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Abstract. Previously, for each multilayer neural network of direct signal propagation
(hereinafter, simply a neural network), finite commutative groupoids were introduced,
which were called additive subnet groupoids. These groupoids are closely related to the
subnets of the neural network over which they are built. A grupoid is a monoid if and
only if it is built over a two-layer neural network. Earlier, endomorphisms and their
properties were studied for these groupoids. Some endomorphisms were constructed, but
an exhaustive element-by-element description was not received. It was shown that every
finite monoid is isomorphic to some submonoid of the monoid of all endomorphisms of a
suitable additive subnet groupoid for some suitable neural network.

In this paper, we study endomorphisms of additive groupoids of subnets of two-
layer neural networks. The main result of the work is an element-wise description of
the monoid of all endomorphisms of additive monoids of subnets built over a two-layer
neural network. The item-by-item description is obtained by constructing a general
form of endomorphism. The general view of an endomorphism is parameterized by the
endomorphisms of suitable booleans with respect to the union operation. Therefore,
endomorphisms of these Booleans were studied in this work. In particular, the semirings
of endomorphisms of these Booleans with respect to the union were studied. In addition,
to describe the general form of the endomorphism of the additive monoid of subnets,
homomorphisms of one Boalean into another (with respect to union) were used.
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Научная статья

Об эндоморфизмах аддитивного моноида подсетей
двухслойной нейронной сети

А. В.Литаврин1B

1 Сибирский федеральный университет, Красноярск, Российская Федерация
B anm11@rambler.ru

Аннотация. Ранее для каждой многослойной нейронной сети прямого распростра-
нения сигнала (далее нейронная сеть) вводились конечные коммутативные группо-
иды, которые получили название аддитивные группоиды подсетей. Данные груп-
поиды тесно связаны с подсетями нейронной сети, над которыми они построены.
Группоид является моноидом тогда и только тогда, когда он построен над двухслой-
ной нейронной сетью. Ранее для данных группоидов изучались эндоморфизмы и их
свойства, а также были построены некоторые эндоморфизмы, но исчерпывающего
поэлементного описания не получено. Было показано, что всякий конечный моно-
ид изоморфен некоторому подмоноиду моноида всех эндоморфизмов подходящего
аддитивного группоида подсетей для некоторой подходящей нейронной сети.
В работе рассмотрены эндоморфизмы аддитивных группоидов подсетей двухслой-
ных нейронных сетей. Основным результатом исследования является поэлементное
описание моноида всех эндоморфизмов аддитивных моноидов подсетей, построен-
ных над двухслойной нейронной сетью. Поэлементное описание получено за счет
построения общего вида эндоморфизма. Общий вид эндоморфизма параметризуется
эндоморфизмами подходящих булеанов относительно операции объединения. Поэто-
му изучены эндоморфизмы данных булеанов, в том числе полукольца эндоморфиз-
мов данных булеанов относительно объединения. Кроме того, для описания общего
вида эндоморфизма аддитивного моноида подсетей использованы гомоморфизмы
одного буалеана в другой (относительно объединения).

Ключевые слова: эндоморфизм группоида, многослойная нейронная сеть прямого
распространения сигнала, подсеть многослойной нейронной сети
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1. Introduction

This paper is a continuation of the study [4] in which the algebraic
properties of some finite commutative groupoids AGS(𝒩 ) are studied.
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Groupoids AGS(𝒩 ) are built over a given multilayer neural network 𝒩
with direct signal distribution. The elements of this groupoid model the
subnets of the neural network 𝒩 in the sense of Definition 4 from [4].

In [4], the groupoids AGS(𝒩 ) are called it additive subnet groupoids of
multilayer neural network 𝒩 .

Among the main problems considered in the work [4] the problem was
of element-wise description of the monoid of all endomorphisms of the
groupoid AGS(𝒩 ). It was shown that every finite monoid can be isomor-
phically embeddable into the monoid of all endomorphisms of the groupoid
AGS(𝒩 ) for a suitable neural network 𝒩 . Some endomorphisms of the
groupoid AGS(𝒩 ) have been described, but an exhaustive description of
the elements End(AGS(𝒩 )) was not received.

It turned out that the groupoid AGS(𝒩 ) is a monoid if and only if 𝒩
is a two-layer neural network (𝑛(𝒩 ) = 2). Moreover, if 𝒩 is a two-layer
neural network and 𝑀1 and 𝑀2 are the set of all neurons lying in the
first and second layers, and 𝐵(𝑋) := (2𝑋 ,∪), then the equality AGS(𝒩 ) =
𝐵(𝑀1)×𝐵(𝑀2) holds (equality of sets of supports and equality operations;
a stronger condition than isomorphism).

The main result of this work is the element-wise description of the
monoid of all endomorphisms End(AGS(𝒩 )), when 𝑛(𝒩 ) = 2. To describe
endomorphisms from End(AGS(𝒩 )) are used homomorphisms from 𝐵(𝑋)
to 𝐵(𝑌 ) and endomorphisms from End(𝐵(𝑋)) for special 𝑋. The paper
considers ways of describing such homomorphisms and endomorphisms. It
is well known that the set of all endomorphisms of a commutative monoid
forms a semiring with respect to the standard addition of endomorphisms
and the composition of endomorphisms. In this paper, a special matrix
representation of the endomorphism semiring End(𝐵(𝑋)) is obtained for
an arbitrary finite set 𝑋.

There are many studies on the properties of endomorphisms (in par-
ticular, automorphisms) of algebraic systems (see, for example, [9; 11; 12]).
In particular, their element-wise descriptions. The properties of automor-
phisms of geometric objects are studied (see, for example, [8]).

