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Научная статья

Гибридный алгоритм глобального поиска с генетическими
блоками для решения гексаматричных игр
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Аннотация. Статья посвящена разработке гибридного подхода к решению поли-
матричных игр трех лиц (гексаматричных игр). С одной стороны, этот подход бази-
руется на редукции игры к задаче невыпуклой оптимизации и Теории глобального
поиска, созданной А. С. Стрекаловским для решения невыпуклых оптимизацион-
ных задач с (d.c.) функциями, представимыми в виде разности двух выпуклых
функций. С другой стороны, для повышения эффективности одного из ключевых
этапов глобального поиска — конструирования аппроксимации поверхности уров-
ня выпуклой функции, задающей базовую невыпуклость в исследуемой задаче —
используются операторы генетического алгоритма. Приведены результаты первого
вычислительного эксперимента.
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сти уровня, генетический алгоритм

Благодарности: Работа выполнена в рамках базового проекта фундаментальных
исследований Минобрнауки РФ «Теоретические основы, методы и высокопроизво-
дительные алгоритмы непрерывной и дискретной оптимизации для поддержки меж-
дисциплинарных научных исследований» (Номер гос. регистрации: 121041300065-9,
код проекта FWEW-2021-0003).

Ссылка для цитирования: Orlov A.V. Hybrid Global Search Algorithm with Gene-
tic Blocks for Solving Hexamatrix Games // Известия Иркутского государственного
университета. Серия Математика. 2022. Т. 41. C. 40–56.
https://doi.org/10.26516/1997-7670.2022.41.40

1. Introduction

It is well known that the problem of a numerical finding of equilibria in
the Game Theory [7; 18] is one of the urgent issues for the contemporary
mathematical optimization theory and methods [19] (when an equilibrium
problem can be transformed into the optimization problem).

A classical matrix game can be reduced to two dual linear programming
(LP) problems [7; 18], so it has a Convex Structure, and there are no fun-
damental difficulties with its solution. The first extension of a matrix game
is a bimatrix game that already represents Nonconvex (bilinear) Struc-
ture [7;15;18;24;28]. We can say the same about polymatrix games [1;7;23].
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For example, the search for a Nash equilibrium in a polymatrix game of
three players turns out to be equivalent to a special nonconvex optimization
problem with a triple bilinear structure [12;17;23].

Our group developed the nonconvex optimization approach to the nu-
merical finding of a Nash equilibrium in these games based on the above-
mentioned equivalence between the games in question and the special math-
ematical optimization problems with bilinear structures in the objective
function [15;23]. The latter are solved by the Global Search Theory (GST)
developed by A.S. Strekalovsky for nonconvex problems with d.c. functions,
representable as a difference of two convex functions [20–22].

In contrast to the commonly accepted global optimization methods such
as branch-and-bound based techniques, approximation approaches, diago-
nal methods, etc. [6; 27], the GST employs a reduction of the nonconvex
problem to a family of more straightforward problems (usually convex).
The latter can be solved by classic convex optimization methods [3;9]. Also,
the GST includes some other elements such as one-dimensional search, level
surface approximation, and so on [20–22].

When solving nonconvex mathematical optimization problems using the
Global Search Theory [20–22], one of the crucial steps is to construct an
approximation of the level surface of the convex function that defines the
basic nonconvexity in the problem under study (see also [24;25]).

For example, in the course of solving the following problem of d.c.
maximization:

Φ(𝑥)
△
= ℎ(𝑥)− 𝑔(𝑥) ↑ max, 𝑥 ∈ 𝐷, (𝒟𝒞)

where 𝑔(·), ℎ(·) are convex functions, 𝐷 is a convex set, one should build
the finite approximation

𝒜(𝜁, 𝜉) =
{︀
𝑣1, ..., 𝑣𝑁 | ℎ

(︀
𝑣𝑖
)︀
= 𝜉 + 𝜁, 𝑖 = 1, . . . , 𝑁

}︀
, (1.1)

where inf(𝑔,𝐷) ≤ 𝜉 ≤ sup(𝑔,𝐷) is fixed, 𝜁
△
= Φ(𝑧) is the value of the

objective function of the problem (𝒟𝒞) at the current stationary (critical)
point 𝑧. The approximation must be representative enough to be able
to define whether the current point 𝑧 is a global solution. It means, in
particular, that if we are not in a global solution then the approximation
must allow us to ”jump out” the critical point where we are. See [20–22]
for more details.

Currently, there are no general methods for constructing representative
approximations for the problem (𝒟𝒞). When solving specific nonconvex
problems, the building of approximations is based on the previous experi-
ence [10; 12; 13; 17; 20; 21; 24–26]. So the development of new approaches
to constructing approximations is an up-to-date problem in nonconvex
optimization.
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As for the numerical efficiency of the GST approach for solving equilib-
rium problems, it turned out to be very effective for large-scale bimatrix
games (up to 1000 strategies per player) [28]. However, for hexamatrix
games, the results leave much to be desired [12]. The latest Global Search
Algorithm (GSA) needs a lot of different techniques for building level sur-
face approximations and shows satisfactory results only for games with
sparse matrices [12].

Therefore, in this paper, for a nonconvex problem with bilinear struc-
tures, which arises when searching for Nash equilibrium points in a hexa-
matrix game, a new Hybrid Global Search Algorithm (HGSA) based on
GST is developed. On the one hand, the building of approximations of the
level surface in this algorithm uses operators of Genetic Algorithms (GAs):
crossover, mutation [4;8]. On the other hand, it includes blocks of GSA, in
particular, specialized methods of local search using the bilinear structure
of the problem in question [10; 12; 17; 24; 25] As known, local methods are
the main ”building blocks” for the GSA based on GST [20; 21; 24; 25].
Previously, such a combination of Genetic Algorithm’s elements and a local
search proved to be effective in solving the simplest bilevel problems [11].
Note, we will use the term ”Genetic Algorithms” for simplicity since the key
used blocks appeared there. At the same time, some ideas used in this work
(such as the representation of individuals as real vectors, and deterministic
selection) are closer to more general evolutionary algorithms [4].

The structure of the paper is the following. Section 2 deals with the
main elements of the Global Search Theory, then in Section 3, the selected
basic stages of Genetic Algorithms are outlined. Section 4 addresses the op-
timization formulation of a hexamatrix game and the corresponding Basic
GSA for its solving developed earlier. In Section 5, the new Hybrid Global
Search Algorithm for hexamatrix games is presented. Section 6 presents
the first computational results. Section 7 contains concluding remarks.

