 𝑛, ̂︀𝑓 (𝑠) is the Laplace transform of 𝑓 (𝑡) and 𝑠 is a
parameter. In particular, for 0 < 𝛼 ≤ 1,

𝐿 [𝑐0𝐷
𝛼
𝑡 𝑓 (𝑡) ; 𝑠] = 𝑠𝛼 ̂︀𝑓 (𝑠)− 𝑠𝛼−1𝑓 (0) .

Definition 2. [19] The Fourier transform of a continuous function ℎ (𝑡)
absolutely integrable in R is defined by

̃︀ℎ (𝜉) = 𝐹 [ℎ (𝑥) ; 𝜉] =

∫︁
R
𝑒𝑖𝜉𝑥ℎ (𝑥) 𝑑𝑥, 𝜉 ∈ R.

𝜉 is a parameter. The inverse Fourier transform is defined by

ℎ (𝑥) = 𝐹−1
[︁̃︀ℎ (𝜉) ;𝑥]︁ = 1

2𝜋

∫︁
R
𝑒−𝑖𝜉𝑥ℎ (𝜉) 𝑑𝜉, 𝑥 ∈ R.

Lemma 2. [24] Let 𝑋 be a reflexive Banach space and suppose 𝑣 (𝑡, 𝜏)
is an 𝑋 − 𝑣𝑎𝑙𝑢𝑒𝑑 function defined for all 𝑡 ≥ 𝜏 ≥ 0, the derivatives
𝜕𝑖𝑣(𝑡,𝜏)
𝜕𝑡𝑗

, 0 ≤ 𝑗 ≤ 𝑘 − 1, are jointly continuous in the 𝑋 − 𝑛𝑜𝑟𝑚 and
𝜕𝑘𝑣(𝑡,𝜏)
𝜕𝑡𝑘

∈ 𝐿1 (0, 𝑡;𝑋) for all 𝑡 > 0. Let 𝑢 (𝑡) =
∫︀ 𝑡
0 𝑣 (𝑡, 𝜏) 𝑑𝜏 . Then

𝑑𝑘

𝑑𝑡𝑘
𝑢 (𝑡) =

𝑘−1∑︁
𝑗=0

[︂
𝜕𝑘−1−𝑗

𝜕𝑡𝑘−1−𝑗 𝑣 (𝑡, 𝜏) |𝜏=𝑡
]︂
+

𝑡∫︁
0

𝜕𝑘

𝜕𝑡𝑘
𝑣 (𝑡, 𝜏) 𝑑𝜏.
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Lemma 3. [11] Let 0 < 𝛼 < 1. Then

0𝐼
𝛼
𝑡 [𝑐0𝐷

𝛼
𝑡 𝑓 (𝑡)] = 𝑓 (𝑡)− 𝑓 (0) .

Lemma 4. [9]. The Fourier transform of the Dirac delta function 𝛿 (·)
has the following property

𝐹 [𝛿 (𝑥) , 𝜉] =

∫︁
R
𝑒𝑖𝜉𝑥𝛿 (𝑥) 𝑑𝑥 = 1,

and the inverse Fourier transform of the Dirac delta function 𝛿 (·) is

𝛿 (𝑥) = 𝐹−1 [1] =
1

2𝜋

∫︁
R
𝑒−𝑖𝜉𝑥𝛿 (𝑥) 𝑑𝑥 = 1.

Lemma 5. [9] The Dirac delta function 𝛿 (·) has the following property∫︁
R
𝛿 (𝑥) 𝑑𝑥 = 1.

Lemma 6. ( [9] Hausdorff-Young inequality) If 𝑔 ∈ 𝐿𝑝 (𝑝 ≥ 1) , 𝑓 ∈ 𝐿1,
then ℎ = 𝑓 * 𝑔 ∈ 𝐿𝑝 and

‖ℎ‖𝐿𝑝 ≤ ‖𝑓‖𝐿1 · ‖𝑔‖𝐿𝑝 ,

where 𝑓 * 𝑔 =
∫︀

R 𝑓 (𝑥− 𝑦) 𝑔 (𝑦) 𝑑𝑦 denotes the convolution between 𝑓 and 𝑔.

3. Main results

Inspired by the definition of the mild solution to the time-fractional
differential equations (see [21]), we give the following definition of mild
solution for our stochastic time-fractional partial differential equation. The
mild solution (3.1) obtained by using the Definitions 1, 2 and Lemma 4.

