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Abstract. Dual techniques have been used in many engineering papers to deal with
singularity and ill-conditioning of the boundary element method (BEM). In the first part
of the two-part article, our efforts were focused on studying the theoretical aspects of
this problem, including the analysis of errors and the study of stability. We provided the
theoretical analysis for Laplace equation in elliptic domains with elliptic holes. To bypass
the degenerate scales of Dirichlet problems, the second and the first kinds of the null field
methods (NFM) are used for the exterior and the interior boundaries, simultaneously.
This approach is called the dual null field method (DNFM).

This paper is the second part of the study. Numerical results for degenerate models
of an elliptic domain with one elliptic hole at a + b = 2 are carried out to verify the
theoretical analysis obtained. The collocation Trefftz method (CTM) is also designed
for comparisons. Both the DNFM and the CTM can provide excellent numerical perfor-
mances. The convergence rates are the same but the stability of CTM is excellent and
can achieve the constant condition numbers, Cond = O(1).

Keywords: boundary element method, degenerate scales, elliptic domains, dual null
field method, collocation Trefftz methods, condition number

Acknowledgements: The reported study was funded by the Ministry of Science and
Technology (MOST), Grant 109-2923-E-216-001-MY3 and RFBR, research project 20-
51-S52003.



NUMERICAL EXPERIMENTS OF THE DUAL NULL FIELD METHOD 81

For citation: LiZ.C., HuangH. T., Zhang L. P., Lempert A. A., Lee M. G.Numerical Ex-
periments of the Dual Null Field Method for Dirichlet Problems of Laplace’s Equation
in Elliptic Domains with Elliptic Holes. The Bulletin of Irkutsk State University. Series
Mathematics, 2022, vol. 39, pp. 80-95.

https://doi.org/10.26516 /1997-7670.2022.39.80
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YHucsieHHbIE 3KCIIEPUMEHTHI JBOMCTBEHHBIM METO/I0M
HYyJieBOro noJisg B 3aja4ve upuxise nna ypaBHenus Jlansaca
B JUIMNITUYECKUX 00JIaCTAX C JLJIMNTUIECKUMI OTBEPCTUSIMU
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AnnHotanus. /IBoiiCTBEHHbIE METOABI YACTO HCIOJIB3YIOTCS JJIsl PEIICHUsT IPOOJIEeMbI
CHUHTYJIIPHOCTA U IUIOXOH OBYCJIOBJIEHHOCTH METOZA IpaHMYHbIX dj1ementos (MI'D). B
MEePBOil YaCTH PAbOTHI U3y IAIOTCS TEOPETHIECKUE ACIIEKTHI JJAHHON IPOOJIEMBbI, BKJIIOYAsT
aHaJIM3 OMMOOK U UCCJIeI0OBaHue yCToNYuBoCcTH. TakK, aBToOpaMu ObLI BBIIOJHEH AHAJINA3
ypaBHeHus Jlammaca B JIUITHYECKUX OOTACTSX € JUTUITUIECKUMU OoTBepcTusaMu. Jist
TOro YTOOBI IIPEOIOJIETh AJITOPUTMHUYIECKYIO CUHIYIpHOCTL (degenerate scale problem) B
3agaqe dupuxite, Bropoit u nepsoiit Buasl MHII ncrmonb3oBamucs jist BHEITHUX U BHYT-
PEHHUX I'PDAHUI] OJHOBpeMeHHO. JIaHHBIN MMOAXOZ MBI HA3BAJIM METOJIOM JIBONCTBEHHOI'O
uysnesoro noua (JIMHIT).

Hacrosimiast craTbst siBjIsieTcst BTOPOil 9acThIO MCCIEJOBAHUSI. 31eCh IPEICTaBIECHbI pe-
3yJIBTATBI BBIYACIUTEIbHBIX S9KCIIEPUMEHTOB J1JIsl BBIPOXKJIEHHBIX MOJIEJIEH JITUITHIECKOIA
00JIACTH C OJTHAM JIIUITUIECKUM OTBEPCTHEM IPH @+ b = 2 1151 IPOBEPKH MOJIy 9€HHOTO
TeopeTUYeCcKoro anajmsa. Takke il CDABHEHHsI PE3yJIbTaTOB pa3paboTaH MeToJ Ha OC-
nose koyutokanuu Tpedbdua (CTM). I DNFM, n CTM noKasplBAIOT OTJIMIHBIE PE3YITh-
TaThl. VIX CKOPOCTH CXOAMMOCTH OIMHAKOBA, IIpu 3ToM ycroituusocts CTM npeBocxomna
1 HO3BOJISIET JOCTUYb IIOCTOSIHHBIX uncest obyciosyenHocru, Cond = O(1).