2. Elements of the Global Search Theory

Let us briefly recall the main stages of the Global Search in the problem
of d.c. maximization (𝒟𝒞) [20; 21; 24]. The theoretical basis of the Global
Search is the so-called Global Optimality Conditions (GOCs) which for the
case of the problem (𝒟𝒞) takes the following form.

Theorem 1. [20; 21; 24] If a feasible point 𝑧 ∈ 𝐷 is a global solution to
the problem (𝒟𝒞) (𝑧 ∈ 𝑆𝑜𝑙(𝒟𝒞)), then

∀(𝑦, 𝜉) ∈ 𝐼𝑅𝑛 × 𝐼𝑅 : ℎ(𝑦)− 𝜉 = 𝜁
△
=Φ(𝑧), (2.1)

𝑔(𝑦) ≤ 𝜉 ≤ sup(𝑔,𝐷), (2.2)

𝑔(𝑥)− 𝜉 ≥ ⟨∇ℎ(𝑦), 𝑥− 𝑦⟩ ∀𝑥 ∈ 𝐷. (2.3)
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These GOCs possess the so-called algorithmic (constructive) property
[20; 21; 24]. It means that if one was successful in finding the pair (𝑦, 𝜉)
from (2.1)–(2.2), and the point �̄� ∈ 𝐷 such that the inequality (2.3) is
violated, then we obtain the point which is better than the current point 𝑧
(even 𝑧 is a critical or stationary point). This constructive property forms
the basis for building Global Search Schemes (GSS). One of the variants of
the GSS can be briefly presented in the following way.

Let there be given some approximate critical (stationary) point 𝑧𝑘 in

the problem (𝒟𝒞) with the value of the objective function 𝜁𝑘
△
= Φ(𝑧𝑘),

constructed using some local search method. Then, one has to perform the
following chain of operations.

1) Choose the number 𝜉 ∈ [𝜉−, 𝜉+], where 𝜉−
△
= inf(𝑔,𝐷), 𝜉+

△
= sup(𝑔,𝐷)

and construct some finite approximation 𝒜𝑘 = 𝒜(𝜁𝑘, 𝜉) (see (1.1)) of the
level surface 𝒰(𝜁𝑘, 𝜉) = {𝑦 | ℎ(𝑦) = 𝜉+ 𝜁𝑘} of the convex function ℎ(·), that
generates the basic nonconvexity in the problem (𝒟𝒞).

2) For each point of the approximation 𝒜𝑘, verify the inequality
𝑔(𝑣𝑖) ≤ 𝜉, 𝑖 = 1, 2, ..., 𝑁, following from the GOCs (see (2.2)).

3) Using the point 𝑣𝑖 of the approximation 𝒜𝑘, selected at the second
stage, find an approximate solution 𝑢𝑖 of the convex linearized problem:

𝑔(𝑥)− ⟨∇ℎ(𝑣𝑖), 𝑥⟩ ↓ min
𝑥
, 𝑥 ∈ 𝐷. (𝒫ℒ(𝑣𝑖))

4) Proceeding from the points 𝑢𝑖 ∈ 𝐷, find new critical points ̂︀𝑥𝑖,
𝑖∈{1, ..., 𝑁}, in the problem (𝒟𝒞), by means of some local search method.

5) Compare the value of the objective function at each point ̂︀𝑥𝑖 with the
value of the objective function at the current critical point 𝑧. If one of the
points ̂︀𝑥𝑖 is better than the current one, the latter is updated.

Global Search Algorithms are built based on GSS stages 1)-5), and they
use the features of the specific (𝒟𝒞)-type problem under study.

The critical stage of the scheme is 1), where one needs to construct an ap-
proximation of the level surface of a convex function ℎ (see also [20;21;24]).
The successful construction of the approximation allows to ”jump” out of
the stationary (critical) point obtained by a local search, which, as is well
known, is one of the main goals of the global search.

As mentioned above, there are no general methods for constructing
a representative approximation for the problem (𝒟𝒞). At present, this
problem is solving by using the previous experience of constructing the
approximations and the data from the formulation of the problem in ques-
tion [10; 12; 13; 17; 20; 21; 24–26]. For example, if the feasible set of the
problem has a polyhedron structure, it is obligatory to use basic Euclidean
vectors as one of the elements for building approximations in combina-
tion with a current critical point and so on [10; 12; 13; 17; 20; 24–26]. But
only for a few simplest nonconvex problems (for example, the problem of
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maximizing the squared norm on a box), it has been possible to construct
approximations that theoretically guarantee to obtain a global solution [20].

The main drawback of the existing approaches to the construction of
approximations is that the latter are all static and do not change in the pro-
cess of solving the problem. In this paper, the problem of approximations is
proposed to be solved using elements of the Genetic Algorithm. In this case,
at each iteration of the algorithm, the approximations change dynamically
and consider the current information about the solution process.

3. Principal Stages of Genetic Algorithms

Let’s remind the principal stages and operators of Genetic Algorithms [4;
8], for simplicity, presenting these stages for the most general optimization
problem:

𝐹 (𝑥) ↑ max, 𝑥 ∈ 𝑆. (𝒫0)

There are a lot of variants of implementation genetic operators [4; 8].
The number of publications on this topic for various types of problems is
vast (see, for example, the references in [8]). Here we present the most
appropriate scheme for our purpose. First, in some way (for example,
randomly), we need to generate a set of the feasible points in the problem
(𝒫0). This set is called a population of individuals: 𝑃𝑜𝑝 = {𝑥𝑖 | 𝑥𝑖 ∈
𝑆, 𝑖 = 1, ..., 𝑁}. Then one has to select a so-called fitness function that can
help to evaluate each point 𝑥𝑖 to give some measure for them. Most often,
the objective function 𝐹 (·) of the problem (𝒫0) is used for this purpose.

Second, we have to build in a certain way two new individuals (off-
spring) by two (randomly) selected points (parents) from the population:
𝑥𝑖1 , 𝑥𝑖2 ∈ 𝑃𝑜𝑝 ⇒ 𝑦1 ∈ 𝑆, 𝑦2 ∈ 𝑆. This procedure is called a crossover.
Existing types of crossovers are very diverse. The most popular types are
single-point, two-point, and uniform crossover [8]. The principal difficulty
here is the necessity to preserve the feasibility of the constructed offsprings
in the original problem.

The next stage is a random mutation of some components in the con-
structed offsprings, carried out with a certain probability: 𝑦1 ⇒ 𝑤1 ∈ 𝑆,
𝑦2 ⇒ 𝑤2 ∈ 𝑆. It is also necessary to monitor the feasibility of the resulting
individuals here [8].

