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Systems of Inclusions
with Unknowns in Multioperations

N. A. Peryazev

Saint Petersburg Electrotechnical University "LETI,
St. Petersburg, Russian Federation

Abstract. We consider systems of inclusions with unknowns and coefficients in mul-
tioperations of finite rank. An algorithm for solving such systems by the method of
reduction to Boolean equations using superposition representation of multioperations
by Boolean space matrices is given. Two methods for solving Boolean equations with
many unknowns are described for completeness. The presentation is demonstrated by
examples: the representation of the superposition of multioperations by Boolean space
matrices; solving a Boolean equation by analytical and numerical methods; and finding
solutions to an inclusion with one unknown. The resulting algorithm can be applied to
the development of logical inference systems for multioperator logics.

Keywords: multioperation, inclusion, spatial matrix, Boolean equation, term

1. Introduction

Note that the theory of multioperations has been developing intensively
lately (see, for example, the [4-6]). Functional equations are considered
in almost all sections of mathematics. This paper is devoted to the de-
velopment of an algorithm for finding solutions of systems of inclusions
with unknowns and coefficients in multilaterals. The algorithm is based
on reduction to systems of Boolean equations by means of representation
of superposition of multilocations by Boolean space matrices. Note that
finding a direct algorithm without complete enumeration for this problem
is highly questionable due to the absence of a superassociation identity for
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the superposition of multilayers. The results of this paper are announced
in [7].

2. Multioperations and inclusion systems with unknowns

Let A be an arbitrary set, B(A) be the set of all subsets of A, n —
natural number. The mapping f of Cartesian degree A™ to B(A) is called
a n-local multiverse operation on A. If all images are single-element, then
f is called an n-local operation, and if A = {0,1} is a Boolean operation.

The multioperations f on an arbitrary finite set A = {ay,...,ax—1} can
be represented as mappings

fo{20,2 . 2k 5 q0,1, .., 28 — 1),
that you get from f when you encode
ai — 25 @ —0; {ai,..,a;,} — 290 + ...+ 2%,

We say that f is a multi-operation of dimension n, of rank k. Hereafter,
without further reservations, we will consider only multioperations of finite
rank k > 2.

We will use the notation M,gn) for the set of multioperations of dimension
n, rank k. Define the vector form f = («, ..., agn) of multioperations f of
dimension n, of rank k, so o; € {0,1,...,2F =1} and oy = f(2",...,2"), and
(41, ...,1y) is the representation of ¢ — 1 in the base k calculus by a n-digit
number.

Let us define the superposition operator on the set of n-local multioper-

ations as follows: if f € M,(cn) and f1,..., fn € M,(Cm), then

f(fl)"'7fn)(a17“'7am) = U f(bl,,bn)

bicfi(at,...,am)

The notion of a term with a set of variables X and a set of constants K
over a set of multioperations F' C M, is defined as follows:
— ifye KUX, then t =y is a term and U(t) = {y};
— if f e F™ and ty, ..., t, are terms, then t = f(t1, ..., t,) is a terms and
Ut)=U(t1)U...UU(ty);
— if tg is a term, U(t) = {y1,...,yn} and ¢y, ..., L, are terms, then
t =to(t1,...,tn) is a terms and U(t) = U(t1) U... U U(ty,);

The general form of the system of inclusions with unknowns in multiop-
erations is as follows:

............................ (1)
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where t;, g; are—terms with variables Z and constants ¢ of F' C M.

The solution of system (1) is the set of multioperations fi, ..., fs such
that for all 7 the inclusions are satisfied under the standard definition of
the value of the terms by means of the introduced superposition operator:

ti(C, f1(€), -, £5(8)) € @i(C, f1(©), -, £5(E))

Before entering the statement of the algorithm for solving a system
of inclusions with unknowns in multioperations, let us give the necessary
information on the representation of the superposition of multioperations
by space matrices and methods for solving Boolean equations.

3. Presentation by Boolean space matrices of multioperations
and superposition of multioperations

The matrix representation of the composition of binary relations as
the product of Boolean square matrices is well known (see, for exam-
ple, [9]). Let us generalize this result to the superposition of multioperations
introduced above.

Recall some concepts from the theory of spatial matrices, which can be
found, for example, in [10].

A binary n-dimensional matrix of order k is a function
a: N = {0,1}, where N, = {1,...,k}. Notation: M = [o, ,], where
iy iy = i1, -ry ).

Given a constant value i (i € Ni) of the index s, we obtain (n—1)-
dimensional matrix of order k which is called the i-section of matrix M by
index s, denoted by M?%.

Multiplication of n-dimensional matrix of korder M by a vector V of
length k by index s gives (n—1)-dimensional matrix of korder
(M %5 V) = [Biy.ig—viagroin)s WIEh Biy iy _yisiy.iy = MOtsmtistintn x|/
where * is the scalar product of vectors over the Boolean semiring B.