Basic information about neural networks (in particular about multilayer
neural networks) can be found in [2–5; 10]. It should be noted that the
approach to determining the subnet of a multilayer neural network differs
from the approach to determining the subsystem of a given algebraic sys-
tem. In the theory of abstract automata (see, for example, the survey [1;6]),
an abstract automaton is identified with a three-base algebraic system.
The work [7] introduces the concept abstract neural network. This concept
is similar to the concept of an abstract automaton, but differs in some
specificity that is convenient for applying this abstraction to the study of
issues specific to neural networks (in particular, training). There also arises
the concept of an abstract neural network subnet, built as a subsystem of the
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corresponding three-base algebraic system. This approach is fundamentally
different from the approach of introducing the concept of subnet in [4].

It should be noted that, in essence, it is impossible to study the in-
ternal structure of a neural network from the standpoint of abstract au-
tomata, therefore, from the standpoint of abstract neural networks. This
detail is well known and was noted by V.M. Glushkov in the review [1,
p.59,conclusion].

2. Basic definitions related to neural networks

This section will define the notions of a multilayer neural network, its
subnet and groupoid AGS(𝒩 ).

In this paper, sets will be denoted in capital Latin letters, and tuples
composed of sets, in capital Latin letters with a bar. A tuple of empty sets
will be denoted by the symbol ∅ := (∅, ...,∅) (the length of such a tuple
will always be clear from the context).

By default, R is the set of all real numbers. By 𝐹 (R) we denote the set
of all functions ℎ : R → R (here it is understood that the domain of the
function ℎ coincides with the set R).

Next, we give definition 3 from [4].

Definition 1. Let the following objects be given:
1) a tuple (𝑀1, ...,𝑀𝑛) of length 𝑛 > 1 of finite non-empty sets, where

𝑀𝑖 ∩𝑀𝑗 = ∅ is true for 𝑖 ̸= 𝑗;
2) the set 𝑆 := (𝑀1 ×𝑀2) ∪ (𝑀2 ×𝑀3) ∪ ... ∪ (𝑀𝑛−1 ×𝑀𝑛);
3) the mapping 𝑓 : 𝑆 → R, which assigns a real number to each pair

from 𝑆;
4) the set 𝐴 :=𝑀1 ∪ ... ∪𝑀𝑛;
5) the mapping 𝑔 : 𝐴 → 𝐹 (R), which assigns to each element from 𝐴 a

function from 𝐹 (R);
6) the mapping 𝑙 : 𝐴 → R, which assigns to each element from 𝐴 some

number from R.
Then the tuple 𝒩 = (𝑀1, ...,𝑀𝑛, 𝑓, 𝑔, 𝑙) will be called a multilayer neural

network of direct distribution (in the framework of this work, just neural
networks).

The tuple (𝑀1, ...,𝑀𝑛) is interpreted as the main tuple of neurons in
the neural network 𝒩 , 𝑆 is interpreted as a set of synoptic connections.
The 𝑓 function defines the synoptic connection weights, and the 𝑔 function
defines the functions activation in each neuron. The 𝑙 function defines the
threshold values of neurons. The input layer will be called the set of neurons
𝑀1.

Information about the standard operation of a neural network as a
computational circuit can be found in [2–4] and others.

Известия Иркутского государственного университета.
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Let two tuples 𝑋 = (𝑋1, ..., 𝑋𝑛) and 𝑌 = (𝑌1, ..., 𝑌𝑛) of finite non-
empty sets be given. Then by 𝑋 ∪ 𝑌 we will denote the componentwise
union 𝑋 ∪ 𝑌 := (𝑋1 ∪ 𝑌1, ..., 𝑋𝑛 ∪ 𝑌𝑛).

If 𝑋 = (𝑋1, ..., 𝑋𝑛) and 𝑀 = (𝑀1, ...,𝑀𝑛) are two tuples whose com-
ponents are sets, then we say that the condition 𝑋 ⊆ 𝑀 if all inclusions
𝑋1 ⊆𝑀1, ..., 𝑋𝑛 ⊆𝑀𝑛 are true (componentwise inclusion).

Let (𝑋1, ..., 𝑋𝑛) be some tuple composed of finite sets, we say that the
tuple is continuous if for all different 𝑖, 𝑗 ∈ {1, ..., 𝑛} the following impli-
cation holds: if 𝑋𝑖 ̸= ∅ and 𝑋𝑗 ̸= ∅ and 𝑖 < 𝑗, then for all 𝑠 ∈ {𝑖, ..., 𝑗}
the inequality 𝑋𝑠 ̸= ∅ holds. The tuple ∅ is assumed to be continuous
by definition. For a tuple of sets to be continuous, it should not have
alternation of a non-empty set with an interval of empty sets, and then
again with a non-empty set.

Let us give definition 4 from [4].

Definition 2. Let the neural network be defined 𝒩 = (𝑀1, ...,𝑀𝑛, 𝑓, 𝑔, 𝑙)
and a continuous tuple 𝑋 = (𝑋1, ..., 𝑋𝑛) is given such that it contains more
than one component other than the empty set, and

(𝑋1, ..., 𝑋𝑛) ⊆ (𝑀1, ...,𝑀𝑛).

We assume that 𝑌 = (𝑌1, ..., 𝑌𝑚) is a tuple obtained from a tuple 𝑋 by
deleting components equal to the empty set, where 𝑚 ≤ 𝑛.

If 𝑓 ′ is a restriction of the function 𝑓 on the set

𝑆′ := (𝑌1 × 𝑌2) ∪ (𝑌2 × 𝑌3) ∪ ... ∪ (𝑌𝑚−1 × 𝑌𝑚)

and 𝑔′, 𝑙′ is the restriction of the functions 𝑔 and 𝑙 on the set 𝐴′ := 𝑌1 ∪
... ∪ 𝑌𝑚, then object

𝒩 ′ := (𝑌1, ..., 𝑌𝑚, 𝑓
′, 𝑔′, 𝑙′)

will be called subnet of the network 𝒩 . We say that the tuple 𝑋 induces
the subnet 𝒩 ′. The 𝑌 tuple is the main tuple of neurons in the 𝒩 ′ subnet.
In general, the tuples 𝑋 and 𝑌 can be different.

