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1. Introduction

This article focuses on the following weakly regular Volterra equations

of the first kind
t
/ K(t,s)x(s)ds =g(t), 0<s<t<T, ¢g(0)=0, (1.1)
0

where jump discontinuous kernels are defined as follows
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Ki(t,s), t,s € mq,
K(t,s)=1Q o oviin.. (1.2)
Ky(t,s), t,s € my,

where m; = {t,s | ai_1(t) < s < a;(t)}, ao(t) =0, an(t) =t, i=1,n,
a;(t), g(t) € C[lo,T]v functions K;(t,s) have continuous derivatives with re-
spect to ¢ for (t,s) € cl(m;), Kn(t,t) # 0, a;(0) =0, 0 < a1(t) < aa(t) <

. < anp—1(t) < t, functions ay(t),...,a,—1(t) increase in a small neigh-
borhood 0 <t < 7,0 < a}(0) <... <al,_1(0) <1, cl(m;) denotes closure
of set m;.

Such weakly regular Volterra equations of the first kind with piecewise
continuous kernels were first classified and generalised by Sidorov [1] and
Lorenzi [2] and extensively studied by many authors during the last decade.
Here readers may refer to monograph [7] and references therein. Volterra
operator equations of the first kind were studied by Sidorov and Sidorov [8],
sufficient conditions for existence of unique solution are obtained. Tynda
et al [9] employed direct quadrature methods for solution of equations (1.1)
both in linear and nonlinear cases. Muftahov and Sidorov [10] considered
the numerical solution of nonlinear systems of such equations. Aghaei et
al [11] applied Legendre polynomials approximation method for solution of
solution of linear Volterra integral equations with piecewise continuous ker-
nels. The numerical solution of the first kind Volterra convolution integral
equations of the first kind with broad class of piecewise smooth kernels
was considered by Davies and Duncan [12]. They employed the cubic
convolution spline method and proved a stability bound. Such Volterra
models enjoys applications in modeling various dynamical processes in-
cluding storage systems [13;14]. Generalized quadratures were employed
by Sizikov and Sidorov [15] for solving singular Volterra integral equations
of Abel type in application to infrared tomography. The numerical solution
of the second-kind Volterra integral equation with weakly singular kernel
is considered in the piecewise polynomial collocation space by Linag and
Brunner [3]. For conventional review of Volterra integral equations theory
readers may refer e.g. to monographs by Brunner [4] and by Apartsyn [5].
Some studies of the Volterra integral equations of the first kind have led to
the paradoxes as noted by Tynda in zbMATH [6].

In this paper, we also implement the CESTAC method and apply the
CADNA library to find the numerical validation of the spline-collocation
method to solve the problem (1.1). The priority of this strategy is to find
the optimal step, accuracy and error of the numerical method. The paper
is organised as following. In Section 2, the spline-collocation method is
presented. Also the convergence of the method and smoothness of the
solutions are studied. The use of Floating Point Arithmetic (FPA) is
discussed in Section 3. The CESTAC method and its principle theorem
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can be found in Section 4. Using the this theorem we will show, how
can we replace the conditions (3.1) with (3.2). The numerical results are
illustrated in Section 5. Also in this section the comparative study between
the results of the stochastic arithmetic (SA) and the FPA can be found.

2. Polynomial spline-collocation method

In this section, we construct a numerical method for solving problem
(1.1) — (1.2), based on the approximation of the exact solution by contin-
uous local splines. First of all, within the framework of conditions (1.2),
we replace the original equation (1.1) of the first kind with an equivalent
equation of the second kind. To do this, we apply the standard technique
of differentiating the equation:

o) = [ hitalelds = 50, hie.s) = =G 50 = 205 )
Let us rewrite this equation in operator form
(I — H)x = f, where (I — H)x = x(t) —/ h(t,s)z(s)ds. (2.2)
0