After that, one needs to compare the two resulting individuals with
respect to the fitness function. So, the worst individual from the popu-
lation is updated: 𝑤 := argmax{𝐹 (𝑤1), 𝐹 (𝑤2)}, Let 𝑗 : 𝐹 (𝑥𝑗) ≤ 𝐹 (𝑥𝑖)
∀𝑥𝑖 ∈ 𝑃𝑜𝑝. If 𝐹 (𝑤) > 𝐹 (𝑥𝑗), then 𝑥𝑗 := 𝑤.

The process usually finishes when a certain predetermined number of
iterations (generations) of the described procedure has been produced [8].
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4. Basic Algorithm for Solving Hexamatrix Games

Recall the formulation of a hexamatrix game with mixed strategies [1;
7; 12;17;23]:

𝐹1(𝑥, 𝑦, 𝑧)
△
= ⟨𝑥,𝐴1𝑦 +𝐴2𝑧⟩ ↑ max

𝑥
, 𝑥 ∈ 𝑆𝑚,

𝐹2(𝑥, 𝑦, 𝑧)
△
= ⟨𝑦,𝐵1𝑥+𝐵2𝑧⟩ ↑ max

𝑦
, 𝑦 ∈ 𝑆𝑛,

𝐹3(𝑥, 𝑦, 𝑧)
△
= ⟨𝑧, 𝐶1𝑥+ 𝐶2𝑦⟩ ↑ max

𝑧
, 𝑧 ∈ 𝑆𝑙,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where 𝑆𝑝 = {𝑢 = (𝑢1, . . . , 𝑢𝑝)

𝑇 ∈ 𝐼𝑅𝑝
⃒⃒
𝑢𝑖 ≥ 0,

𝑝∑︁
𝑖=1

𝑢𝑖 = 1}, 𝑝 = 𝑚,𝑛, 𝑙.

The goal is to find a Nash equlibrium (approximately) [7; 17; 23] in the
game Γ3 = Γ(𝐴,𝐵,𝐶) (𝐴 = (𝐴1, 𝐴2), 𝐵 = (𝐵1, 𝐵2), 𝐶 = (𝐶1, 𝐶2)). As
known, in such an equilibrium none of the players are profitable to change
its optimal strategy. Due to Nash’s Theorem [7; 23] there exists a Nash
equilibrium in the game Γ3 = Γ(𝐴,𝐵,𝐶) with mixed strategies.

Let us consider the following optimization problem (𝜎
△
= (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾)):

Φ(𝜎)
△
= ⟨𝑥,𝐴1𝑦+𝐴2𝑧⟩+⟨𝑦,𝐵1𝑥+𝐵2𝑧⟩+⟨𝑧, 𝐶1𝑥+𝐶2𝑦⟩−𝛼−𝛽−𝛾 ↑ max

𝜎
,

𝜎 ∈ 𝐷
△
= {(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) ∈ 𝐼𝑅𝑚+𝑛+𝑙+3 | 𝑥 ∈ 𝑆𝑚, 𝑦 ∈ 𝑆𝑛, 𝑧 ∈ 𝑆𝑙,

𝐴1𝑦 +𝐴2𝑧 ≤ 𝛼𝑒𝑚, 𝐵1𝑥+𝐵2𝑧 ≤ 𝛽𝑒𝑛, 𝐶1𝑥+ 𝐶2𝑦 ≤ 𝛾𝑒𝑙},

⎫⎪⎪⎬⎪⎪⎭
(𝒫)

where 𝛼, 𝛽, 𝛾 are auxuliary scalar variables, 𝑒𝑝 = (1, 1, ..., 1) ∈ 𝐼𝑅𝑝,
𝑝 = 𝑚,𝑛, 𝑙.

Theorem 2. [23] The point (𝑥*, 𝑦*, 𝑧*) is a Nash equilibrium point in the
hexamatrix game Γ(𝐴,𝐵,𝐶) = Γ3 ((𝑥*, 𝑦*, 𝑧*) ∈ 𝑁𝐸(Γ3)) if and only if it

is a part of a global solution 𝜎*
△
= (𝑥*, 𝑦*, 𝑧*, 𝛼*, 𝛽*, 𝛾*) ∈ 𝐼𝑅𝑚+𝑛+𝑙+3 to the

problem (𝒫). At the same time, the numbers 𝛼*, 𝛽*, and 𝛾* are the payoffs
of the first, the second, and the third players, respectively, in the game Γ3.
In addition, an optimal value 𝒱(𝒫) of the problem (𝒫) is equal to zero:

𝒱(𝒫) = Φ(𝑥*, 𝑦*, 𝑧*, 𝛼*, 𝛽*, 𝛾*) = 0. (4.1)

Corollary 1. [23] Let (𝑥*, 𝑦*, 𝑧*) is a Nash equilibrium in the game
Γ(𝐴,𝐵,𝐶) with the payoffs 𝛼*, 𝛽*, and 𝛾*. Then

𝛼*= max
1≤𝑖≤𝑚

(𝐴1𝑦
*+𝐴2𝑧

*)𝑖, 𝛽*= max
1≤𝑗≤𝑛

(𝐵1𝑥
*+𝐵2𝑧

*)𝑗 , 𝛾*=max
1≤𝑡≤𝑙

(𝐶1𝑥
*+𝐶2𝑦

*)𝑡.

Theorem 2 allows us to find a Nash equilibrium in the game Γ3 by solving
the problem (𝒫). One can also prove that if an approximate solution to the
problem (𝒫) is obtained, then we have an approximate Nash equilibrium
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(𝑁𝐸(Γ3, 𝜀)) [23]. In order to find an approximate global solution to the
nonconvex problem (𝒫), the approach based on GST was developed [12;17].

The first stage of this approach is the building an explicit d.c. represen-
tation for the objective function Φ:

Φ(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) = ℎ(𝑥, 𝑦, 𝑧)− 𝑔(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾), where (4.2)

ℎ(𝑥, 𝑦, 𝑧) =
1

4

(︁
‖𝑥+𝐴1𝑦‖2 + ‖𝑥+𝐴2𝑧‖2 + ‖𝐵1𝑥+ 𝑦‖2 + ‖𝑦 +𝐵2𝑧‖2+

+‖𝐶1𝑥+ 𝑧‖2 + ‖𝐶2𝑦 + 𝑧‖2
)︁
, 𝑔(𝜎) =

1

4

(︁
‖𝑥−𝐴1𝑦‖2 + ‖𝑥−𝐴2𝑧‖2+

+‖𝐵1𝑥− 𝑦‖2 + ‖𝑦 −𝐵2𝑧‖2 + ‖𝐶1𝑥− 𝑧‖2 + ‖𝐶2𝑦 − 𝑧‖2
)︁
+ 𝛼+ 𝛽 + 𝛾.