Let B = ({0,1};+, ) — a two-element Boolean semicircle. For a multi-
operation f of dimension n, rank k on A, let us define a Boolean spatial
(n + 1)-dimensional matrix k of order My = |ayi;...i,,] Where:

17 if (271 S f(a/ilv"'7ain);

o . fry

Theorem 1. [8] Let f() EM](;L), fl, ey fn GM]gm), Mfo(fl,---7fn) = [ﬁioh...im]-
Then

Bigir.im = (o (M2 sy My ) sy MyLtm). ) sy Myt

WsBectus VpkyTcKOro rocy1apCTBEHHOTO YHUBEPCUTETA.
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Proof. The proof follows from the definition of the representation of mul-
tioperations by spatial matrices and the definition of the superposition
operator. [

Here is an example of superposition for k=3, n=2, m=1.

Let fo = (426537011), f1 = (145), fo = (273).

Note that it is more convenient to write spatial matrices of multioper-
ations not in the form of a vector, but in the form of a two-dimensional
matrix, where the rows correspond to a zero index. Let us represent certain
multioperations by spatial matrices of the following form:

000111011 101 011
My, = 1011011000 | , My, = {000 My, = |111
101 101 000 011 010

let us calculate the following product of matrices:

000111011 101 011
M, = 011011000 * {000 , [111
101101 000 011 010
Let us show the calculations by columns. Multiplication of a ma-
trix by a column is performed as a threefold scalar multiplication of the
corresponding row by that column.

(0001110117 [0] 1 [011] 1 0
011011000| o [1| | %1 |O] | = | [110] %4 O] | = |1
101101000 | 0] 0 000 | 0] 0
(0001110117 [1] [0] [011] [0] 1]
011011000 %o [1]| | %1 |O] | = | [110] %y |O| | = |0
101101000 | 1] 1) 110 | 1 0]
(0001110117 1] (1] (0117 (1] [1]
011011000| o [1| | %1 |O] | = | [110] %, [O| | = |1
101101000 | 0] 1) 110 | 1) 1]
Combining all three columns into one matrix we get:

011

M, = | 101

001

As a result, going to the vector record of multioperations, we get:

g = fo(f1, f2) = (217).
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4. Systems of Boolean inequalities with many unknowns

Next we will need methods for solving systems of Boolean inequalities
with many unknowns. As we know, any such system reduces to a single
Boolean equation. For completeness, we present two methods for solving
Boolean equations with many unknowns: analytical and numerical.

A general view of a system of Boolean inequalities:

fi(a,z) < gi1(a, z)

fm(dy j) < gm(a’ j)
where a = aq, ..., a, set of coefficients, & = x1, ..., x5 set of unknowns.
Transition from inequalities to equalities with zero in the right part

f(av‘%) <9(a,z) <~ f(dvi') -g(a,2) =0

Transition from a system of equations to a single equation

{f(a, )
g(a,

The canonical form of a Boolean equation with many unknowns is as
follows:

8 s f(@,7) Vo) =0

B &

f(a,z) =0
A solution (or partial solution) of a Boolean equation is a set of Boolean
operations ¢1(a), ..., gs(@) such that the equality is satisfied:

f(@,g1(a), ..., gs(a)) = 0

We write this fact as follows: z; = g;(ai,...,a,),i =1, ..., 5.
A general solution is a solution represented by formulas with parameters
such that any partial solution is obtained from this formula for some values
of the parameters.

Let us introduce a minimum operator and its notation as follows:

maf(#,a) = f2(a) - ... f1(a)

The analytical method for solving Boolean equations is defined by the
following statement:

Theorem 2. [1;2] Let equation is given
fa,x) =0 (1)

a) Equation (1) is solvable for the set of coefficients a if and only if the
condition for them 1is satisfied:

mzf(a) =0 (2)

WsBectus MpkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
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b) If equation (1) is solvable for the coefficients a, then the general solution
18 found by recurrence formulas:

gs(a) = as(d> : mxl...xs_lf:(s)s (d) \ 6‘3(&) : mm1...xs_1les (EL)
if gkv1(a), ..., gs(a) — found, then

gk(d) = ak(d) ’ mml---xk—lffgk (a’v ngrl(a)? "'798(&))\/
V O71(&) . mx1...xk,1f%k (dv gk+l(d)’ "'795(&)) (3)

where a1 (a), ..., as(a) arbitrary Boolean operations (parameters).