2.1. NUMERICAL SCHEME

Let us introduce the partition of the interval [0,7] with grid points
ty, k=0,1,...,N. The introduced grid of nodes is not necessarily uniform
and depends on the smoothness properties of the exact solution. Denote
by Ag the segments Ay = [tg, tg+1], £ =0,1,..., N — 1. Let then

€ eNg, j=0,1,...,m—1; & =tg, & =ty k=0,1,...,N—1,
(2.3)
be additional nodes distributed in a certain way over the segment Ag. We
denote by P.(z,Ay) an operator, putting to the function z(t), t € Ay, in
correspondence an interpolation polynomial of degree r—1 for k =0, N — 1
constructed on knots & . Let then xx(¢) be a local spline, defined on [0, 7]
and composed of polynomials P,(x,Ag), k=0,1,...,N — 1.

We look for an approximate solution of (2.2) as a spline xy(t) with
unknown values zy(&1), k = 0,1,...,N —1, j = 0,1,...,r — 1, at the
knots of the grid.

The grid (2.3) depends on the considered class of functions to which the
exact solutions belong and will be specified below.

The values xN(ﬁli) in each segment Ay, kK =0,1,..., N — 1, are deter-
mined step-by-step by the spline-collocation technique from the systems of
linear equations
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(I — H)PN[IE(t), Ak] = PN[(lZ(t), Ak]—

PNL Phlh(t, )| Pxo(s), Adlds, A | = Pulfiu(t), A Y

Here Py is an operator of projection on the set of the local splines of
the form zn(t); fr(t) is a new right part of equation (2.1) including the
integrals over segments Aj;, j = 0,1,...,k — 1, processed at the previous
steps (in these domains, the spline parameters are already known):

b tz+1

Z/ (t,s)zn(s)ds.

=0 h
2.2. CONVERGENCE SUBSTANTIATION

Let us rewrite equation (2.1) and projective method (2.4) in the operator
form:

r—He=f H: X=X, XCC(Q), Q=10,T], (2.5)
xy — PvHxy = Pynf, Pv: X = Xy, Xy C C(Q), (26)

where X is a dense set in C'(§2) and Xy are the sets of corresponding local
splines.

Since the homogenous Volterra integral equation z— Hx = 0 has only the
trivial solution, the operator I — H is injective. Hence, the operator I — H
has the bounded inverse operator (I — H)™! : X — X. For all sufficiently
large N we have the estimates

10— P ey = 10T )+ (1 = o) oy <

(I — H) e <2 = H)lew) = A (const)
1= = H) M lewliH = PyHlleg) e
if 1
|H — PvH|| o)

QH(I H) Y@

Let us show that the last estimate holds for all sufficiently large V. Since
y(t) = (Hz)(t) € X and X is a dense set in C(Q), we have

|H — PyHl|lc) = sup max|z(t) — Pya(t)| < ey,
zeX,|z||<1 tEQ

where ey — 0 as N — oo. Therefore, |[H — PvHl|c) <
starting with sufficiently large N.

1
2((1—H)~ ]
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Thus, the operators (I — PyH)™! are exist and uniformly bounded and
equation (2.6) has a unique solution for all sufficiently large N [16]. Taking
into account that Pyz — x as N — oo for all x € X, we apply the
projection operator Py both to the left and the right parts of equation (2.5):
x—PyHx = Py f+x— Pyz. Subtracting this equation from (2.6), we obtain
(I — PyH)(zy — ) = Pyz — 2, and (zy —2) = ([ — PyH) Y (Pyz — 2).

This implies

ley —zllo < AllPye — zllo < en(X). (2.7)

Thus, the accuracy of the approximate solution obtained via projective
method (2.6) is determined by the accuracy ey (X) of the approximation
of functions from X by the local splines.