(4.3)
It is easy to see that these functions are convex on (𝑥, 𝑦, 𝑧) and 𝜎, respec-

tively. Thus, the problem (𝒫) is a d.c. maximization problem. Using this
decomposition, we presented below the GSA for finding a Nash equilibrium
in the game Γ3 [12; 17], based on the corresponding GOCs (see Section 2).

According to Corollary 1, let us denote: 𝛼(𝑦, 𝑧)
△
= max

𝑖
(𝐴1𝑦 + 𝐴2𝑧)𝑖,

𝛽(𝑥, 𝑧)
△
= max

𝑗
(𝐵1𝑥+𝐵2𝑧)𝑗 , 𝛾(𝑥, 𝑦)

△
= max

𝑡
(𝐶1𝑥+ 𝐶2𝑦)𝑡.

Let there be given a starting point 𝜎0
△
= (𝑥0, 𝑦0, 𝑧0, 𝛼0, 𝛽0, 𝛾0) ∈ 𝐷,

numerical sequences {𝜏𝑘}, {𝛿𝑘} (𝜏𝑘, 𝛿𝑘>0, 𝑘 = 1, 2, ...; 𝜏𝑘 ↓ 0, 𝛿𝑘 ↓ 0 (𝑘 →
∞)), a set 𝐷𝑖𝑟= {(�̄�1, 𝑣1, �̄�1), ..., (�̄�𝑁 , 𝑣𝑁 , �̄�𝑁 )∈ 𝐼𝑅𝑚+𝑛+𝑙|(�̄�𝑟, 𝑣𝑟, �̄�𝑟) ̸= 0,

𝑟 = 1, ..., 𝑁}, the numbers 𝜉−
△
= inf(𝑔,𝐷) and 𝜉+

△
= sup(𝑔,𝐷), parameters

𝑀 and 𝜈, and 𝜀 is a prescribed tolerance for the problem’s solution.

Basic Global Search Algorithm

Step 0. Set 𝑘 := 1, �̄�𝑘
△
= (�̄�𝑘, 𝑦𝑘, 𝑧𝑘, �̄�𝑘, 𝛽𝑘, 𝛾𝑘) := 𝜎0, 𝑟 := 1, 𝜉 := 𝜉−,

△𝜉 = (𝜉+ − 𝜉−)/𝑀 .
Step 1. Start a local search method from the point (�̄�𝑘, 𝑦𝑘, 𝑧𝑘, �̄�𝑘, 𝛽𝑘, 𝛾𝑘)

and construct a 𝜏𝑘-critical point 𝜎
𝑘 △
= (𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝛼𝑘, 𝛽𝑘, 𝛾𝑘) ∈ 𝐷 to the

problem (𝒫). Set 𝜁𝑘 := Φ(𝜎𝑘).
Step 2. If 𝜁𝑘 ≥ −𝜀, then stop; in this case, (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) ∈ 𝑁𝐸(Γ3, 𝜀).
Step 3. Using (�̄�𝑟, 𝑣𝑟, �̄�𝑟) ∈ 𝐷𝑖𝑟, construct a point (𝑢𝑟, 𝑣𝑟, 𝑤𝑟) of the

approximation 𝒜𝑘 = {(𝑢1, 𝑣1, 𝑤1), ..., (𝑢𝑁 , 𝑣𝑁 , 𝑤𝑁 )|ℎ(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) = 𝜉 + 𝜁𝑘,
𝑟 = 1, ..., 𝑁} of the level surface 𝒰(𝜁𝑘, 𝜉) = {(𝑥, 𝑦, 𝑧) | ℎ(𝑥, 𝑦, 𝑧) = 𝜉 + 𝜁𝑘}
of the function ℎ(𝑥, 𝑦, 𝑧). 𝛼𝑟 := 𝛼(𝑣𝑟, 𝑤𝑟), 𝛽𝑟 := 𝛽(𝑢𝑟, 𝑤𝑟), 𝛾𝑟 := 𝛾(𝑢𝑟, 𝑣𝑟).

Step 4. If
𝑔(𝑢𝑟, 𝑣𝑟, 𝑤𝑟, 𝛼𝑟, 𝛽𝑟, 𝛾𝑟) > 𝜉 + 𝜈𝜉, (4.4)

𝑟 < 𝑁 and 𝜉 < 𝜉+, then set 𝑟 := 𝑟 + 1 and go to Step 3.
Step 5. If the inequality (4.4) takes place, but 𝑟 = 𝑁 and 𝜉 < 𝜉+, then

set 𝑟 := 1, 𝜉 := 𝜉 +Δ𝜉 and go to Step 3.
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Step 6. If the inequality (4.4) holds, but 𝑟 = 𝑁 and 𝜉 = 𝜉+, then stop;
𝜎𝑘 is the obtained solution to the problem (𝒫).

Step 7. Find a 𝛿𝑘-solution �̄�𝑟
△
= (�̄�𝑟, 𝑦𝑟, 𝑧𝑟, �̄�𝑟, 𝛽𝑟, 𝛾𝑟) of the following

linearized problem (𝒫ℒ𝑟) = (𝒫ℒ(𝑢𝑟, 𝑣𝑟, 𝑤𝑟)):

𝑔(𝜎)− ⟨∇ℎ(𝑢𝑟, 𝑣𝑟, 𝑤𝑟), (𝑥, 𝑦, 𝑧)⟩ ↓ min
𝜎
, 𝜎 ∈ 𝐷. (𝒫ℒ𝑟)

Step 8. Proceeding from the point �̄�𝑟, build a 𝜏𝑘-critical point̂︀𝜎𝑟 := (̂︀𝑥𝑟, ̂︀𝑦𝑟, ̂︀𝑧𝑟, ̂︀𝛼𝑟, ̂︀𝛽𝑟, ̂︀𝛾𝑟) ∈ 𝐷 to the problem (𝒫).
Step 9. If Φ(̂︀𝜎𝑟) ≥ −𝜀, then stop; (̂︀𝑥𝑟, ̂︀𝑦𝑟, ̂︀𝑧𝑟) ∈ 𝑁𝐸(Γ3, 𝜀).
Step 10. If Φ(̂︀𝜎𝑟) ≤ Φ(𝜎𝑘) + 𝜀, 𝑟 < 𝑁, then set 𝑟 := 𝑟 + 1 and return

to Step 2.
Step 11. If Φ(̂︀𝜎𝑟) ≤ Φ(𝜎𝑘)+𝜀, 𝑟 = 𝑁 and 𝜉 < 𝜉+, then set 𝜉 :=𝜉+△𝜉,

𝑟 := 1 and go to Step 2.
Step 12. If Φ(̂︀𝜎𝑟) > Φ(𝜎𝑘) + 𝜀, then set 𝜉 := 𝜉−, (�̄�

𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1,
�̄�𝑘+1, 𝛽𝑘+1, 𝛾𝑘+1) := ̂︀𝜎𝑟, 𝑘 := 𝑘 + 1, 𝑟 := 1 and return to Step 1.