KirodeBble ciioBa: MeTOJ IPDAHUYHBIX JIEMEHTOB, BBIPOKIEHHBIE IITKAJIBI, SJIAITH-
4JecKasi 00JIaCTb, JBOWCTBEHHBIN MeTOJ HYJIEBOIO IOJst, Meron Kosutokanuu Tpedddia,
9HCJIO O0YCTIOBIEHHOCTH
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1. Introduction

Dual techniques have been used in many engineering papers (see [1-3;
14]) to deal with singularity and ill-conditioning of the boundary element
method (BEM). Our efforts are paid to explore theoretical analysis to fill up
the gap between theory and computation. Our group provides the analysis
for Laplace equation in circular domains with circular holes in [9] and
elliptic domains with elliptic holes ( [12]) in [10]. When the field nodes are
located on the exterior elliptic boundary, the degenerate scales of algorithm
singularity occurs at a + b = 2 [5], where a and b are two semi-axes of the
exterior ellipse. It is too complicated to find all pitfall nodes of the null
field method (NFM) causing algorithm singularity, as done in [5]. However,
when the field nodes are confined on the same ellipses, the degenerate scales
may be bypassed, see [10].

To guarantee the non-singularity of coefficient matrices obtained, other
numerical algorithms should be solicited. In [1], a self-regularized method
is proposed in the matrix level to deal with non-unique solutions of the
Neumann and Dirichlet problems which contain rigid body mode and de-
generate scale, respectively. In [3], they have examined the sufficient and
necessary condition of boundary integral formulation for the uniqueness so-
lution of 2D Laplace problem subject to the Dirichlet boundary condition by
five regularization techniques, namely hypersingular formulation, method
of adding a rigid body mode, rank promotion by adding the boundary
flux equilibrium (direct BEM), CHEEF method and the Fichera’s method
(indirect BEM). In [4], they revisited the problem of an infinite plane with
two identical circular holes by using the complex variables instead of using
the degenerate kernel. The complex variables provide another way to solve
these problems and it was easier than the degenerate kernel to understand.
They have analytically derived the degenerate scale and compare the result
with that of the degenerate kernel, and the equivalence is also proved.

The error analysis of the DNFM is made for elliptic domains with one
elliptic hole to reach the optimal convergent rates and the bounds of con-
dition numbers of the DNFM of a simple case are derived to display good
stability in [10]. More important results are given in this paper. The
dual null field method (DNFM) is studied to present numerical experi-
ments for Laplace’s equations with elliptic domain with elliptic holes to
avoid the algorithm singularity. Numerical results for degenerate models
at a + b = 2 are carried out to verify the theoretical analysis made in [10].
Besides, the collocation Trefftz method (CTM) in [8] is also designed for
comparisons. Both the dual null field method and the CTM can provide
excellent numerical performances. The CTM offers the constant condition
numbers, but the dual null field method may link the BEM and the original
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NFM for arbitrary solution domains, where the original NFM denotes the
algorithms using piecewise polynomials as those in the BEM, instead of
the semi-analytic solutions in this paper. This paper with [9] and [10] may
shorten some gap between computation and theory of the dual null field
method (DNFM).

This paper is organized as follows. In the next section, for elliptic
domains with one elliptic hole, the dual null field method (DNFM) are
described, and the algorithm of the DNFM is discussed. In Section 3, the
theoretical outcomes of the errors and stability are stated. In Section 4,
numerical experiments of the dual techniques and the CTM are reported.
In the last section, a few concluding remarks are made.