2.3. SMOOTH SOLUTIONS

In this chapter, we describe in more detail the projection method (2.4)
for the case of smooth input functions. Namely, let the functions K;(t, s),
i=1,2,...,n and g(¢t) in (1.1)-(1.2) satisfy additional smoothness condi-
tions. Let g(t) € CT10,T], K;(t,s) € C"*17[0,T])? (continuously differen-
tiable on each variable). The exact solution z(t) of the equation (1.1) in
this case belongs to X = C"[0,T] [7].

We introduce the uniform partition of the interval [0, 7] with grid points
ty = kWT, k=0,1,...,N. Denote by Ay the segments Ay = [tg, tpt1], k =
0,1,...,N — 1. Let ¢ = %tltle 4 besazley and j = 1,2,...,7 - 2; & =
tr, ffffl = try1; £ =0,2,..., N —1. where y; are the roots of the Legendre
polynomials of degree r — 2.

We denote by P,.(x, A) an operator, putting to the function z(t), t € Ay
in correspondence an interpolation polynomial of degree r — 1 for k =
0, N — 1 constructed on knots fi. Let then zn(t) be a local spline, defined
on [0,7] and composed of polynomials P,(xz,Ag), k=0,1,...,N —1. We
look for an approximate solution of the equation (1.1) as a spline xy(t),
0 <t < T, with unknown coefficients xi, k =0,N — 1. Let us describe the

process of definition :L‘?C At first we find the coefficients xé, 7=0,1,...,r—
1, from the system of equations

i3
Po(x, Do) (€]) — P, / W(E), 7)Po(, Ao) ()7, Ao | = Bo(f, Do) (€]). (2.5)
0

Here for integrals calculation in (2.8) we employ compound Gaussian quad-
rature rule with » — 2 points constructed on the auxiliary mesh linked to
the lines a;(t), i = 1,n, of the kernel discontinuities for each specific value
of N. Note also that all values of the unknown function in intermediate
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points are computed with help of interpolation. The resulting system of
linear algebraic equations is then solved by the Jordan-Gauss method.

In order to determine the coefficients 2, j = 0,1,...,r — 1, of the local
spline x x(t) on the segment A; we represent (2.1) in the following form

t et
£(t) / Wt rye(r)dr = fu(), fi(t) = £(t) + / Bt 7) Pr((7), Ag)dr.
134 0

(2.9)
The equation (2.9) is then solved by analogy, using the scheme (2.8). Re-
peating this process N times we obtain the approximate solution xx(t) of
the equation (2.1) over all interval [0, 7.
The error of approximation of the exact solution by the polynomials
constructed in this way at each step of the process can be estimated by the
following inequality (here readers may refer to [17])

Ly (%)T T

r!
(2.10)
Taking into account the general estimate (2.7) of the error of the method,
we obtain the error estimate in this case (X = C"[0,7T)

lz(t) = zn ()l clor = N7 (2.11)

Boikov and Tynda [18;19] established that such type numerical methods for
Volterra integral equations are also optimal with respect to complexity and
accuracy order. Thus, an effective projective method for solving equations
of the form (1.1) is proposed.

3. Using the Floating Point Arithmetic

In general form when floating point arithmetic (FPA) is employed it is
necessary to have the exact and approximate solutions z(t) and zy(t) and
also small value € to use the following conditions

z(t) —an(t) < e, or |zn(t) —an_1(t)] < e (3.1)

But the main problem is that the exact solution and optimal ¢ are un-
knowns. Thus by putting small values instead of €, the approximate solution
will not be accurate and for large values we will have many extra iterations.
In order to avoid these problems, the CESTAC method and the CADNA
library will be utilized [34]. In this novel method, the accuracy will be
obtained using successive iterations zy(t) and zy_1(¢t) and the following
condition