Step 13. If Φ(̂︀𝜎𝑟) ≤ Φ(𝜎𝑘) + 𝜀, 𝑟 = 𝑁 and 𝜉 = 𝜉+, then stop. The
point 𝜎𝑘 is the obtained solution to the problem (𝒫). #

The GSA is not an algorithm in the usual sense because some of its
steps are not specified. For example, we do not know how to construct a
feasible starting point and the set 𝐷𝑖𝑟, how to compute the points from
the level surface approximation by the given set 𝐷𝑖𝑟, how to implement a
local search, how to solve the problem (𝒫ℒ𝑟), etc. We will consider these
issues below.

First, note that a feasible starting point can be constructed by using the
barycenters of standard simplexes:

𝑥0𝑖 =
1

𝑚
, 𝑖 = 1, ...,𝑚; 𝑦0𝑗 =

1

𝑛
, 𝑗 = 1, ..., 𝑛; 𝑧0𝑡 =

1

𝑙
, 𝑡 = 1, ..., 𝑙 ;

𝛼0 = 𝛼(𝑦0, 𝑧0); 𝛽0 = 𝛽(𝑥0, 𝑧0); 𝛾0 = 𝛾(𝑥0, 𝑦0).

As for a local search (see Steps 1 and 8), it can be based on the consec-
utive solution of the LP problems derived from the problem (𝒫) [12;17]:

𝑓
(𝑣,𝑤)
1 (𝑥, 𝛽)

△
= ⟨𝑥, (𝐴1 +𝐵𝑇

1 )𝑣 + (𝐴2 + 𝐶𝑇1 )𝑤⟩ − 𝛽 ↑ max
(𝑥,𝛽)

,

(𝑥, 𝛽) ∈ 𝑋(𝑣, 𝑤, 𝛾)
△
= {(𝑥, 𝛽) | 𝑥 ∈ 𝑆𝑚,

𝐵1𝑥− 𝛽𝑒𝑛 ≤ −𝐵2𝑤,𝐶1𝑥 ≤ 𝛾𝑒𝑙 − 𝐶2𝑣};

⎫⎪⎪⎬⎪⎪⎭
(ℒ𝒫𝑥(𝑣, 𝑤, 𝛾))

𝑓
(𝑢,𝑤)
2 (𝑦, 𝛾)

△
= ⟨𝑦, (𝐵1 +𝐴𝑇1 )𝑢+ (𝐵2 + 𝐶𝑇2 )𝑤⟩ − 𝛾 ↑ max

(𝑦,𝛾)
,

(𝑦, 𝛾) ∈ 𝑌 (𝑢,𝑤, �̄�)
△
= {(𝑦, 𝛾) | 𝑦 ∈ 𝑆𝑛,

𝐴1𝑦 ≤ �̄�𝑒𝑚 −𝐴2𝑤,𝐶2𝑦 − 𝛾𝑒𝑙 ≤ −𝐶1𝑢};

⎫⎪⎪⎬⎪⎪⎭
(ℒ𝒫𝑦(𝑢,𝑤, �̄�))
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𝑓
(𝑢,𝑣)
3 (𝑧, 𝛼)

△
= ⟨𝑧, (𝐶1 +𝐴𝑇2 )𝑢+ (𝐶2 +𝐵𝑇

2 )𝑣⟩ − 𝛼 ↑ max
(𝑧,𝛼)

,

(𝑧, 𝛼) ∈ 𝑍(𝑢, 𝑣, 𝛽)
△
= {(𝑧, 𝛼) | 𝑧 ∈ 𝑆𝑙,

𝐴2𝑧 − 𝛼𝑒𝑚 ≤ −𝐴1𝑣,𝐵2𝑧 ≤ 𝛽𝑒𝑛 −𝐵1𝑢}.

⎫⎪⎪⎬⎪⎪⎭
(ℒ𝒫𝑧(𝑢, 𝑣, 𝛽))

where (𝑢, 𝑣, 𝑤, �̄�, 𝛽, 𝛾) ∈ 𝐷 is a feasible point in the problem (𝒫). This
type of the local search is efficient for problems with a bilinear structure
[10;12;13;15–17;21;24–26].

We implemented other stages and parameters of the above GSA accord-
ing to our previous experience [10;13;15;21;24–26], except the key moment:
the construction of a level surface approximation. This stage is realized
at Step 3. For the problem (𝒫) the approximation 𝒜𝑘 = 𝒜(𝜁𝑘, 𝜉) is con-
structed with the help of special sets of directions [10;12;13;15;17;21;24–26].
The triples (𝑢𝑟, 𝑣𝑟, 𝑤𝑟) ∈ 𝒜𝑘 by the given set𝐷𝑖𝑟, are produced analytically
through solving the quadratic equation (see, [17] for more details).

The sets𝐷𝑖𝑟 are chosen experimentally and should, first of all, contain as
much information as possible from the problem formulation and information
obtained in the solution process. Usually, when solving problems with a
bilinear structure on polyhedral sets, for a positive outcome of the global
search, it was enough to use the Euclidean basis vectors, vectors of ones
(1, 1, ..., 1), rows and columns of matrices involved in the objective func-
tion, and the components of the current critical point [10;13;15;21;24–26].
However, the numerical solution of hexamatrix games turned out to be
a much more difficult problem and required the additional use of vari-
ous kinds of pairwise conjugate vectors, eigenvectors of matrices, and the
implementation in spaces of different dimensions [12;17].

Moreover, for some sets, which contain a lot of points when the dimen-
sion of the problems grows (in some cases, the number of the points is equal
to 𝑚𝑛𝑙), we had to use special techniques for reducing the number of points
in them (see [10;12;15;24;25]).