More information about neural network subnets can be found in [4].
Note that the proposed approach to defining the subnetwork of a neu-
ral network corresponds to works studying the applied aspects of neural
networks.

Construction of groupoids AGS(𝒩 ). Next, we formulate Definition
1 from [4] groupoid AGS(𝒩 ).

Definition 3. Let the neural network 𝒩 be defined with the main tuple
of neurons 𝑀 . The set of all possible continuous tuples 𝑋 ⊆ 𝑀 will be
denoted by the symbol AGS(𝒩 ).
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We assume that 𝑋 and 𝑌 are two arbitrary element from AGS(𝒩 ). Let’s
define a binary algebraic operation (+):

𝑋 + 𝑌 :=

{︃
𝑋 ∪ 𝑌 , 𝑖𝑓 𝑋 ∪ 𝑌 ∈ AGS(𝒩 )

∅, 𝑖𝑓 𝑋 ∪ 𝑌 /∈ AGS(𝒩 ).

Then the groupoid AGS(𝒩 ) := (AGS(𝒩 ),+) will be called the additive
groupoid of subnets of neural network 𝒩 .

If 𝒩 is a two-layer neural network, then for all 𝑋,𝑌 ∈ AGS(𝒩 ) the
equality holds 𝑋 + 𝑌 = 𝑋 ∪ 𝑌 and AGS(𝒩 ) = 𝐵(𝑀1)× 𝐵(𝑀2) (equality
of sets).

3. Some definitions and formulation of the main result

Let us formulate the necessary definitions. Let 𝐺 = (𝐺, ∘) be a monoid
and 1 ∈ 𝐺 is a neutral element of this monoid. Then the mapping 𝜑 : 𝐺→
𝐺 is called an endomorphism of the monoid 𝐺 if 1𝜑 = 1 and for all 𝑥, 𝑦 ∈ 𝐺
the equality is true

(𝑥 ∘ 𝑦)𝜑 = 𝑥𝜑 ∘ 𝑦𝜑. (3.1)

A semiring is a non-empty set 𝑆 with two binary algebraic operations
(+) and (*) such that (𝑆,+) is a commutative monoid, (𝑆, ·) is a semigroup,
addition and multiplication are related by left and right distributivity with
respect to addition, and a neutral element 𝑜 of the monoid (𝑆,+) satisfies
the identity 𝑜 · 𝑥 = 𝑥 · 𝑜 = 𝑜 (multiplicative property of zero). It is
well known that the set of all endomorphisms of a commutative monoid
with respect to the standard operation of addition of two endomorphisms
and the composition of two endomorphisms forms a semiring. Let 𝐺 be a
commutative monoid. Notation related to composition of endomorphisms.
We assume that 𝑥 ∈ 𝐺 and 𝜑 ∈ End(𝐺). Then 𝑥𝜑 is the image of the
element 𝑥 under the action of the endomorphism 𝜑. The composition of
two endomorphisms will be denoted by the symbol (·). If 𝜑1, 𝜑2 ∈ End(𝐺)
and 𝑥 ∈ 𝐺, then 𝑥𝜑1·𝜑2 := (𝑥𝜑2)𝜑1 .

Notation related to the sum of endomorphisms. Let be 𝜑1, 𝜑2 ∈ End(𝐺)
and 𝑥 ∈ 𝐺. Then, as usual, the sum (+) of two endomorphisms will denote
the mapping 𝜑1 + 𝜑2, which acts on 𝐺 according to the rule

𝑥𝜑1+𝜑2 := 𝑥𝜑1 + 𝑥𝜑2 .

It is well known that the sum of two endomorphisms of a commutative
monoid is again an endomorphism of this monoid.

Let 𝑋 be some finite set, 2𝑋 a Boolean of the set 𝑋. We will use the
notation 𝐵(𝑋) = (2𝑋 ,∪). In the framework of this paper, we consider the
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Boolean of some set only with respect to the operation (∪). It is well known
that 𝐵(𝑋) = (2𝑋 ,∪) is a commutative monoid consisting of idempotents.

We assume that 𝒩 is a two-layer neural network with the main tuple
of neurons (𝑀1,𝑀2). As noted in the introduction, the equality is true
AGS(𝒩 ) = 𝐵(𝑀1)×𝐵(𝑀2).

For any endomorphism 𝜏1 ∈ End(𝐵(𝑀1)) and any homomorphism 𝜏2 of
the monoid 𝐵(𝑀2) into the monoid 𝐵(𝑀1) we introduce the mapping

𝛼𝜏1,𝜏2(𝑈) = 𝑈 𝜏1
1 ∪ 𝑈 𝜏2

2 (𝑈 = (𝑈1, 𝑈2) ∈ AGS(𝒩 )).

The mapping 𝛼𝜏1,𝜏2 is a homomorphism from AGS(𝒩 )) = 𝐵(𝑀1) ×
𝐵(𝑀2) to 𝐵(𝑀1). Indeed, let 𝑈 = (𝑈1, 𝑈2) and 𝑉 = (𝑉1, 𝑉2) be two
arbitrary elements from AGS(𝒩 )). We have the equalities

𝛼𝜏1,𝜏2(𝑈 ∪ 𝑉 ) = (𝑈1 ∪ 𝑉1)𝜏1 ∪ (𝑈2 ∪ 𝑉2)𝜏2 = 𝑈 𝜏1
1 ∪ 𝑉 𝜏1

1 ∪ 𝑈 𝜏2
2 ∪ 𝑉 𝜏2

2 =

[𝑈 𝜏1
1 ∪ 𝑈 𝜏2

2 ] ∪ [𝑉 𝜏1
1 ∪ 𝑉 𝜏2

2 ] = 𝛼𝜏1,𝜏2(𝑈) ∪ 𝛼𝜏1,𝜏2(𝑉 ).