lxn(t) —xzn—1(t)| = @Q.0. (3.2)
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We apply this condition to control the accuracy of the method and avoid
extra iterations by using number of common significant digits (NCSDs)
between xn(t) and xny_1(t). @.0 in Eq. (3.2) displays the informatical
zero which can be produced only in the CESTAC method by the CADNA
library. It shows that the NCSDs of two successive approximations and
approximate and exact solutions are almost equal to zero. Vignes and
La Porte [33] have presented the method for the first time in 1974. In [34]
Vignes has described the CESTAC method to evaluate the numerical results
of some computational methods. Some conditions of the CESTAC method,
applying different tools to write the CADNA codes [35] and also some
properties of the SA have been studied by Chesneaux. All the CESTAC
evaluations should be accomplished using the CADNA library. Handling
this scheme, the optimal results, step and error of the method can be recog-
nized. Lamotte et al. has implemented the CESTAC method using C and
C++ codes. Jézéquel et al have discussed the new version of the CADNA
library using Fortran programs. Recently applying this method to control
the accuracy of the Taylor expansion method to solve the generalized Abel’s
integral equation [20], mathematical model of Malaria infection [21;23],
nonlinear fractional order model of COVID-19 [22], solving nonlinear shal-
low water wave equation [24], Adomian decomposition method, homotopy
perturbation method and Taylor-collocation method for solving Volterra
integral equation [25;28-30], dynamical control of the reverse osmosis sys-
tem [26;27], solving integrals using the numerical methods have been done.
Moreover the CESTAC method has been used to find the optimal conver-
gence control parameter of the homotopy analysis method in both fuzzy
and crisp forms [31;32].

4. CESTAC Method

The CESTAC method is a powerful and applicable tool to validate the
numerical results of numerical procedures. It should be applied based on
the SA. Let B be a set of reproduced values by computer. For real value
g%, we can find a member of set B such as G* with « mantissa bits of the
binary FPA as G* = g* — p2F~%¢, where the sign showed by p, the missing
segment of the mantissa presented by 27%¢ and the binary exponent of
the result displayed by E. Replaying 24 and 53 instead of «, the results
can be found by single and double accuracies. Assuming ¢ as a stochastic
variable and having uniformly distribution on [—1,1], we will be able to
make perturbation on the last mantissa bit of g*. Thus for the obtained
results of G*, the mean and standard deviation values (p) and (o) can
be found. Doing the mentioned scheme p-times p samples of G* can be
produced as ® = {G*{, 5 ooy G;} . Thus the mean and standard deviation

p * p * k) 2
can be found as follows G* = k:plak, o2 = kzl;Gk 7 &) .
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Using the mentioned computations the NCSDs of G* and G* can be

Ve[|

generated using the following relation Cg. . = logyg , where 75 is

the value of T distribution as the confidence interval is 1 — 4, with p — 1
freedom degree. Showing G* = @.0, the process stopped if we have G* = 0,
or CG‘*,G* <0.

In this method, the mathematical softwares Mathematica, Maple or
MATLAB must be replaced by the CADNA library. This library should be
implemented on the LINUX operating system and we all codes should be
compiled by C, C+4, FORTRAN or ADA. The main benefit of the method
is to find the optimal results, step size and error of the method.

Definition 1. For ¢1,0s € R the NCSDs can be defined as

) ¢
logyo ‘ﬁ =logyy |72p — 3|, O #0b,
Corpy = (4.1)

00, otherwise.

Theorem 1. Assume that x(t) and xzn(t) are the exact and approximate
solutions of Eq. (1.1). The NCSDs of two successive approrimations are
almost equal to the NCSDs of exact and approximate solutions and we have

Con@)enir(®) ~ Con(t),a(t)- (4.2)

Proof. Applying Definition 1 and Eq. (2.11) for to iterations zx(¢) and
xN+1(t) we can write

Conani(t) =
o en(t) +anea(t) | (1) 1
=logw 2(zn(t) $N+1(t))‘ = 1o TN (t) — N4 (t) 2’ -
B xn(t) 1 B
- 10g10 {L’N(t) _ xN+l(t) + 10g10 1- m(x]v(t) - xN"Fl(t))‘ -
1‘N(t)

= logyg

TN (t) — xN41(t) ’ + O (@n(t) —zn(t)).