Nevertheless, the numerical results concerning randomly generated hexa-
matrix games leave much to be desired [12]. The principal disadvantage of
the existing approach to constructing approximations is that they do not
change from iteration to iteration of the algorithm and contain a sufficiently
large number of points (even after the procedure of reducing). The latter
fact vastly affects the efficiency of the Global Search Algorithm when the
problem dimension increases.

The Hybrid Global Search Algorithm, described in the next section, does
not have these shortcomings.
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5. Hybrid Global Search Algorithm

First of all, let us describe the chosen variants of implementing genetic
operators in the hybrid algorithm for solving the problem (𝒫). This is
based on our previous experience of using them in the GSA for solving the
simplest bilevel optimization problems [11].

As a population at each iteration of the global search we select not
the set of the feasible points but the points from the current level surface
approximation: 𝑃𝑜𝑝𝑘 = {(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) | (𝑢𝑟, 𝑣𝑟, 𝑤𝑟) ∈ 𝒜𝑘, 𝑟 = 1, ..., 𝑁}.

The fitness function, which evaluates the approximation points, has the
name 𝑃𝐿𝑜𝑐(·) and is constructed in the following way. To calculate this
function, first, we need to solve the linearized problem (𝒫ℒ𝑟) (which are
linearized at the 𝑟-th point of the approximation) and obtain a feasible
point �̄�𝑟 in the problem (𝒫) (see Step 7 of the GSA). Then the value
of the function 𝑃𝐿𝑜𝑐(·) is the value of the objective function Φ(·) at the
approximate critical point ̂︀𝜎𝑟obtained by the local search beginning from

the point �̄�𝑟 (see Step 8): 𝑃𝐿𝑜𝑐(𝑢𝑟, 𝑣𝑟, 𝑤𝑟)
△
= Φ(̂︀𝜎𝑟). Let the denotation

𝐴𝑟𝑔𝑃𝐿𝑜𝑐(·) means that we obtain a critical point provided by the function
𝑃𝐿𝑜𝑐(·). So ̂︀𝜎𝑟 = 𝐴𝑟𝑔𝑃𝐿𝑜𝑐(𝑢𝑟, 𝑣𝑟, 𝑤𝑟).

Note that the approximation points may be infeasible. Nevertheless,
due to the properties of the original problem (𝒫), the linearized problem
(𝒫ℒ𝑟) will have a solution in any case [17;23]. And the local search method
produces feasible approximate critical points.

To carry out the crossover operator, the so-called uniform crossover [8]
was implemented. First, choose two arbitrary indices 𝑟1, 𝑟2 ∈ {1, ...𝑁} (𝑟1 ̸=
𝑟2) and set 𝑞 := 𝑅𝑎𝑛𝑑[0, 1], where ”Rand” is some subroutine for generating
pseudorandom numbers. Next, ∀𝑗 = 1, ...,𝑚 + 𝑛 + 𝑙, if 𝑞 < 0.5 then
(�̌�, 𝑣, �̌�)𝑗 := (𝑢𝑟1 , 𝑣𝑟1 , 𝑤𝑟1)𝑗 , (̃︀𝑢, ̃︀𝑣, ̃︀𝑤)𝑗 := (𝑢𝑟2 , 𝑣𝑟2 , 𝑤𝑟2)𝑗 , else (̃︀𝑢, ̃︀𝑣, ̃︀𝑤)𝑗 :=
(𝑢𝑟1 , 𝑣𝑟1 , 𝑤𝑟1)𝑗 , (�̌�, 𝑣, �̌�)𝑗 := (𝑢𝑟2 , 𝑣𝑟2 , 𝑤𝑟2)𝑗 (each component of one of the
offsprings is a component of one of the parents with a probability of 1/2).

As for a mutation operator, we use the simple random procedure [8].
Let 𝑃𝑚 be a probability of employing the mutation, 𝐾 is a positive con-
stant. Set 𝑞1 := 𝑅𝑎𝑛𝑑[0, 1]. If 𝑞1 < 𝑃𝑚 then (�̌�, 𝑣, �̌�)𝑗 := 𝑅𝑎𝑛𝑑[0,𝐾]
∀𝑗 = 1, ...,𝑚 + 𝑛 + 𝑙. Set 𝑞2 := 𝑅𝑎𝑛𝑑[0, 1]. If 𝑞2 < 𝑃𝑚 then
(̃︀𝑢, ̃︀𝑣, ̃︀𝑤)𝑗 := 𝑅𝑎𝑛𝑑[0,𝐾] ∀𝑗 = 1, ...,𝑚+𝑛+𝑙.

Based on the principal elements of GAs, further, we present the Hybrid
Global Search Algorithm, combining these elements and the steps of the
Basic Global Search Algorithm from the previous section.

Let there be given a point 𝜎0 ∈ 𝐷, numerical sequences {𝜏𝑘}, {𝛿𝑘}
(𝜏𝑘 > 0, 𝛿𝑘 > 0, 𝑘 = 1, 2, ..., 𝜏𝑘 ↓ 0, 𝛿𝑘 ↓ 0 (𝑘 → ∞)), a set of directions
𝐷𝑖𝑟={(�̄�1, 𝑣1, �̄�1), ..., (�̄�𝑁 , 𝑣𝑁 , �̄�𝑁 )∈𝐼𝑅𝑚+𝑛+𝑙|(�̄�𝑟, 𝑣𝑟, �̄�𝑟) ̸=0, 𝑟=1, ..., 𝑁},
numbers 𝜉−

△
= inf(𝑔,𝐷) and 𝜉+

△
= sup(𝑔,𝐷), mutation probability 𝑃𝑚, the
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maximal number of generations 𝐺𝑚𝑎𝑥, and 𝜀 is a prescribed tolerance for
the problem’s solution.

Hybrid Global Search Algorithm (HGSA)

Step 0. Set 𝑘 := 1, �̄�𝑘 := 𝜎0, 𝜉 := 𝜉−, △𝜉 = (𝜉+ − 𝜉−)/𝑁 .
Step 1. Beginning from the point �̄�𝑘 by the local search method find

a 𝜏𝑘-critical point 𝜎
𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝛼𝑘, 𝛽𝑘, 𝛾𝑘) ∈ 𝐷 to the problem (𝒫).