Definition 3. An 𝐹𝑡-adapted stochastic process (𝑢 (𝑡) , 𝑡 ∈ [0, 𝑇 ]) is called
a mild solution to homogeneous equation in (2.1) if the following integral
equation is satisfied

𝑢 (𝑥, 𝑡) =
1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡) 𝑑𝜉𝜙 (𝑦) 𝑑𝑦, (3.1)

where the generalized Mittag-Leffler operator 𝐸𝛼 (𝑡) is defined by

𝐸𝛼 (𝑡) =

∞∫︁
0

𝜁𝛼 (𝜃)𝑆 (𝑡𝛼𝜃) 𝑑𝜃,
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where 𝑆 (𝑡) = 𝑒−𝑡𝐴, 𝑡 ≥ 0 is an analytic semi group generated by the
operator −𝐴 and the Mainardi’s Wright-type function with 𝛼 ∈ (0, 1) is
given by

𝜁𝛼 (𝜃) =
∞∑︁
𝑘=0

(−1)𝑘 𝜃𝑘

𝑘!Γ (1− 𝛼 (1 + 𝑘))
.

Note that the classical Duhamel principle reduces the Cauchy problem
for an inhomogeneous partial differential equation to Cauchy problem for
corresponding homogeneous equation.

3.1. Fractional Duhamel principle

We consider the equation (1.1) subject to the initial data 𝑢 (𝑥, 0) =
𝜙 (𝑥) = 0, that is we study the nonhomogenuous problem

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) �̇� (𝑡) , 𝑥 ∈ 𝐷, 𝑡 > 0, (3.2)

𝑢 (𝑥, 0) = 0, 𝑥 ∈ 𝐷. (3.3)

A fractional Duhamel principle is firstly given, which can reduce the nonho-
mogeneous problem (3.2)−(3.3) to the corresponding homogeneous prolem
that is the problem (3.2)− (3.3) without the right hand part of (3.2).

Theorem 1. (Fractional Duhamel principle) Let 𝜏 is a parameter. If
𝑤 (𝑥, 𝑡; 𝜏) is the solution of the homogeneuos equation.

𝑐
0𝐷

𝛼
𝑡 𝑤 (𝑥, 𝑡)−Δ𝑤 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝐷, 𝑡 > 0, (3.4)

satisfying when 𝑡 = 𝜏 ,

𝑤 (𝑥, 𝜏) = 𝑐
0𝐷

1−𝛼𝑔 (𝑥, 𝜏) �̇� (𝜏) , (3.5)

where 𝑔 (𝑥, 𝜏) is continuously differentiable function and {𝑊 (𝜏) , 𝜏 ≥ 0}
Brownian motion starting at 0 i.e., 𝑊 (0) = 0. Then, the solution of
problem (3.2)− (3.3) is given by

𝑢 (𝑥, 𝑡) =

𝑡∫︁
0

𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏.

Proof. Suppose that 𝑤 (𝑥, 𝑡, 𝜏) is the solution of (3.4) − (3.5) and we will
prove that

𝑢 (𝑥, 𝑡) =

𝑡∫︁
0

𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏.
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Let 𝑘 = 1 in Lemma 2, then we have

𝑑

𝑑𝑡
𝑢 (𝑥, 𝑡) = 𝑤 (𝑥, 𝑡; 𝜏) |𝑡=𝜏 +

𝑡∫︁
0

𝜕

𝜕𝑡
𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏.

Thus, by (1.4), (3.7) and 𝑔 (𝑥, 0) �̇� (0) = 0, we have

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) =0 𝐼

1−𝛼
𝑡

𝜕

𝜕𝑡
𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) =

= 0𝐼
1−𝛼
𝑡

𝜕

𝜕𝑡

𝑡∫︁
0

𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏 −Δ

𝑡∫︁
0

𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏 =

= 0𝐼
1−𝛼
𝑡

⎡⎣𝑤 (𝑥, 𝑡; 𝜏) |𝑡=𝜏 +
𝑡∫︁

0

𝜕

𝜕𝑡
𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏

⎤⎦−Δ

𝑡∫︁
0

𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏=

= 0𝐼
1−𝛼
𝑡

(︀
𝑐
0𝐷

1−𝛼
𝑡 𝑔 (𝑥, 𝑡)𝑊 (𝑡)

)︀
+

𝑡∫︁
0

0𝐼
1−𝛼
𝑡

𝜕

𝜕𝑡
𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏−

𝑡∫︁
0

Δ𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏 =

= 𝑔 (𝑥, 𝑡) �̇� (𝑡)− 𝑔 (𝑥, 0) �̇� (0) +

𝑡∫︁
0

[𝑐0𝐷
𝛼
𝑡 𝑤 (𝑥, 𝑡; 𝜏)−Δ𝑤 (𝑥, 𝑡; 𝜏)] 𝑑𝜏 =

= 𝑔 (𝑥, 𝑡) �̇� (𝑡) .