Thus, we have shown that 𝛼𝜏1,𝜏2 is a homomorphism.
For every homomorphism 𝜁1 of the monoid 𝐵(𝑀1) into the monoid

𝐵(𝑀2) and every endomorphism 𝜁2 ∈ End(𝐵(𝑀2)) we introduce the map-
ping

𝛽𝜁1,𝜁2(𝑈) = 𝑈 𝜁1
1 ∪ 𝑈 𝜁2

2 (𝑈 = (𝑈1, 𝑈2) ∈ AGS(𝒩 )).

The mapping 𝛽𝜁1,𝜁2 is a homomorphism of the monoid 𝐵(𝑀1)×𝐵(𝑀2)

into 𝐵(𝑀2). Indeed, let 𝑈 = (𝑈1, 𝑈2) and 𝑉 = (𝑉1, 𝑉2) be two arbitrary
elements from AGS(𝒩 )). We have the equalities

𝛽𝜁1,𝜁2(𝑈 ∪ 𝑉 ) = (𝑈1 ∪ 𝑉1)𝜁1 ∪ (𝑈2 ∪ 𝑉2)𝜁2 = 𝑈 𝜁1
1 ∪ 𝑉 𝜁1

1 ∪ 𝑈 𝜁2
2 ∪ 𝑉 𝜁2

2 =

[𝑈 𝜁1
1 ∪ 𝑈 𝜁2

2 ] ∪ [𝑉 𝜁1
1 ∪ 𝑉 𝜁2

2 ] = 𝛽𝜁1,𝜁2(𝑈) ∪ 𝛽𝜁1,𝜁2(𝑉 ).

Thus, we have shown that 𝛽𝜁1,𝜁2 is a homomorphism.

For any 𝜏1 ∈ End(𝐵(𝑀1)), 𝜁2 ∈ End(𝐵(𝑀2)), arbitrary homomorphisms
𝜏2 of the monoid 𝐵(𝑀2) into the monoid 𝐵(𝑀1) and 𝜁1 of the monoid
𝐵(𝑀1) into the monoid 𝐵(𝑀2) we introduce the mapping 𝜌 : 𝐵(𝑀1) ×
𝐵(𝑀2) → 𝐵(𝑀1)×𝐵(𝑀2) given by the rule

𝑈
𝜌
= (𝛼𝜏1,𝜏2(𝑈), 𝛽𝜁1,𝜁2(𝑈)) (𝑈 ∈ 𝐵(𝑋)×𝐵(𝑋)). (3.2)

Let us show that the mapping 𝜌 introduced by the rule (3.2) is an endo-
morphism of the monoid AGS(𝒩 ). Let 𝑈 = (𝑈1, 𝑈2) and 𝑉 = (𝑉1, 𝑉2) -
two arbitrary elements from AGS(𝒩 ). We get equalities

(𝑈+𝑉 )𝜌 = (𝛼𝜏1,𝜏2(𝑈+𝑉 ), 𝛽𝜁1,𝜁2(𝑈+𝑉 )) = (𝛼𝜏1,𝜏2(𝑈 ∪𝑉 ), 𝛽𝜁1,𝜁2(𝑈 ∪𝑉 )) =

(𝛼𝜏1,𝜏2(𝑈) ∪ 𝛼𝜏1,𝜏2(𝑉 ), 𝛽𝜁1,𝜁2(𝑈) ∪ 𝛽𝜁1,𝜁2(𝑉 )) = 𝑈
𝜌
+ 𝑉

𝜌
.

The main theorem in this work is the theorem
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Theorem 1. The set of all endomorphisms of the monoid AGS(𝒩 ) for
𝑛(𝒩 ) = 2 is bounded by all kinds of endomorphisms 𝜌.

Thus, an arbitrary endomorphism of the monoid AGS(𝒩 ) is parame-
terized by homomorphisms from AGS(𝒩 ) (𝑛(𝒩 ) = 2) to 𝐵(𝑀1), 𝐵(𝑀2).
These homomorphisms are parameterized by homomorphisms (in partic-
ular, endomorphisms) from 𝐵(𝑋) to 𝐵(𝑌 ), when 𝑋 = 𝑀1,𝑀2 and 𝑌 =
𝑀1,𝑀2. Therefore, in this paper we prove Proposition 1 (see the next
section).

Proposition 1 gives an element-wise description of all homomorphisms of
the Boolean 𝐵(𝑋) into 𝐵(𝐴). A consequence of Proposition 1 (see Corol-
lary 1, next section) is an element-wise description of all endomorphisms of
the Boolean 𝐵(𝑋) for an arbitrary finite set 𝑋.

For the monoid of all endomorphisms End(𝐵(𝑋)) for an arbitrary finite
set 𝑋 one can establish a matrix representation over a special semiring. As
noted above, End(𝐵(𝑋)) is a semiring under addition and composition of
two endomorphisms.

Next, we need basic binary logic functions: conjunction (we will denote
(∧)) and disjunction (we will denote (∨)). We will use the logical semiring
𝐵 = ({0, 1},∨,∧). The set of all possible square matrices of order 𝑛 with
elements from the ring 𝐵 will be denoted by 𝑀𝑛×𝑛(𝐵).

Theorem 2. For each finite set 𝑋 consisting of 𝑛 elements, the semiring
End(𝐵(𝑋)) of all endomorphisms of the monoid 𝐵(𝑋) = (𝐵(𝑋),∪) is
isomorphic to the semiring of matrices 𝑀𝑛×𝑛(𝐵) with elements from the
logical semiring 𝐵.