2. The Dual Null Field Method in Elliptic Domains with
Elliptic Holes

The elliptic coordinates are defined in [13] by
x = ogcoshpcost, y = ogsinh psiné, (2.1)

where o9 > 0 and two coordinates (p, ) have the ranges: 0 < p < oo and
0 < 6 < 27w. More characteristics of elliptic coordinates are provided in [12].
Denote the large ellipse Sp with p = R, where the elliptic coordinates
(p,0) are given by (2.1) with the origin (0,0). Also denote a small ellipse
Sr, C Sgr with p = Rj, where the other (i.e., local) elliptic coordinates
(p,0) are given by

Z =oy1coshpcosf, 3= oysinhpsinb, (2.2)

where o1 > 0. This Cartesian system (z,y) with the origin (z1,y1) is
rotated from the axis X, by a counter-clockwise angle © as in Figure 1.

Figure 1. The ellipse Sg with an elliptic hole Sg, .

The coordinate transformations between (p,6) and (p,#) are given in
(2.10) and (2.14) below.
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Denote the annular domain by S = Sg \ Sg,, and its boundary by
0S = 0Sr U OSR,. In this paper, consider the Dirichlet problem only,

’u  0%u )
u=f on OSg, u=g¢g on O0Sg, (2.4)

where f and g are the known functions. On the exterior elliptic boundary
0SR, suppose that there exist approximations of series expansions (see [12]),

M

u=f~ag+ Z{ak coskf + by sinkf} on OSg, (2.5)
k=1

ou 1 M

oy = B {pg + > {pr cos kf + gy sin k@}} on 9Sp,  (2.6)

k=1

where ay, by, pr and g are coefficients, and 79(6) = \/sinh2 R +sin?6. On
the interior elliptic boundary 0Sg,, similarly

N
u=gr~ag+ Z{Ezk cos kO + by sinkf} on OSg, (2.7)
k=1
on_ _Ou 1 D +§N:{_ coskf + qpsinkf} v on OSg,, (2.8)
Y - aﬁ ~ 0_17_1(5) Po ra Dk dk Ris .

where @, by, b, and gy are coefficients, and 71 (0) = V/sinh? Ry + sin? 4. For
the Dirichlet problem, the coefficients aj and by, in (2.5) and aj and by in
(2.7) are known, but the coefficients p and ¢ in (2.6) and p and g in
(2.8) are unknown to be sought.

For the numerical computation of explicit algebraic equations, the coor-
dinate transformations between different elliptic coordinates are needed. In
general, the axes of the small ellipse are not along the X and Y axes. The
local Cartesian coordinates X'O'Y” are located from the standard Cartesian
coordinates XOY by rotating a counter-clockwise angle © € [0,7), see
Figure 1. There exist the relations of coordinates,

'\ [ cos® sin®© x x\ [ cos© —sin® z
y )]\ —sin® cosO© y)> \y) \sin® cosO y )
Denote the local elliptic coordinates (5,6) in X’O'Y" as
Z = oy coshpcos, § = oysinhpsind, (2.9)

where o1 > 0. We cite from [12] the explicit formulas of the transformations
between two different elliptic coordinates. The transformation from (p, )
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of (2.1) to (p, ) of (2.2) is given by
T {(p.0) ~ (5.0)}, (2.10)

where
p =sinh Y (F(z,9;01)), 0= COS_l(al%shﬁ , (2.11)

where the function F(x,y;0) is defined as

1
F(x,y;0) = \@U\/(:UZ + 42— 02) + /(22 + y2 — 02)2 + do2y2, (2.12)

and the coordinates are
Z\ [ cos® sin® ocoshpcost — x1 (2.13)
y) \ —sin® cos®© osinhpsin® —y; ) - '
The inverse transformation from (7, ) to (p,6) is given by
T {(5,0) > ()}, (2.14)

where
T

p =sinh Y (F(z,y;0)), 0= cos™( (2.15)

ocoshp”’

x\ ([ cosO —sin® o1 cosh pcos f T
<y> N <sin@ cos © > (alsinhﬁsin9>+ <y1) (2.16)

2.1. THE DULL NULL FIELD METHODS (DNFM)

and

From [10], we have derived the dual null field method with explicit
algebraic equations and are given below,

o) =
gﬁemt(paeapv 9) (217)

007-0 (p,0) { Z ke " (ay, sinh kR cos k6 + by, cosh kR sin k0)

M
—po — Z e "P(py cosh kR cos kO + g, sinh kR sin k:H)}
k=1

1
—7{ cos(n — 17)po + Z ke~ *P{a, sinh kR; cos[k — n + 7]
N
+by cosh kRy sin[kf — n + 7]} + Z e P {py, cosh kR cos[kf — 1 + 7]
k=1