In addition, 𝑢 (𝑥, 0) = 0. Thus 𝑢 (𝑥, 𝑡) =
∫︀ 𝑡
0 𝑤 (𝑥, 𝑡; 𝜏) 𝑑𝜏 is the solution of

(3.2)− (3.3). The proof is complete.

Corollary 1. The solution of (3.4)− (3.5) can be expressed as

𝑢 (𝑥, 𝑡) =

𝑡∫︁
0

𝑤 (𝑥, 𝑡− 𝜏 ; 𝜏) 𝑑𝜏 =

=
1

2𝜋

𝑡∫︁
0

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡− 𝜏) 𝑐0𝐷
1−𝛼
𝑡 𝑔 (𝑦, 𝜏) �̇� (𝜏) 𝑑𝜉𝑑𝑦𝑑𝜏.

Proof. In fact, let 𝑡′ = 𝑡− 𝜏 > 0 in (3.4)− (3.5), then (3.4)− (3.5) turned
in the form,

𝑐
0𝐷

𝛼
𝑡 𝑤
(︀
𝑥, 𝑡′; 𝜏

)︀
−Δ𝑤

(︀
𝑥, 𝑡′, 𝜏

)︀
= 0, , 0 < 𝛼 < 1, 𝑥 ∈ 𝐷, (3.6)

𝑡′ = 0, 𝑤 (𝑥, 0; 𝜏) = 𝑐
0𝐷

1−𝛼
𝑡 𝜙 (𝑥) , 𝑥 ∈ 𝐷. (3.7)
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From Definition 3, the solution of (3.6)− (3.7), expressed by

𝑤 (𝑥, 𝑡− 𝜏 ; 𝜏) =
1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡− 𝜏) 𝑐0𝐷
1−𝛼
𝑡 𝑔 (𝑦, 𝜏) �̇� (𝜏) 𝑑𝜉𝑑𝑦.

Further, in view of Theorem 1, the solution of (3.2)− (3.3) has the form

𝑢 (𝑥, 𝑡) =

𝑡∫︁
0

𝑤 (𝑥, 𝑡− 𝜏 ; 𝜏) 𝑑𝜏 =

=
1

2𝜋

𝑡∫︁
0

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡− 𝜏) 𝑐0𝐷
1−𝛼
𝑡 𝑔 (𝑦, 𝜏) �̇� (𝜏) 𝑑𝜉𝑑𝑦𝑑𝜏.

Combining Definition 3 with Corollary 1, we have the following result.

Theorem 2. The solution of the nonhomogeneous (1.1) − (1.3) has the
form

𝑢 (𝑥, 𝑡) = 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) , (3.8)

where 𝑢1 (𝑥, 𝑡) , 𝑢2 (𝑥, 𝑡) are solution of homogeneous problem and nonho-
mogeneous problem (3.2)− (3.3) respectively. That is

𝑢 (𝑥, 𝑡) =
1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡)𝜙 (𝑦) 𝑑𝜉𝑑𝑦+

+
1

2𝜋

𝑡∫︁
0

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡− 𝜏) 𝑐0𝐷
1−𝛼
𝑡 𝑔 (𝑦, 𝜏) �̇� (𝜏) 𝑑𝜉𝑑𝑦𝑑𝜏. (3.9)

Theorem 3. When 𝑡 → 0, the solution (3.9) of the problem (1.1)− (1.3)
is bounded.

Proof. From (3.9) and the definition of convolution between two functions,
we have

lim
𝑡→0

‖𝑢 (𝑥, 𝑡)‖𝐿𝑝(R) =

⃦⃦⃦⃦
⃦⃦ 1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝑢 (𝑦, 0) 𝑑𝜉𝑑𝑦

⃦⃦⃦⃦
⃦⃦
𝐿𝑝(R)

=

=

⃦⃦⃦⃦
⃦⃦

∞∫︁
0

𝛿 (𝑥− 𝑦)𝑢 (𝑦, 0) 𝑑𝑦

⃦⃦⃦⃦
⃦⃦
𝐿𝑝(R)

=

= ‖𝛿 (𝑥) * 𝑢 (𝑦, 0)‖𝐿𝑝(R) , 𝑝 ≥ 1. (3.10)
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Applying Haousdorff-Yong inequality (Lemma 6) to (3.10) and the property
of Dirac delta function 𝛿 (𝑥), we have

lim
𝑡→0

‖𝑢 (𝑥, 𝑡)‖𝐿𝑝(R) = ‖𝛿 (𝑥) * 𝑢 (𝑦, 0)‖𝐿𝑝(R) ≤

≤ ‖𝛿 (𝑥)‖𝐿1(R) · ‖𝑢 (𝑥, 0)‖𝐿𝑝(R) ≤ ‖𝑢 (𝑥, 0)‖𝐿𝑝(R) ,

for 𝑝 ≥ 1. The proof is complete.