4. Homomorphisms from 𝐵(𝐴) to 𝐵(𝐶)

Consider homomorphisms from the Boolean 𝐵(𝐴) to the Boolean 𝐵(𝐶).
It is easy to show that the set 𝑄 = {∅} ∪ {{𝑥} | 𝑥 ∈ 𝐴} is a generating

set of the monoid 𝐵(𝐴).
General view of the homomorphism from 𝐵(𝐴) to 𝐵(𝐶). For each family

ℒ = {𝐿𝑥}𝑥∈𝐴 of sets from 2𝐶 define the mapping 𝜑ℒ given by the rule

𝑈𝜑ℒ =
⋃︁
𝑢∈𝑈

𝐿𝑢, ∅𝜑ℒ = ∅

for any non-empty set 𝑈 ∈ 𝐵(𝐴). Since the inclusions 𝐿𝑥 ∈ 𝐵(𝐶) and
𝑈 ∈ 𝐵(𝐴) holds, then the inclusion 𝑈𝜑ℒ ∈ 𝐵(𝐶) holds.

Lemma 1. The mapping 𝜑ℒ is a homomorphism of the monoid 𝐵(𝐴) =
(2𝐴,∪) into the monoid 𝐵(𝐶) = (2𝐶 ,∪).
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Proof. Next, 𝜑 := 𝜑ℒ. Let 𝑈 and 𝑉 be two arbitrary elements from 𝐵(𝐴).
Since the monoid 𝐵(𝐴) is commutative, associative, and idempotent, the
equality is true

(𝑈 ∪ 𝑉 )𝜑 =
⋃︁

𝑚∈𝑈∪𝑉
𝐿𝑚 =

(︃⋃︁
𝑢∈𝑈

𝐿𝑢

)︃
∪

(︃⋃︁
𝑣∈𝑉

𝐿𝑣

)︃
.

On the other hand, the equality is true 𝑈𝜑∪𝑉 𝜑 =
(︀⋃︀

𝑢∈𝑈 𝐿𝑢

)︀
∪
(︀⋃︀

𝑣∈𝑉 𝐿𝑣

)︀
.

Thus, we have shown that for any 𝑈, 𝑉 ∈ 𝐵(𝐴) the equality is true

(𝑈 ∪ 𝑉 )𝜑 = 𝑈𝜑 ∪ 𝑉 𝜑.

The lemmae is proved.

Obviously, if equality 𝐴 = 𝐶 is true and the family ℒ = {𝐿𝑥}𝑥∈𝐴 of sets
from 2𝐶 is defined, then 𝜑ℒ is an endomorphism of the monoid 𝐵(𝐴).

Proposition 1. Any homomorphism of the monoid 𝐵(𝐴) into the monoid
𝐵(𝐶) is a homomorphism 𝜑ℒ for a suitable family ℒ of subsets from 𝐵(𝐶).

Proof. Let 𝜑 be an arbitrary monoid homomorphism 𝐵(𝐴) to 𝐵(𝐶).
1. It is clear that ∅𝜑 = ∅. Consider the action 𝜑 on the generating set

𝑄. We assume that the image of the element {𝑥}, 𝑥 ∈ 𝐴 under the action
of 𝜑 is equal to the set 𝑊𝑥 ∈ 𝐵(𝐶).

We introduce a family ℒ = {𝐿𝑥}𝑥∈𝐴 of sets 𝐿𝑥 from 𝐵(𝐶) such that for
all 𝑥 ∈ 𝐴 the equality is true 𝐿𝑥 =𝑊𝑥.

The family ℒ is defined so that for all 𝑥 ∈ 𝐴 the equalities are true

{𝑥}𝜑ℒ = 𝐿𝑥 =𝑊𝑥 = {𝑥}𝜑 ({𝑥} ∈ 𝑄).

Thus, we have shown that every homomorphism 𝜑 acts on the set 𝑄 as
a homomorphism 𝜑ℒ.

It remains for us to show that 𝜑 acts on 𝐵(𝐴) ∖𝑄 as endomorphism 𝜑ℒ.
2. Suppose that 𝑈 ∈ 𝐵(𝐴) ∖ 𝑄. For this element, the decomposition

𝑈 = ∪𝑥∈𝑈{𝑥} is valid and the equalities are true

𝑈𝜑 =

(︃⋃︁
𝑥∈𝑈

{𝑥}

)︃𝜑

=
⋃︁
𝑥∈𝑈

{𝑥}𝜑 =
⋃︁
𝑥∈𝑈

{𝑥}𝜑ℒ =

(︃⋃︁
𝑥∈𝑈

{𝑥}

)︃𝜑ℒ

= 𝑈𝜑ℒ .

Thus, an arbitrary homomorphism 𝜑 acts on 𝐵(𝐴) as a homomorphism
𝜑ℒ for a suitable family ℒ.