We know zn(t) — zny41(t) = an(t) — x(t) — (xn41(t) — 2(t)) = En(t) —
E,+1(t), therefore we get

@) (%N(t) — l"N_H(t)) =0 (N_T) + 0O ((N + 1)_T) =0 (N_T) .
And finally we have

TN (t)
—xN+1(t)

Can(®exa() = 10810 | 0 +O(NT). (4.3)
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Repeating the process for exact and approximate solutions, the following
relation can be obtained

. $N(t)+$(t) - l‘N(t) 1 N
Can(t),a(t) = log1g 2 () = :c(t))‘ = logw | o =2 2’ =
= logyg gwégv%’—i—@(mv(t)—x(t)) = logyg xN(wth(—t)a;(t)‘—i_O (N7T).
(4.4)
Based on Egs. (4.3) and (4.4) we can write
Con@at) = Con()ania(t) =
— _an®) | zn(t) ey
= 10810 500 — a0 ‘ B0 [N ) — v () ’ rowT)=
o «TN(t) - x(t) —r\ _
= logo o () — e (D) +O(NT) =
logg O E%_r; +0 (N_T) =0 (N_T)

and Cppy(6).2(t) — Can(t)anii(t) = O (N*T . Clearly by approaching N to

infinity, O (N™") tends zero and we obtain Cpy (1) .o(t) = Con(t)onii(t): T

5. Numerical results

To illustrate the effectiveness of the suggested polynomial spline-colloca-
tion method, we present the results for two test equations.
Example 1. Consider the following integral equation

2t

/ (t + s)x(s)ds + / tsx(s)ds +

G

0

u\'ﬁ"\“
o
V)
8
—~
w
N~—
U
®
I
-
—
o~
SN~—
~
m
2
=
—~
o
—_
S~—

t
2

where the right side of the equation was chosen so that the exact solution
was x* = tsint. The following designations are used in the tables below:
N is the number of segments of the main partition, r is the parameter
responsible for the order of the spline, e = ||z (t) — 2*(t)||cy 7 -

Table 1
The error for (5.1) at the value r = 4.

N 1 5 10 20 50 100 500
6.57-10~% | 2.38.107 | 7.55-107° | 2.38-107 1% | 2.45.10712 | 7.65-10** | 2.46-10" 7

3
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Clearly, Tables 1 and 2 depend on the exact solution. For Table 3 we ap-
ply the CESTAC method and the results are obtained r = 5 and the optimal
results are Nype = 6,26(0.05) = 0.2498959, erroryy = 0.2328306E — 009.
Table 4 is obtained using the spline-collocation method and the FPA for
the same value of r. It is obvious that for e = 1072 the algorithm will be
stopped at N =1 and for € = 10719 we have N = 4.

Table 2
The error for (5.1) at the value r = 7.
N 1 5 10 20 50 100 500
e 2951077 4.71-10712 3.73-107** | 2.94-107%¢ | 4.82.1071° | 3.77-1072 | 1.39-10~%°

Figure 1. The exact and approximate solution of (5.1) with N =5, r = 8.

Table 3
Results of the CESTAC method for r = 5.
N rN41(t) lzn+1(t) — 2N (D)] lzn () — 2" (¢)]
1 0.2474730 0.2474730E-002 0.24227E-004
2 0.2498547 0.23816E-004 0.411E-006
3 0.2498938 0.391E-006 0.19E-007
4 0.2498958 0.19E-007 0.2328306E-009
5 0.2498959 0.6984919E-009 @.0
6 0.2498959 @.0 @.0

For small values of € we will need to provide many extra iterations with-
out improving the accuracy. Tables 5 and 6 present the results for r = 10
using the CESTAC method and we have Ny, = 2, 26(0.05) = 0.2498958. It
means that we do not need to produce a smaller partition and we can stop
at the specified value of N. Thus according to the obtained results, N = 2
is enough and we do not need to find more results.
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Table 4

The spline-collocation using the FPA for solving Example 1 with r = 5.