3.2. Stability of solution

We will concerns with stability of the solution of problem (1.1)− (1.3).

Definition 4. Suppose that 𝐻 is a linear normed space with the norm
‖·‖𝐻 , 𝑢1 (𝑥, 𝑡) , 𝑢2 (𝑥, 𝑡) are solution of problem (1.1)− (1.3) corresponding
to initial datum 𝜙1 (𝑥) , 𝜙2 (𝑥) respectively. For any 𝜀 > 0, if there exists a
constant 𝛿 > 0 such that ‖𝜙1 (𝑥)− 𝜙2 (𝑥)‖ < 𝛿 implies

‖𝑢1 (𝑥, 𝑡)− 𝑢2 (𝑥, 𝑡)‖ < 𝜀,

then we say that the solution of problem (1.1)− (1.3) is stable.

Now, we are in position to give our main result of nonhomogeneous
problem (1.1)− (1.3).

Theorem 4. (Stability) Assume 𝜙 (𝑥) ∈ 𝐿𝑝 (R) , 𝑝 ≥ 1. Then the solution
𝑢 (𝑥, 𝑡) of the nonhomogeneous (1.1)− (1.3) is stable

Proof. Suppose that 𝑢1 (𝑥, 𝑡) is the solution of the nonhomogeneous

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) �̇� (𝑡) , 𝑥 ∈ 𝐷, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝜙1 (𝑥) , 𝑥 ∈ 𝐷.

and that 𝑢2 (𝑥, 𝑡) is the solution of the nonhomogeneous

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) �̇� (𝑡) , 𝑥 ∈ 𝐷, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝜙2 (𝑥) , 𝑥 ∈ 𝐷.

Then, the superposition principle implies that 𝑢1 (𝑥, 𝑡) − 𝑢2 (𝑥, 𝑡) is the
solution of the following homogenuous problem

𝑐
0𝐷

𝛼
𝑡 𝑢 (𝑥, 𝑡)−Δ𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝐷, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝜙1 (𝑥)− 𝜙2 (𝑥) , 𝑥 ∈ 𝐷.

By Definition 3, we have

𝑢1 (𝑥, 𝑡)− 𝑢2 (𝑥, 𝑡) =
1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡) [𝜙1 (𝑦)− 𝜙2 (𝑦)] 𝑑𝜉𝑑𝑦. (3.11)
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Taking the 𝐿𝑝−norm 𝑝 ≥ 1 on both sides of equation (3.11) and using
Lemma 6, we have

‖𝑢1 (𝑥, 𝑡)− 𝑢2 (𝑥, 𝑡)‖𝐿𝑝(R) =

=

⃦⃦⃦⃦
⃦⃦ 1

2𝜋

∞∫︁
0

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡) [𝜙1 (𝑦)− 𝜙2 (𝑦)] 𝑑𝜉𝑑𝑦

⃦⃦⃦⃦
⃦⃦
𝐿𝑝(R)

≤

≤

⃦⃦⃦⃦
⃦⃦ 1

2𝜋

∞∫︁
0

𝑒−𝑖𝜉(𝑥−𝑦)𝐸𝛼 (𝑡) 𝑑𝜉

⃦⃦⃦⃦
⃦⃦
𝐿1((R))

* ‖[𝜙1 (𝑦)− 𝜙2 (𝑦)]‖𝐿𝑝(R) ,

for 𝑡 > 0.
For any 𝜀 > 0, choose 𝛿 < 𝜀

𝐶 . Then

‖[𝜙1 (𝑦)− 𝜙2 (𝑦)]‖𝐿𝑝(R) < 𝛿,

this implies
‖𝑢1 (𝑥, 𝑡)− 𝑢2 (𝑥, 𝑡)‖𝐿𝑝(R) < 𝜀.

Thus, from the Definition 4, we deduce that the solution 𝑢 (𝑥, 𝑡) of the
nonhomogeneous (1.1)− (1.3) is stable.

4. Conclusion

In this paper, we transform the study of the stochastic fractional partial
differential equation into the study of abstract stochastic fractional differ-
ence equation with initial data. The concept of superposition principle and
fractional Duhamel principle and it’s help to obtain the solution of our
problem is introduced. Finally, we obtain the stability and boundedness of
solutions of the proplem.
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