If we assume in Proposition 1 (and its proof) that 𝐴 = 𝐶 = 𝑋, then we
obtain

Corollary 1. Any endomorphism of the monoid 𝐵(𝑋) is an endomor-
phism 𝜑ℒ for a suitable family ℒ = {𝐿𝑥}𝑥∈𝑋 of subsets from 𝐵(𝑋).
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5. Composition and sum of two endomorphisms 𝐵(𝑋)

Let there be given two families of sets ℒ = {𝐿𝑥}𝑥∈𝑋 , 𝒟 = {𝐷𝑥}𝑥∈𝑋
from 2𝑋 . The mappings 𝜑ℒ and 𝜑𝒟 are endomorphisms of 𝐵(𝑋). Then
the equalities are true

𝜑ℒ · 𝜑𝒟 = 𝜑𝒵 , 𝜑ℒ + 𝜑𝒟 = 𝜑𝒱 ,

where family members 𝒵 = {𝑍𝑥}𝑥∈𝑋 and 𝒱 = {𝑉𝑥}𝑥∈𝑋 satisfy the equali-
ties

𝑍𝑥 =

{︃⋃︀
𝑦∈𝐷𝑥

𝐿𝑦, 𝑖𝑓 𝐷𝑥 ̸= ∅
∅, 𝑖𝑓 𝐷𝑥 = ∅,

(5.1)

𝑉𝑥 = 𝐿𝑥 ∪𝐷𝑥. (5.2)

Indeed, let 𝑈 be an arbitrary element from 2𝑋 . Then the equalities hold

𝑈𝜑ℒ·𝜑𝒟 = (𝑈𝜑𝒟)𝜑ℒ =

(︃⋃︁
𝑥∈𝑈

𝐷𝑥

)︃𝜑ℒ

=
⋃︁
𝑥∈𝑈

𝐷𝜑ℒ
𝑥 =

⋃︁
𝑥∈𝑈

⎛⎝ ⋃︁
𝑦∈𝐷𝑥

𝐿𝑦

⎞⎠ =

=

⎡⎣𝑍𝑥 :=
⋃︁

𝑦∈𝐷𝑥

𝐿𝑦

⎤⎦ =
⋃︁
𝑥∈𝑈

𝑍𝑥 = 𝑈𝜑𝒵 ,

where 𝒵 = {𝑍𝑥}𝑥∈𝑋 . Equality (5.1) is proved.
On the other hand, the equalities are true

𝑈𝜑ℒ+𝜑𝒟 = 𝑈𝜑ℒ ∪ 𝑈𝜑𝒟 =

(︃⋃︁
𝑢∈𝑈

𝐿𝑢

)︃
∪

(︃⋃︁
𝑢∈𝑈

𝐷𝑢

)︃
=
⋃︁
𝑢∈𝑈

(𝐿𝑢 ∪𝐷𝑢) =

[𝑉𝑥 := 𝐿𝑥 ∪𝐷𝑥] =
⋃︁
𝑢∈𝑈

𝑉𝑢 = 𝑈𝜑𝒱 .

Equality (5.2) is proved.

6. Proof of Theorem 2

Further, we need the basic binary logical functions: conjunction (we will
denote (∧)) and disjunction (we will denote (∨)). We will use the logical
semiring 𝐵 = ({0, 1},∨,∧).

Further, we assume that the set 𝑋 is finite (|𝑋| = 𝑛) and ordered.
In accordance with this ordering, we will denote the elements of the set
𝑋 = {𝑥1, ..., 𝑥𝑛}.

Let a family of sets ℒ = {𝐿𝑥}𝑥∈𝑋 be given. Then the endomorphism 𝜑ℒ
is defined. Since the order is defined on the elements of the set𝑋, specifying
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the family ℒ is equivalent to specifying the tuple 𝐿 = (𝐿1, ..., 𝐿𝑛), where
𝐿𝑖 := 𝐿𝑥𝑖 .

For each endomorphism 𝜑𝐿, where 𝐿 = (𝐿1, ..., 𝐿𝑛) we define a square
matrix 𝐴𝐿 with elements from 𝐵 of order 𝑛 as follows:

1) 𝐴𝐿 = (𝑎𝑖𝑗);
2) 𝑎𝑖𝑗 = 1 if and only if 𝑥𝑖 ∈ 𝐿𝑗 ;
3) 𝑎𝑖𝑗 = 0 if and only if 𝑥𝑖 /∈ 𝐿𝑗 .

This way of assignment can be reformulated in words. If the component
𝐿𝑗 contains the element 𝑥𝑖, then the element in the 𝑗-th column and in the
𝑖-th row is equal to one, otherwise zero. Thus, the matrix 𝐴𝐿 is compiled
column by column.

The set of all possible square matrices of order 𝑛 with elements from the
ring 𝐵 will be denoted by 𝑀𝑛×𝑛(𝐵).

Next, consider the mapping 𝛼 : End(𝐵(𝑋)) →𝑀𝑛×𝑛(𝐵) defined by rule

𝛼(𝜑𝐿) = 𝐴𝐿.

From the way of constructing the matrix 𝐴𝐿 it can be seen that the
mapping 𝛼 is a bijection. Let us show that 𝛼 is an isomorphism between
the semirings End(𝐵(𝑋)) and 𝑀𝑛×𝑛(𝐵).

To show that 𝛼 is an isomorphism, we show that for any tuples 𝐿 =
(𝐿1, ..., 𝐿𝑛) and 𝐷 = (𝐷1, ..., 𝐷𝑛) from (2𝑋)𝑛 equalities are true

𝛼(𝜑𝐿 · 𝜑𝐷) = 𝐴𝐿 ·𝐴𝐷, (6.1)

𝛼(𝜑𝐿 + 𝜑𝐷) = 𝐴𝐿 +𝐴𝐷, (6.2)

where on the right stand the usual matrix multiplication and matrix addi-
tion.

Isomorphism of multiplicative semigroups of semirings. Next, we will
show that the equality (6.1). Let be

𝜑𝑍 := 𝜑𝐿 · 𝜑𝐷,

where, by virtue of (5.1), the equalities

𝑍𝑗 =

{︃⋃︀
𝑥𝑖∈𝐷𝑗

𝐿𝑖, if 𝐷𝑗 ̸= ∅
∅, if 𝐷𝑗 = ∅.

We have the equality 𝛼(𝜑𝑍) = 𝐴𝑍 . We assume that 𝐴𝑍 = (𝑧𝑖𝑗), 𝐴𝐿 =
(𝑎𝑖𝑗), 𝐴𝐷 = (𝑏𝑖𝑗) and 𝐴𝐿 ·𝐴𝐷 = 𝐶 = (𝑐𝑖𝑗) where

𝑐𝑖𝑗 =

𝑛⋁︁
𝑘=1

(𝑎𝑖𝑘 ∧ 𝑏𝑘𝑗) .