Here is a demonstration example of solving an equation using the ana-
lytical method. Let an equation be given in which the Boolean operation
is specified thermally:

fla,b,z,y) = xy V abV Zyab = 0 (4)

where a, b are coefficients, x,y are unknowns.
a) Let us check the solvability condition. By condition (2) we find the
values of the coefficients at which there are solutions:

My f(a,0) = [ - oy - fay - fayy = (abV ab)(ab)(ab)(1) =ab=0  (5)

Cc7y x7y -

This condition breaks down into two 1) a =0 or 2) b = 0.
b) General solution. Using formulas (3), find a general solution, given
the solvability condition ab = 0:

y = g2(a,b) = as(a,b) - my f,)(a,0) V az(a,b) - my ff(a,b) =
= O[Q(CL, b)ab V 6[2(@, b)% = dQ(av b)a

z = g1(a,b) = a1(a,b) - £(a,b,g2(a,0)) V a1 (a,b) - f1(a,b, g2(a,b)) =
= ai(a,b)(abV az(a,b)ab) V ai(a,b)(as(a,b) V ab) =
= aq(a,b)ag(a,b)ab Vv a;(a,b)as(a,b) =
= ag(a,b)(abV ai(a,b)) (6)
where aq(a,b), az(a,b) are arbitrary Boolean operations.
c) Substituting the general form of Boolean operations «j(a,b) and

as(a,b) into the general solution (6), we obtain the set of all solutions
of equation (4). Let

o1 (a, b) = 0'1@[; V ogab VvV 0'3(],6 V o4ab;

OéQ(CL, b) = Tldi) V pab V Tgag V T4ab.
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As a result, equation (4) has the following set of solutions:

ata=0o0rb=0
=0 r=1
y=1 y=20
x
Y
=0 r=a r=a r=a

Now let us give an algorithm for solving a Boolean equation using the
numerical method, which is a modification of known methods (see, for
example, [1]).

ata=0

I
SH
I
o o

S

T
)

T
Y

atb=0

Theorem 3. Let the equation be given in vector form

(@, Z) = (0115, O1k, 0215 -y O2s -0y Ol - Ompi) = 0 (8)

where k = 2%, m = 2™,
a) Equation 8 is solvable for the set of coefficients a if and only if the
condition for them is satisfied:

1, Zf 0i1 — 042 = ... =04k — 1;

0, if not. )

where v; = {

b) If equation 8 is solvable for the coefficients a, then the set of all
solutions is found by the formulas:

.................... (10)

where {(814, ..., 0si) } are all binary sets satisfying the equality
f(il, ceey in, 511, ceey 551) — 0

where the number i = (i1,...,in)2 + 1 is 1 more than the number whose
binary representation corresponds to the set (i1, ...,ip).

Here is an example of solving a Boolean equation numerically. Let the
Boolean operation in equation (4) be given by a vector:

fla,b,z,y) = (1001000100011111) = 0. (11)

WsBectus UpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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We get two solvability conditions 1) a =0 or 2) b = 0.
b) In finding the set of all solutions, to simplify the calculations we will

consider each of the conditions separately.
1) If a =0, then f(0,b,z,y) = (10010001) = 0.
The set of solutions will be found by formulae (10).

{(611,621)} = {(01), (10)}
{(012, 022)} = {(00), (01), (10)}

Choosing all possible combinations of the first and second sets we get six

solutions:
(00) Jx=(00) Jz=(01) Jx=(10) |z =(10) |x =(11)
(10) |y=(11) |y =(10) |y =(00) |y =(01) |y =(00)

b

This answer can be written in form:

z=0 z=0 r=> x="0 xr="0
y=b |y=1 J|y=b |y=0 |y=0b
2) If b = 0, then f(a,0,z,y) = (10010001) = 0.

Because of the symmetry of the equation with respect to a and b, we
can immediately write out all solutions, similar to the previous point:

{x mo){x::«m){x::«n){xzzuo){x::uo){x:41n
y

(10) |y=(11) |y =(10) |y =(00) |y =(01) |y =(00)

As a result, equation (11) has the following set of solutions:
at a =0 or b = 0 we obtain:

z=(0) Jz=(1)
y=1) |y=(0)

at a =0 we get x = ¢1(b),y = g2(b):

x =(0) x =(01) x =(10) x =(10)
y=10) |y=010) |y=(0) y=(01)

—N—
< 8
I
—~
= O
O ~—
SN—
—N—
< 8
I
—~
= O
S =
N—
—
< 8
I
—~ o~
S =
SN— O
N~—
—N—
< 8
I
—~ —~
S =
= O
N—
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If this answer is written in thermal form, it will coincide with (7) for
equation (4), because equation (4) and (11) are the same equation given in
different forms: thermal and vector.

5. An algorithm for solving a system of inclusions with
coefficients and unknowns in multioperations

Below is an algorithm for solving a system of inclusions with unknowns
in multioperations by reduction to a system of Boolean inequalities.

(A1) Input: a system of inclusions in multioperations.

(A2) Transition to Boolean space matrices.

(A3) Transition to a system of Boolean inequalities, with possible tran-
sition to a single Boolean equation.