Set 𝜁𝑘 := Φ(𝜎𝑘).
Step 2. If 𝜁𝑘 ≥ −𝜀, then stop; in this case, (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) ∈ 𝑁𝐸(Γ3, 𝜀).
Step 3. Using the points (�̄�𝑟, 𝑣𝑟, �̄�𝑟) ∈ 𝐷𝑖𝑟 construct the points

(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) of the approximation of the level surface of the function ℎ(·),
𝑟 = 1, ..., 𝑁 , such that ℎ(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) = 𝜉 + △𝜉 · (𝑟 − 1) + 𝜁𝑘, i.e. con-
struct an initial population of points 𝑃𝑜𝑝𝑘 of the level surface approxima-
tion. For each population point, calculate the value of the fitness function:
𝜁𝑟 := 𝑃𝐿𝑜𝑐(𝑢𝑟, 𝑣𝑟, 𝑤𝑟), 𝑟 = 1, ..., 𝑁 . Let 𝑗 : 𝜁𝑗 ≤ 𝜁𝑟 ∀𝑟 = 1, ..., 𝑁.

Step 4. If for some 𝑟 ∈ {1, ...𝑁} the inequality 𝜁𝑟 ≥ −𝜀 holds, then stop;
the approximate 𝜀-Nash equilibrium in the game Γ3 is found.
(𝑥*, 𝑦*, 𝑧*, 𝛼*, 𝛽*, 𝛾*) := 𝐴𝑟𝑔𝑃𝐿𝑜𝑐(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) is an approximate global so-
lution to the problem (𝒫).

Step 5. 𝑟1 := 𝑅𝑎𝑛𝑑{1, ..., 𝑁}, 𝑟2 := 𝑅𝑎𝑛𝑑{1, ..., 𝑁}. Using the cros-
sover procedure by the points (𝑢𝑟1 , 𝑣𝑟1 , 𝑤𝑟1) and (𝑢𝑟2 , 𝑣𝑟2 , 𝑤𝑟2) construct
the points (̃︀𝑢, ̃︀𝑣, ̃︀𝑤) and (�̌�, 𝑣, �̌�).

Step 6. Implement the mutation procedure with probability 𝑃𝑚 for the
points (̃︀𝑢, ̃︀𝑣, ̃︀𝑤) and (�̌�, 𝑣, �̌�).

Step 7. Calculate ̃︀𝛼 :=𝛼(̃︀𝑣, ̃︀𝑤), ̃︀𝛽 :=𝛽(̃︀𝑢, ̃︀𝑤), ̃︀𝛾 := 𝛾(̃︀𝑢, ̃︀𝑣); �̌� := 𝛼(𝑣, �̌�),

𝛽 := 𝛽(�̌�, �̌�), 𝛾 := 𝛾(̃︀𝑢, ̃︀𝑣). Set ̃︀𝜎 := (̃︀𝑢, ̃︀𝑣, ̃︀𝑤, ̃︀𝛼, ̃︀𝛽, ̃︀𝛾), �̌� := (�̌�, 𝑣, �̌�, �̌�, 𝛽, 𝛾).

Compute ̃︀𝜁 := Φ(̃︀𝜎), 𝜁 := Φ(�̌�); ̃︀𝜉 := 𝑔(̃︀𝜎), 𝜉 := 𝑔(�̌�) and construct analyt-

ically two new points lying on the level surfaces: ℎ(�̄�𝑟1 , 𝑣𝑟1 , �̄�𝑟1) = ̃︀𝜉 + ̃︀𝜁
and ℎ(�̄�𝑟2 , 𝑣𝑟2 , �̄�𝑟2) = 𝜉 + 𝜁.

Step 8. Calculate 𝑃𝐿𝑜𝑐(�̄�𝑟1 , 𝑣𝑟1 , �̄�𝑟1) and 𝑃𝐿𝑜𝑐(�̄�𝑟2 , 𝑣𝑟2 , �̄�𝑟2).
Set (�̄�𝑟, 𝑣𝑟, �̄�𝑟) = argmax{𝑃𝐿𝑜𝑐(�̄�𝑟1 , 𝑣𝑟1 , �̄�𝑟1), 𝑃𝐿𝑜𝑐(�̄�𝑟2 , 𝑣𝑟2 , �̄�𝑟2)}.

Step 9. If 𝑃𝐿𝑜𝑐(�̄�𝑟, 𝑣𝑟, �̄�𝑟) ≥ −𝜀, then stop; the approximate 𝜀-Nash
equilibrium in the game Γ3 is found.
(𝑥*, 𝑦*, 𝑧*, 𝛼*, 𝛽*, 𝛾*) := 𝐴𝑟𝑔𝑃𝐿𝑜𝑐(�̄�𝑟, 𝑣𝑟, �̄�𝑟) is a solution to the problem
(𝒫).

Step 10. If 𝑃𝐿𝑜𝑐(�̄�𝑟, 𝑣𝑟, �̄�𝑟) > 𝜁𝑗 , then update the point 𝑗 of the
population: (𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗) := (�̄�𝑟, 𝑣𝑟, �̄�𝑟).

Step 11. If 𝑘 < 𝐺𝑚𝑎𝑥 then 𝑘 := 𝑘+1 and go to Step 3, otherwise stop.
(𝑢*, 𝑣*, 𝑤*) := argmax{𝑃𝐿𝑜𝑐(𝑢𝑟, 𝑣𝑟, 𝑤𝑟)|(𝑢𝑟, 𝑣𝑟, 𝑤𝑟) ∈ 𝑃𝑜𝑝𝑘, 𝑟 = 1, ..., 𝑁},
(𝑥*, 𝑦*, 𝑧*, 𝛼*, 𝛽*, 𝛾*) := 𝐴𝑟𝑔𝑃𝐿𝑜𝑐(𝑢*, 𝑣*, 𝑤*) is the obtained solution of the
problem. #

Note, the tolerances 𝜏𝑘 and 𝛿𝑘 are used in the HGSA inside the function
𝑃𝐿𝑜𝑐(·), where we solve the linearized problem and implement the local
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search method. So, there is no mention of 𝜏𝑘 and 𝛿𝑘 at the steps of the
algorithm.

Also, pay attention that the procedure for constructing points lying on
the level surface at Step 7 of the algorithm can be implemented for any point
in the Euclidian space (except for 0), so there are no problems with the
points feasibility obtained as a result of applying operators of the Genetic
Algorithm.

6. Numerical Experiment

In order to demonstrate the workability and efficiency of the presented
hybrid algorithm, we use the following several hexamatrix games from
existing publications.