Gy sinh kR, sin[kf — 7 —f—ﬁ]}} —0, p>R,p> Ry,
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and

Lint(p.0:p.0) = ~[R +In(7))lpo (2.18)

M
1
+ Z %e_kR{pk cosh kp cos kO + g, sinh kpsin k0}

Mz
w)—n

—[R1 + ln —e kR {py cosh kp cos kf + G sinh kpsin kO}
k=1
M
+ag + Z e_kR{ak cosh kp cos kf + by, sinh kp sin k6}
k=1
N
—ag — Z e *1{a, cosh kp cos kO + by sinh kpsink0} =0, p < Ry.
k=1

2.2. ALGORITHMS OF DuAL NuLL FIELD METHOD
Denote the explicit equations (2.17) and (2.18) by
Dezt(ﬂy 6; /67 é) = 07 Eint(pae;ﬁ7 é) =0. (219)

Choose the uniform nodes on the same ellipses,

(p,0) =(R+¢,jA0), j=0,1,..,2M, (2.20)
(p,0) = (R, — €,jA0), j=0,1,...,2N, (2.21)
where ¢ > 0, 0 < € < Ry, A9 = 2]\2/[7;_1 and Af = 2]\2,’_7_1. We obtain

2(M + N) + 2 collocation equations of the NFM,

]\;Ujpezt(R_F €, JAO; ﬁj?e_j) = wjf(JA0)7 J=0,1,...,2M, (222)

VWi Lint(p;, 05 R1 — & jA0) = Jwjg(jAF), j=0,1,..,2N, (2.23)

where the corresponding coordinates (p;,6;) and (pj,0;) can be evaluated
from (R+e¢, jAQ) and (R;—¢, jA), based on the coordinate transformations
(2.10) and (2.14). The wights wy = 1 and w; = 2 for j > 1. By following [8],
Eqgs. (2.22) and (2.23) are called the collocation Trefftz method (CTM).
Egs. (2.22) and (2.23) lead to the following linear equations,

Ax =b, (2.24)

where the matrix A € R™*", the vector x(€ R"™) = [po, Pk, Gk, Do, Pk> Q]
and n = 2(M+N)+2. The unknown coefficients can be obtained by solving
(2.24) if matrix A is nonsingular. When p = R and p = R}, e = € = 0,
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and the collocation equations of the NFM lead to those of the interior field
method (IFM) [6].

2.3. REMOVAL OF ALGORITHM SINGULARITY

Let us discuss the degenerate scales of the DNFM. We have a proposition
without proof, see [10].

Proposition 1. For Laplace’s equation in elliptic domains with one ellip-
tic hole, when a+b = 2, there do not exist degenerate scales of the DNFM.
When a 4+ b # 2, the statement is true if constant p (> R) and not small
M are chosen.

3. Analysis of Errors and Stability

3.1. ERROR BOUNDS

We have explored in [10] the analysis for elliptic domains with one elliptic
hole, and here we just present their convergence and stability outcomes for
reference.

Define the norm ||v||§ = \/wQ Jos, veds + faSRl v2ds, we have the fol-

lowing theorem.

Theorem 1. Suppose v € HP(OSR), u, € HP7Y(OSR) (p > 2), u €
H°(0Sgr,) and u, € H°1(0SR,) (¢ > 2), and the exact coefficients of the
Dirichlet conditions in (2.5) and (2.7) be given. Then the solutions from
the DNFM (2.17) and (2.18) have the following bound,

. 1
Ju = war-llsr < €4 posa + lwllp-r0sy)  (3.1)

m(”“
1
v tlloose, + s llar.os,) -

We choose p = R and p = R;. For simplicity, consider the simple case:
(1) the symmetric cases gy = gy = 0 and M = N, and (2) the same elliptic
coordinates with (p,0) = (p,0) are used, i.e., 0o = 01,21 =y = 0,0 =0
and 7 = 7. We have a theorem about the condition number of the simple
case.