Let 𝑐𝑖𝑗 = 1. This means that there are elements 𝑎𝑖𝑘′ and 𝑏𝑘′𝑗 equal to
one. Which in turn means that 𝐷𝑗 contains the element 𝑥𝑘′ , and the set
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𝐿𝑘′ contains the element 𝑥𝑖. Hence, the set 𝑍𝑗 contains the element 𝑥𝑖,
therefore, the matrix 𝐴𝑍 contains the element 𝑧𝑖𝑗 = 1 = 𝑐𝑖𝑗 .

Let 𝑐𝑖𝑗 = 0. This is possible in one (and only one) of the cases:
1. all 𝑏𝑘𝑗 are equal to zero for any 1 ≤ 𝑘 ≤ 𝑛;
2. among the elements of 𝑏𝑘𝑗 there are nonzero elements, denote them

by
{𝑏𝑘1,𝑗 , 𝑏𝑘2,𝑗 , ..., 𝑏𝑘𝑠,𝑗},

but all elements {𝑎𝑖,𝑘1 , 𝑎𝑖,𝑘2 , ..., 𝑎𝑖,𝑘𝑠} are equal to zero.
In the first case, we get that the set 𝐷𝑗 is empty, therefore, the set

𝑍𝑗 is also empty. Hence, 𝑧𝑖𝑗 = 0 = 𝑐𝑖𝑗 (in this case, for any 𝑖). In the
second case, we get that the set 𝐷𝑗 contains elements {𝑥𝑘1 , 𝑥𝑘2 , ..., 𝑥𝑘𝑠} and
sets {𝐿𝑘1 , 𝐿𝑘2 , ..., 𝐿𝑘𝑠} do not contain element 𝑥𝑖, therefore, the following
conditions are true

𝑍𝑗 =

ℎ=𝑠⋃︁
ℎ=1

𝐿𝑘ℎ , 𝑥𝑖 /∈ 𝑍𝑗 .

This means that 𝑧𝑖𝑗 = 0 = 𝑐𝑖𝑗 (in this case, for specific 𝑖 and 𝑗).
Thus, we have shown that the matrices 𝐴𝑍 = (𝑧𝑖𝑗) and 𝐴𝐿 ·𝐴𝐷 = 𝐶 are

equal. Since 𝛼(𝜑𝐿 · 𝜑𝐷) = 𝛼(𝜑𝑍) = 𝐴𝑍 = 𝐴𝐿 ·𝐴𝐷 , then the identity (6.1)
also holds.

Isomorphism of additive commutative monoids of semirings. Let be

𝜑𝑉 := 𝜑𝐿 + 𝜑𝐷,

where by virtue of (5.2) the relations 𝑉𝑗 = 𝐿𝑗 ∪𝐷𝑗 .
We have the equality 𝛼(𝜑𝑉 ) = 𝐴𝑉 . We assume that 𝐴𝑉 = (𝑣𝑖𝑗) and

𝐴𝐿 +𝐴𝐷 =𝑊 = (𝑤𝑖𝑗) where 𝑤𝑖𝑗 = 𝑎𝑖𝑗 ∨ 𝑏𝑖𝑗 .
Let be 𝑤𝑖𝑗 = 1. Hence, 𝑎𝑖𝑗 or 𝑏𝑖𝑗 equal to one. Means what 𝑥𝑖 ∈ 𝐿𝑗

or 𝑥𝑖 ∈ 𝐷𝑗 , hence, 𝑥𝑖 ∈ 𝐿𝑗 ∪ 𝐷𝑗 = 𝑉𝑗 . Hence we obtain the equality
𝑤𝑖𝑗 = 𝑣𝑖𝑗 = 1.

Let be 𝑤𝑖𝑗 = 0. Therefore, 𝑎𝑖𝑗 = 0 and 𝑏𝑖𝑗 = 0. Hence, 𝑥𝑖 /∈ 𝐿𝑗

and 𝑥𝑖 /∈ 𝐷𝑗 , hence, 𝑥𝑖 /∈ 𝐿𝑗 ∪ 𝐷𝑗 = 𝑉𝑗 . Hence we obtain the equality
𝑤𝑖𝑗 = 𝑣𝑖𝑗 = 0.

Thus, we have shown that the matrices 𝐴𝑉 and𝑊 = 𝐴𝐿+𝐴𝐷 are equal.
Therefore, the equality (6.2) is also true.

Thus, we have proved Theorem 2.

7. Proof of the main theorem 1

1. Let 𝜑 be an endomorphism of the monoid AGS(𝒩 ) for 𝑛(𝒩 ) = 2 and
𝑈 from AGS(𝒩 ). Then the equalities are true

𝑈
𝜑
= (𝑅1(𝑈), 𝑅2(𝑈)),
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where 𝑅1 : AGS(𝒩 ) → 𝐵(𝑀1) and 𝑅2 : AGS(𝒩 ) → 𝐵(𝑀2). It is trivially
established that 𝑅1 is a homomorphism from AGS(𝒩 ) to 𝐵(𝑀1) and 𝑅2 is
a homomorphism from AGS(𝒩 ) to 𝐵(𝑀2). Indeed, since 𝑛(𝒩 ) = 2, then
𝑈 + 𝑉 = 𝑈 ∪ 𝑉 and for arbitrary 𝑈 and 𝑉 equalities hold

(𝑈 + 𝑉 )𝜑 = (𝑅1(𝑈 + 𝑉 ), 𝑅2(𝑈 + 𝑉 ));

(𝑈 + 𝑉 )𝜑 = 𝑈
𝜑
+ 𝑉

𝜑
= (𝑅1(𝑈), 𝑅2(𝑈)) + (𝑅1(𝑉 ), 𝑅2(𝑉 )) =

(𝑅1(𝑈) ∪𝑅1(𝑉 ), 𝑅2(𝑈) ∪𝑅2(𝑉 )).