TN+1(t)

[on1(t) — 2" ()]

0.0024747309902353909851940001084329
0.0024985471725248365458815553649446
0.0024989386743724730905507916941931

0.0000242274732985254545492499338416
4.112910090798938616946773299e-7
1.97891614433491924583480814e-8

0.0024989586478083542254432950394024
0.0024989592632306142870868948525715
0.0024989588352407427373351401205658
0.0024989585878160274749598471153271
0.0024989584860466374183598209171807
0.0024989584529530046839100658673684
0.0024989584476966830750021803651006

1.842744377857000449971279e-10
7.996966978473436448102970e-10
3.717068262975918900782913e-10
1.242821110352165970730526e-10
2.25127209786165708749062e-11
1.05809117558331841749061e-11
1.58372333647410696771739%e-11

@OO\ICDU‘%OJ[\DHZ

10

Table 5
Results of the CESTAC method for r = 10.
lzn41(t) — 2N (1) lzn41(t) — 2" (¢)]
0.2498958E-002 @.0
Q.0 @.0

zn+1(t)
0.2498958
0.2498958

[y

Example 2. Consider the following integral equation

t
3t
1

(t—s)%x(s)ds—+ | cos(s)z(s)ds+ [ (1+sin(2s))z(s)ds = f(t), t € [0;2],

o
wle

Wl
a2

(5.2)
where the right side of the equation was chosen so that the exact solution
was =¥ = e?7H2,

Figure 2. The exact and approximate solution of (5.2) with N =5, r = 8.

All calculations were performed in the Maple system with parameter
Digits:=30; (the number of digits that Maple uses when making calcu-
lations with software floating-point numbers). As we can see from Tables
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Table 6
The spline-collocation using the FPA for solving Example 1 with r = 10.
N | an(t) |zn1(t) — 27 (2)]
1 0.0024989584688525888359310360465249 | 5.3186723961877860042504¢e-12
2 0.0024989584635324124519264394003959 | 1.5039878168106418786e-15
3 0.0024989584635338888159300590349018 | 2.76238131910073727e-17
4 0.0024989584635339165728796529239866 | 1.331364028817121e-19
5 0.0024989584635339164599105607342320 | 2.01673106919575e-20
6 0.0024989584635339164307566189869647 | 8.9866310553098e-21
7 | 0.0024989584635339164379496352522859 | 1.7936147899886e-21
8 0.0024989584635339164399427718497446 | 1.995218074701e-22
9 0.0024989584635339164398662187644619 | 1.229687221874e-22
10 | 0.0024989584635339164397061697372937 | 3.70803049808¢-23

Table 7
The error for (5.2) at the value r = 5.
N 1 5 10 20 50 100 500
e |7.67-107%|4.89-107%|1.70-1077 [ 5.61-107° | 5.96-10"** | 1.88.107'? | 6.09-10*°

7 and 8, the practical error of the method corresponds to the theoret-
ical estimate (2.11). All the results of Tables 9 and 10, are obtained
using the CESTAC method. For r = 6 we get Ny = 6,26(0.05) =
0.1757171, erroryy = 0.9313225E — 008, and for r = 12 we have Ny =
2,26(0.05) = 0.1757171. According to the results for large values of r the
results are more accurate. Tables 11 and 12 are obtained for the spline-
collocation method using the FPA. Comparing the results of the FPA and
the SA, we can introduce the CESTAC method as a good tool to control
the accuracy and the step size of the spline-collocation method for solving
the mentioned problem.

5.1. STABILITY EXPERIMENTS

To illustrate the stability of suggested numerical method, we introduced
a random error in calculating the values of free term f(¢) of the equations
(5.1) and (5.2). The range of introduced random errors is (—d,9).

Depending on the §, the following results are obtained.