Theorem 2. Under the simple case of elliptic domains with one elliptic
hole, for the DNFM (2.22) and (2.23) at € = € = 0, there exist the bounds,

Cond(A) = O(M). (3.2)
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4. Numerical Experiments

4.1. Two COMPUTED MODELS

Consider a large elliptic domain with a small elliptic hole, as shown in
Figure 2. The large ellipse is defined by a = 2.5, b =2, 09 = Va2 — > = 1.5
and

x =ogcosh Rcosf, y = opsinh Rsin6. (4.1)

From tanh R = % = % = 0.8, we have R = 1.0986. The small ellipse is

-2

Figure 2. Model Problem on the ellipse Sg with an elliptic hole Sg, .

defined by @ = 1,b = 3, and 0y = Va2 — b2 = @, where the local elliptic
coordinates with origin (—1,0) are given by

x =opcoshRycosf —1, y=o;sinhR;sinf. (4.2)

For simplicity in computation, the long axis of the small ellipse is chosen
along semiaxis X with ® = 0. From tanh Ry = %, we have R; = 0.5493.
The Dirichlet condition is given by

u=ap=1 ondSr, wu=ay=0 ondSk. (4.3)

Such a problem is called Model Problem in this paper.
We design Degenerate Model as follows. The exterior large ellipse SR
with a + b = 2 as in Figure 3. Choose op = 1.5, and obtain from (2.1)

a+b 2

R=1In =In — = 3.79367, (4.4)
0o 0o

a =ogcosh R =1.5625, b=2—a =0.4375.
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Choose the interior ellipse Sg, with origin (—0.5,0) and (@, b) = (0.5,0.1).
We have from (2.9)

1 =
tanh R; = 5 Ry =0.2040, o1 = Va2 — b? = 0.4899. (4.5)

When the Dirichlet condition is also given by (4.3), Degenerate Model is
called in this paper.

p=R

0 X

—0.4375

Figure 3. Degenerate Model on the ellipse Sg at a + b = 2 with an elliptic hole Sk, .

4.2. By THE DuaL NuLL FiELD METHOD

The interior solutions are given, see [10].

Z 2)lpo — 7+ (217 (4.6)

up—n(p,0;p,0) = ap — [R+ ln(g

M N _
Pk kR Pk _kp yoo:
+ ; ?e cosh kp cos k6 + ; ?e P cosh kR coskf, in S.

Two explicit equations of the DNFM are obtained from (2.17) and (2.18)

- 1

0
- Leat(p,0;0,0) = ————
t(p r ) UOTO(pa 0)

M
—po — pre”*? cosh kR cos k6
ov { 0 ; k }

N
1 N k5 - _
—){ cos(n — 1)po + g pre P cosh kRy cos(kf —n + 17)} =0,

o171(p, 0 —
p=R, (4.7)
and
_ _ o0 o1
Lint(p,0;p,0) := a0 —ao — [R+1n(<7)]po — [B1 +In()]po (4.8)

o N _
+ ; %e_kR cosh kp cos k0 + kZ:l %e_le coshkpcosk =0, p < Ry.
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The (N + M + 2) collocation equations with p = R, p = R; are chosen as

1 0 ) R .
\/@M%ﬁeact(RmYAea Pjs 9]) = 07 J= 07 17 ) M? (49)

where weights wg = 1 and w; = 2(j > 1). Egs. (4.9) and (4.10) are ex-
pressed by Ax = b, where A € R"*" x € R",n = M+N+2. The condition
number and the effective condition number are defined in [7] by Cond =

b .
Tinax _eff = w O max Omin X
gmax and Cond_eff bl , where opax and are the maximal and the
Omin Uminlle

minimal singular values of matrix A, respectively, and ||x|| is the 2-norm of
vector x. We compute the errors, ||loc,055, €llsc,085, » [I€ll0,05x: IEll0,08,

and the norm ||e]|p, = H*?H(Z),aSR + HEH?J,BSRI'

For Model Problem, Table 1 shows the errors and the condition numbers.