”Test problem 1” has the dimension (3 × 3 × 3) and is taken from [1],
multiplied by 10 for convenience:

𝐴1=

⎛⎝ 10 10 −10
20 −10 −10
30 −15 −10

⎞⎠ ; 𝐴2=

⎛⎝ 20 30 25
−10 0 20
−10 20 10

⎞⎠ ; 𝐵1=

⎛⎝ −10 20 10
30 0 35
30 35 30

⎞⎠ ;

𝐵2=

⎛⎝ −20 30 10
10 −10 −10
20 10 −20

⎞⎠; 𝐶1=

⎛⎝ −30 −10 10
40 10 40
10 20 22

⎞⎠; 𝐶2=

⎛⎝ 10 20 −30
20 10 20
30 20 40

⎞⎠.
”Test problem 2” has the dimension (4× 3× 2) and is taken from [2]:

𝐴1 =

⎛⎜⎜⎝
1 1 3
1 2 0
3 4 1
2 3 2

⎞⎟⎟⎠ ; 𝐴2 =

⎛⎜⎜⎝
1 1
4 1
3 2
1 2

⎞⎟⎟⎠ ; 𝐵1 =

⎛⎝ 5 2 2 3
2 5 3 4
1 4 2 1

⎞⎠ ;

𝐵2 =

⎛⎝ 2 5
1 2
4 1

⎞⎠ ; 𝐶1 =

(︂
1 1 2 1
2 1 2 1

)︂
; 𝐶2 =

(︂
5 4 3
2 1 3

)︂
.

It also turned out to be interesting to study ”Test Problem 2” multiplied
by 10 as ”Test Problem 2a”.

Finally, ”Test problem 3” is taken from our recent work [14] where one
economic conflict problem was modeled as a hexamatrix game. This test
has the dimension (11×11×11) and we do not present it here to save space
in the paper. See [14] for the data of matrices.

For the numerical experiment we use a computer with an Intel Core
i5-2400 CPU (3.1 GHz), 4 Gb RAM, and MATLAB 7.11.0.584 R2010b
programming system. Auxiliary quadratic and linear problems are solved
by the standard MATLAB subroutines ”quadprog” and ”linprog”, respec-
tively, with default settings.
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In Table 1 you can see the results of solving four formulated games by
the Basic GSA with the following parameters of the algorithm: 𝜏 = 10−6,
𝜀 = 10−5; 𝜉− = inf(𝑔,𝐷), 𝜉+ = 𝜉− + 2000, Δ𝜉 = 1000; 𝜈 = 0.02;
𝐷𝑖𝑟 = 𝐷𝑖𝑟1 = {(𝑒𝑖, 𝑒𝑗 , 𝑒𝑡), 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛, 𝑡 = 1, ..., 𝑙}. Here 𝑁𝑜.
is the number of the Test problem; Φ0 and Φ̂ are the values of the objective
function of the problem in the starting point and the first critical point,
respectively; 𝐺𝐼𝑡 is the number of iterations of the GSA; 𝑄𝑃 and 𝐿𝑃 means
the number of solved auxiliary convex quadratic and linear programming
problems inside the algorithm, respectively. Note that 𝑄𝑃 = 𝐿𝑜𝑐, where
𝐿𝑜𝑐 is the number of starts Local Search Algorithm. 𝑇 is the problem’s
solution time in seconds. The indicators 𝑄𝑃 and 𝐿𝑃 , as well as 𝑇 , can
serve as the measure of the algorithm’s efficiency.

Table 1

The results of the Basic Global Search Algorithm

No. Φ0 Φ̂ 𝑆𝑡 𝑄𝑃 = 𝐿𝑜𝑐 𝐿𝑃 𝑇

1 -47.1111 -8.9465 3 8 60 0.52

2 -3.6667 -1.2315 2 7 49 0.42

2a -36.6667 -12.3148 3 10 946 5.72

3 -19.5545 -16.6828 10 91 584 6.71

The results of the Hibrid GSA are presented in Table 2. We test
this algorithm with the different number of individuals in the population:
𝑁 = 𝐶𝑜𝑢𝑛𝑡𝑃𝑜𝑝 = 2, 3, 4, 5, 7, 10; and with the various probability of mu-
tation: 𝑃𝑚 = 0.01, 0.02, 0.035, 0.05. Other parameters are fixed: 𝜏 = 10−6,
𝜀 = 10−5; 𝜉− = inf(𝑔,𝐷), 𝜉+ = 𝜉− + 2000,Δ𝜉 = 1000; 𝐾 = 1, 𝐺𝑚𝑎𝑥 = 250.
Initial 𝐷𝑖𝑟 is built by 𝑁 random vectors from 𝐷𝑖𝑟1. In all cases global
solutions were found but in the table, you can see the best variant for each
problem. The notation 𝐶𝑢𝑟𝑟𝐺𝑒𝑛 is the number of the generation where
the solution was found. If 𝐶𝑢𝑟𝑟𝐺𝑒𝑛 = 0 then we obtain the solution at the
stage of building the initial population (see Step 3 of the HSGA).

Table 2

The results of the Hybrid GSA

No. 𝑁 𝑃𝑚 𝐶𝑢𝑟𝑟𝐺𝑒𝑛 𝑄𝑃 = 𝐿𝑜𝑐 𝐿𝑃 𝑇

1 3 0.01 0 4 36 0.23

2 2 0.01 0 2 9 0.06

2a 2 0.01 9 20 84 0.67

3 4 0.05 2 9 54 0.71
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Comparing the results of the Basic GSA and the HGSA, we can see that
values 𝑄𝑃 , 𝐿𝑃 , and 𝑇 for HGSA are several times smaller. This confirms
the workability and efficiency of using HGSA for seeking Nash equilibria in
hexamatrix games.

7. Concluding Remarks

In the present paper, we developed a new hybrid approach for finding
Nash equilibria in hexamatrix games, which combines the use of the Global
Search Theory [20–22] and elements of genetic algorithms [8].

We described the original Global Search Algorithm and showed how to
incorporate the genetic operators into the GSA. As a result, we build the
new Hybrid Global Search Algorithm that takes into account the properties
of the problem in question.

The first computational experiment shows the workability and efficiency
of the HGSA on several known hexamatrix games. Our further research
will be devoted to organizing and realizing a broad numerical experiment
concerning comparing both algorithms in the vast field of test hexamatrix
games. Based on our previous computational experience of applying a
similar hybrid approach to the simplest bilevel problems [11], we hope that
the algorithm developed can be efficient for large dimension hexamatrix
games and competitive with the up-to-date numerical results concerning
the solving of finite games (see, e.g., [5]).
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