From the results proposed in the tables 13 and 14 it is possible to judge
the continuous dependence of the solution on the initial data and conclude
about the stability of the numerical method. This result is not surprising:
despite the fact that the initial equation is an equation of the first kind,
it is solved in such spaces in which the problem is well-posed. The case
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Table 8
The error for (5.2) at the value r = 10.
N 1 5 10 20 50 100 500
e |8.61-107°[1.41-10715 | 1.46-107*8 [ 1.47-1072' | 1.49-1072% | 1.43-1072* | 7.47-10~27

Table 9
Results of the CESTAC method for r = 6.
TN+1(t) lzn41(t) — 2N (1)) lzn (t) — " ()]
0.1762535 0.1762535E-001 0.5363E-004
0.1757219 0.5316E-004 0.47E-006
0.1757169 0.49E-006 0.2E-007
0.1757170 0.1E-007 0.9313225E-008
0.1757171 0.7450580E-008 @.0
0.1757171 @.0 @.0

OJOT%CO[\')HZ

Table 10
Results of the CESTAC method for r = 12.
N rN41(t) lznt1(t) — 2N ()] lzn (1) — 2™ ()]
0.1757171 0.1757171E-001 @.0
2 0.1757171 @.0 @.0

—_

Table 11

The spline-collocation using the FPA for solving Example 2 with r = 6.
Tn41(t) |z (t) — 2" (1)
0.017625357759763366370583965414699|0.000053638808290133034856760580788
0.017572191765083977687409203731931|4.72813610744351681998898020e-7
0.017571692863117541262788927971815(2.6088355692072938276862096e-8
0.017571708598170673074341558874276|1.0353302560261385645959635¢-8
0.017571717076595299740419367871963|1.874877933595307836961948e-9
0.017571719104941762543174921162397|1.53468529207447716328486e-10
0.017571719329605570787973205575224 |3.78132337452246000741313e-10
0.017571719187368398597882888516563 |2.35895165262155683682652¢-10
0.017571719040773236192761953789278|8.9300002857034748955367e-11
0.017571718954164366107614229639737(2.691132771887024805826e-12

H@OO\ICDCN»PQOMHZ
=}

of an ill-posedness (when noisy initial data may lead to instability and
regularization will be required) will be studied in future works.
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Table 12
The spline-collocation using the FPA for solving Example 2 with r = 12.

zN+1(t) | TN (t) — 2" (¢)]
0.017571718951506900943716697361262|3.3667607989492527351e-14
0.017571718951473218595173777454132|1.4740553427379779e-17
0.017571718951473233466169941902544|1.30442737068633e-19
0.017571718951473233336814972540526|1.087767706615e-21
0.017571718951473233335480404651884|2.46800182027e-22
0.017571718951473233335711266248458|1.5938585453e-23
0.017571718951473233335728475858345|1.271024434e-24
0.017571718951473233335727478289445|2.73455534e-25
0.017571718951473233335727218074944|1.3241033e-26
10]0.017571718951473233335727227475141|2.2641230e-26

COOO\]@CH»-PCO[\DHZ

Table 13
The error for (5.1) with N =5, r =5.
5 0 10~ 107° 1074 1073 1072
e 7.17-1077 | 2.74-107° | 2.75-107% | 0.00275 0.0275 0.2746
Table 14

The error for (5.2) with N =5, r = 5.
5 0 10~¢ 107° 1074 1073 1072
e 4.89-107% | 5.71.107° | 5.28107* | 0.00524 0.05235 0.52351

6. Conclusion

We have applied the spline-collocation method for solving the Volterra
integral equations of the first kind with discontinuous kernel. The con-
vergence of the method and the smoothness of the solution have been
discussed. Using the CESTAC method we have tried to control the accuracy
and step size of the method. The principle theorem of the CESTAC method
will help us to apply the condition (3.2) instead of (3.1). Thus we will be
able to find the optimal results, optimal error and optimal step of the
method.
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