Table 1
Errors and condition numbers of Model Problem by the DNFM, where

E=U—UM-N-

M [ Jelloos, | Ieloosm, | Neln | lelsoosy | Iellmosy, | Cond | Cond eff
6 | 1.270E-02 | 4.977E-03 | 1.364E-02 | 1.394E-02 | 5.461E-03 | 15.97 8.72
12 | 3.665E-04 | 2.847E-04 | 4.640E-04 | 4.643E-04 | 3.384E-04 | 29.97 16.66
18 | 1.733E-05 | 1.629E-05 | 2.378E-05 | 2.145E-05 | 2.006E-05 | 43.94 24.55
24 | 9.649E-07 | 1.036E-06 | 1.416E-06 | 1.184E-06 | 1.294E-06 | 57.91 32.42
30 | 5.870E-08 | 7.040E-08 | 9.166E-08 | 7.184E-08 | 8.873E-08 | 71.87 40.28

From Table 1, there exist the asymptotes,

lelln = 0(0.62), |lellso05, = 00.62Y), [lellco.a5,, = 0(0.63"),(4.11)
Cond = O(M), Cond.eff =0(M). (4.12)

For Degenerate Model, when M = 20, the errors and the condition
numbers are listed in Table 2 for different N. It can be seen the compatible
maximal errors on two boundaries are found as N = 5. Hence in computa-
tion, we choose the ratios (M : N) = (4 : 1). The errors and the condition
numbers are listed in Table 3.

From Table 3, there exist the asymptotes,

lelln = 0(0-69"), llellos.as, = O(0.69™), [llloc,p55, = O(0.69),(4.13)
Cond = O(M), Cond.eff =0(M). (4.14)
Eqgs. (4.11)-(4.14) coincide with the error and stability analysis in Section

3. In particular, by the DNFM not only can the algorithm singularity be
bypassed, but also the good stability as Cond = O(M) may be achieved.
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Table 2
Errors and condition numbers of Degenerate Model by the DNFM at M = 20.
N [ elloosn | Ielooss | Ieln | lelloosy | lellooosn, | Cond | Cond ek
3 | 1.83E-04 | 1.39E-03 | 1.40E-03 | 1.74E-04 2.50E-03 42.26 10.94
4 | 1.83E-04 | 1.95E-04 | 2.67E-04 | 1.75E-04 4.59E-04 48.10 12.50
5 | 1.83E-04 | 1.05E-04 | 2.11E-04 | 1.75E-04 1.78E-04 53.32 13.88
8 | 1.83E-04 | 1.74E-06 | 1.83E-04 | 1.75E-04 | 2.68E-06 | 66.58 17.39
10 | 1.83E-04 | 2.25E-08 | 1.83E-04 | 1.75E-04 3.11E-08 74.11 19.38
12 | 1.83E-04 | 4.45E-09 | 1.83E-04 | 1.75E-04 8.16E-09 80.95 21.18
15 | 1.83E-04 | 3.92E-11 | 1.83E-04 | 1.75E-04 6.90E-11 90.24 23.63
20 | 1.83E-04 | 3.47E-15 | 1.83E-04 | 1.75E-04 1.49E-14 | 103.90 27.22
Table 3

Errors and condition numbers for Degenerate Model by the DNFM with

(M:N)=@4:1).

M | |lello,osp | llello,osgn, | llelln | llellcc,055 | ll€lloc,085, | Cond | Cond_eff
12 | 3.55E-03 | 1.51E-03 | 3.85E-03 | 3.66E-03 | 2.55E-03 | 33.04 8.51
16 | 6.09E-04 | 1.85E-04 | 6.37E-04 | 6.23E-04 | 4.42E-04 | 43.15 | 11.20
20 | 1.83E-04 | 1.05E-04 | 2.11E-04 | 1.75E-04 | 1.78E-04 | 53.32 | 13.88
24 | 2.90E-05 | 2.83E-05 | 4.05E-05 | 3.02E-05 3.38E-05 63.50 16.57
28 | 1.19E-05 | 3.09E-06 | 1.23E-05 | 1.09E-05 7.24E-06 73.69 19.25
32 | 1.54E-06 | 1.58E-06 | 2.21E-06 | 1.68E-06 2.78E-06 83.87 21.93
36 | 8.17E-07 | 3.01E-07 | 8.71E-07 | 6.95E-07 4.92E-07 94.04 24.61
40 | 9.65E-08 | 8.10E-08 | 1.26E-07 | 1.05E-07 | 1.04E-07 | 104.22 | 27.29
4.3. DEGENERATE MODEL BY THE CTM
We may use the following particular solutions (PS) from [12],
CTM CTM o _
ups-n = upi—n(p:0;p,0) = ag + ao p (4.15)