Thus, the equalities are true

𝑅1(𝑈 + 𝑉 ) = 𝑅1(𝑈) ∪𝑅1(𝑉 ), 𝑅2(𝑈 + 𝑉 ) = 𝑅2(𝑈) ∪𝑅2(𝑉 ).

Next, we need a description of all endomorphisms from AGS(𝒩 ) to
𝐵(𝑀1) and 𝐵(𝑀2).

2. Let us show that all homomorphisms from AGS(𝒩 ) to 𝐵(𝑀1) are
exhausted by the homomorphisms 𝛼𝜏1,𝜏2.

Let 𝜙 be an arbitrary homomorphism from AGS(𝒩 ) to 𝐵(𝑀1). The
monoid AGS(𝒩 ) will be generated by the set 𝑇𝑙 ∪ 𝑇𝑟 ∪ {(∅,∅)}, where

𝑇𝑙 := {(∅, {𝑥}) | 𝑥 ∈𝑀2}, 𝑇𝑟 := {({𝑥},∅) | 𝑥 ∈𝑀1}.

Let 𝑈𝑥 := (∅, {𝑥}) ∈ 𝑇𝑙 and 𝑉 𝑦 := ({𝑦},∅) ∈ 𝑇𝑟. Then the equalities
hold

𝜙(𝑈𝑥) = 𝐻𝑥 ∈ 𝐵(𝑀1), 𝜙(𝑉 𝑦) = 𝐵𝑦 ∈ 𝐵(𝑀1), 𝜙((∅,∅)) = ∅.

We define two families of sets

ℒ = {𝐿𝑥}𝑥∈𝑀2 ⊆ 𝐵(𝑀1), 𝒟 = {𝐷𝑥}𝑥∈𝑀1 ⊆ 𝐵(𝑀1)

such that 𝐿𝑥 = 𝐻𝑥 and 𝐷𝑦 = 𝐵𝑦. Next, consider the endomorphism 𝜏1 =
𝜑𝒟 and the homomorphism 𝜏2 = 𝜑ℒ. It is easy to show that 𝛼𝜏1,𝜏2((∅,∅)) =
∅. Mapping 𝛼𝜏1,𝜏2 will satisfy the equalities

𝜙(𝑈𝑥) = 𝛼𝜏1,𝜏2(𝑈𝑥), 𝜙(𝑉 𝑦) = 𝛼𝜏1,𝜏2(𝑉 𝑦), 𝜙((∅,∅)) = 𝛼𝜏1,𝜏2((∅,∅))

for all 𝑥 ∈𝑀2, 𝑦 ∈𝑀1.
Further, let 𝑈 = (𝑈, 𝑉 ) be an arbitrary element from 𝐵(𝑀1)× 𝐵(𝑀2).

Consider the action 𝜙 on this element (the tuples 𝑈𝑥 and 𝑉 𝑦 are defined
above)

𝜙(𝑈) = 𝜙

⎛⎝⋃︁
𝑥∈𝑈

𝑈𝑥 ∪
⋃︁
𝑦∈𝑉

𝑉 𝑦

⎞⎠ =
⋃︁
𝑥∈𝑈

𝜙(𝑈𝑥) ∪
⋃︁
𝑦∈𝑉

𝜙(𝑉 𝑦) =
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⋃︁
𝑥∈𝑈

𝛼𝜏1,𝜏2(𝑈𝑥) ∪
⋃︁
𝑦∈𝑉

𝛼𝜏1,𝜏2(𝑉 𝑦) = 𝛼𝜏1,𝜏2

⎛⎝⋃︁
𝑥∈𝑈

𝑈𝑥 ∪
⋃︁
𝑦∈𝑉

𝑉 𝑦

⎞⎠ = 𝛼𝜏1,𝜏2(𝑈).

Thus, we have shown that on an arbitrary element 𝑈 from AGS(𝒩 ), the
homomorphism 𝜙 acts as a homomorphism 𝛼𝜏1,𝜏2 .

Similarly, one can show that every homomorphism 𝜑 from AGS(𝒩 ) to
𝐵(𝑀2) acts as a homomorphism 𝛽𝜁1,𝜁2 .

3. Thus, the homomorphism 𝑅1 is a suitable homomorphism 𝛼𝜏1,𝜏2 ,
and the homomorphism 𝑅2 is a suitable homomorphism 𝛽𝜁1,𝜁2 . And an
arbitrary endomorphism of the monoid AGS(𝒩 ) is an endomorphism of 𝜌
given by the rule (3.2). Theorem 1 is proved.

8. Conclusion

Thus, an arbitrary endomorphism of the monoid AGS(𝒩 ) is parame-
terized by homomorphisms from AGS(𝒩 ) (𝑛(𝒩 ) = 2) to 𝐵(𝑀1), 𝐵(𝑀2).
These homomorphisms are parameterized by homomorphisms (in partic-
ular, endomorphisms) from 𝐵(𝑋) to 𝐵(𝑌 ), when 𝑋 = 𝑀1,𝑀2 and 𝑌 =
𝑀1,𝑀2. Proposition 1 and its Corollary 1 give an element-wise description
of these homomorphisms and endomorphisms. And Theorem 2 gives more
detailed information about the structure of the semiring End(𝑋), for an
arbitrary finite set 𝑋.

These results are of theoretical and practical interest. These results can
be used to carry out calculations in the construction or theoretical study
of multilayer neural networks of direct signal propagation.
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