(A4) Finding a solution to the system (A3).

(A5) Output: Solution of the original system (A1), which is determined
by the solution obtained in (A4).

The best way to demonstrate how the algorithm works is to use an
example. For clarity, let’s take an example with small parameters.

(A1) Let A={0,1}.
Solve a system of one inclusion with one unknown and one coefficient

g(h(z,c),s(c)) C g(c, 2) (1)

where multioperations are defined as follows:

{1}, if a = 0;
h(a,b) = {a,b =
(@0) = 1a,b}, 5(a) {{0}, ifa—1,
g(a,b) = {Qct};fli C;:b'b; for any a,b € A.

(A2) Transition to Boolean space matrices. Let us first represent the
multioperations in vector form:

h(a,b) = (1332), s(a) = (21), g(a, b) = (1002).

Let us represent them by Boolean space matrices:

1110 01 1000
My = {01 11}  Ma = Lo} My = [0001] '

Let us find the representations of the left and right parts of inequality
(1) by Boolean space matrices:

WsBectus VpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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_ |laxr +br +ay b
MW@_LMMyMAJ%@_Ly

bx + ab ax
My(n(z.c),5()) = ay+ab§] » My(ez) = |y,
(A3) Change to a system of Boolean inequalities and then to a single
Boolean equation.
We obtain a system of Boolean inequalities with 2 unknowns and 2
coeflicients:

(2)

bx V aby < ax
ay V abx < by

The Boolean equation equivalent to this system (2) has the form:

ay ®br =0 (3)
(A4) Find the solution of this Boolean equation, for example, by one of
the methods described in the previous section.
Equation (3) is solvable for any a, b and the general solution, given that
a # b, can be represented as follows:
r = oa,y = 7b,where 0,7 € {0,1} (4)

In total, there are three private solutions:

x=0,y =0 at a # b,
r=0,y=1lata=0,b=1; (5)
r=1l,y=0ata=1,b=0.

(A5) As a result, we obtain 2 solutions of inequality (1) in multiopera-
tions:

2= f(e) = o,
z=f(c)=c.

Note that the coefficients in the inclusion system can be not only constants,
but also any null multioperations.

6. Conclusion

Note that with a slight modification the developed algorithm can be
applied to solve systems of inclusions and negations of inclusions in multi-
operations. The obtained algorithm can be used to develop logical inference
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systems of multi-operation logic. At present, on the basis of the above algo-
rithm, a computer program for solving inclusion systems in multioperations
is under development.
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CucreMbl BKJIIOUYEHHNI ¢ HEN3BECTHBIMU
B MYJIbTUOIIEpAIINAX
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Canxm-Ilemepbypeckut 20cydapcmeennvill INEKMPOMeTHUECKUl YHUGEPCUMEM
«/I9THs um. B. U. Yavanosa (Jenuna), Carnxm-Ilemepbype, Poccutickan Pede-
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Amnnoranusi.  PaccMmarpuBaloTcsi CUCTEMBI BKJIIOYEHHI C HEM3BECTHBIMU M KO-
durmeHTaMr B MYJIBTHONIEPAIAAX KOHETHOrO paHra. lIpuBoauTcst aaroput™m mjis perre-
HO TaKUX CACTEM METOJIOM CBEJIEHUS K OYJIeBBIM yPAaBHEHUSM C IOMOIIBIO IIPEJICTABIIE-
HUSI CYTIEPIO3UIIAN MYJIbTHONEpAIinii OyJIeBBIMI MPOCTPAHCTBEHHBIMU MaTpuramu. Jlis
IIOJIHOTHI HM3JIO’KEHUsI ONMCAHBI JIBA METOJla PeIleHUsl OyJIeBbIX YPaBHEHHII CO MHOTU-
MU Hen3BecTHbIMU. V3/102KeHrne TEMOHCTPUPYETCS MPUMEPAME: MIPEICTABICHIE CyTIePIIO-
3UIMKM MYJIBTHONEpAInii OyJIEBBIMY ITPOCTPAHCTBEHHBIMU MATPHUIIAMU; peIleHue OyJieBa
YPaBHEHUS aHAJIUTUYECKUM U YHCJIEHHBIM MeTOJlaMU; HaXOXKJeHUe PelleHuil BKIIOYeHNd
C OJTHUM HEeM3BeCTHBIM. [loTydeHHBIH aaropuTM MOXKeT OBITH IPUMEHEH MpU pa3spaboTKe
JIOTUYECKNAX CUCTEM BbIBOJIAa JIOTUKHU MYJIBTUOIEPAINiA.

KuaroueBsbie ciioBa: MyIbTHONIEPAINs, BK/IIOUEHIE, IPOCTPAHCTBEHHASI MATPUIIA, Oy-
JIeBO ypaBHEHUEe, TePM.
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