M
+ Z e M ay, cosh kp cos kO + S, sinh kpsin k6}
k=1

N
+> e "{ay cosh kRy cos kf + By sinh kRy sin kf},
k=1
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where ag, Bk, @ and Bj are the coefficients. For the simple case, the

solutions (4.15) are simplified as
uSi % = u§ (0,03 p,0) = g + ao p (4.16)

M N
+ Z ake*kR cosh kpcos k6 + Z dke*kp cosh kR cos k6.
k=1 k=1
Compared (4.16) with (4.6), we find the relations of coefficients,

a0 01

Qo = —po, o =ao — [R+In(=7)lpo — In(=-)po.
=L a=1p (4.17)
Ok = 7Pky Ok = LDk :
From the Dirichlet condition (4.3), we have
uSE (R, 0;5,0) = oo + G (4.18)

M N
+ Z aie "R cosh kR cos k6 + Z age *P cosh kR, cos k) = 1,
k=1 k=1
uli % (p, 05 R, 0) = g + aig Ry (4.19)

M N
+ Z ake*kR cosh kp cos k6 + Z @ke*le cosh kR cos kf = 0.
k=1 k=1
The corresponding collocation equations at the nodes in (4.9) and (4.10) can
be obtained. For Degenerate Model, the errors and the condition numbers
are listed in Table 4.
Table 4
Errors and condition numbers of Degenerate Model by the CTM for (M : N) = (4: 1).

M [ lelloosy | Ieloosm, | el | lellwosy | Ielooosy, | Cond | Cond.eff
12 | 3.13E-03 1.52E-03 3.48E-03 2.81E-03 2.58E-03 13.99 3.58
16 | 4.99E-04 1.88E-04 5.33E-04 4.59E-04 4.48E-04 13.95 3.59
20 | 1.74E-04 1.06E-04 2.03E-04 1.53E-04 1.79E-04 13.94 3.60
24 | 2.51E-05 2.83E-05 3.78E-05 | 2.46E-05 3.38E-05 13.93 3.60
28 | 1.14E-05 3.09E-06 1.19E-05 1.00E-05 7.24E-06 13.92 3.61
32 | 1.36E-06 1.58E-06 2.08E-06 1.43E-06 2.78 E-06 13.91 3.61
36 | 7.88E-07 | 3.01E-07 | 8.43E-07 | 6.52E-07 4.92E-07 13.91 3.61
40 | 8.70E-08 8.10E-08 1.19E-07 | 9.42E-08 1.04E-07 13.91 3.61

From Table 4, there exist the asymptotes,
lelln = 0(0.69™), |lellsoosr = O0.69™), [lellco.a5,, = O(0.66™),(4.20)
Cond = O(1), Cond_eff = O(1). (4.21)
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Compared (4.20) and (4.21) with (4.13) and (4.14), the convergence
rates are the same, but the stability of the CTM is excellent, because both
Cond and Cond_eff remain unchangeable, when M — oo. Note that the
coefficients from the DNFM and the CTM indeed satisfy the coefficient
relations (4.17), due to limited space, we did not show the coefficients from
these two methods in this paper. Both the CTM and the DNFM offer the
excellent numerical performance, but the DNFM may link the BEM and
the original NFM, see [11].

5. Concluding Remarks

Let us give a few remarks, to address the novelties of this paper.

1. The DNFM for Laplace’s equation in circular domains with circular
holes was first proposed in [9]; and the first part of the current study in [10]
is devoted to the analysis of the DNFM for Laplace’s equation in elliptic
domains with elliptic holes. This paper with [9] and [10] may establish a
theoretical foundation and numerical validation to fill up some gap between
theory and computation.

2. For the degenerate case of an elliptic domain with an elliptic hole at
a + b =2 of the IFM, however, the renovated methods should be adapted.
The algorithms of the DNFM are proposed in [10], and the removal of
algorithm singularity is verified by the numerical experiments in Section 4.

3. Numerical experiments are carried out in Section 4, to support the
theoretical analysis made in [10]. Moreover, the collocation Trefftz meth-
ods (CTM) is also used for comparisons. Both the CTM and the DNFM
offer the excellent numerical performance. Although the CTM yields the
excellent stability with Cond = O(1), the DNFM may link the BEM and
the original NFM for arbitrary domains, see [11].
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