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On the Accuracy of Cross-Validation
in the Classification Problem*

V.M. Nedel’ko
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federation

Abstract. In this work we will study the accuracy of the cross-validation estimates for
decision functions. The main idea of the research consists in the scheme of statistical
modeling that allows using real data to obtain statistical estimates, which are usually
obtained only by using model (synthetic) distributions.

The studies confirm the well-known empirical recommendation to choose the number
of folds equal to 5 or more. The choice of more than 10 folds does not yield a signif-
icant increase in accuracy. The use of repeated cross-validation also does not provide
fundamental gain in precision.

The results of the experiments allow us to formulate an empirical fact that the ac-
curacy of the estimates obtained by the cross-validation method is approximately the
same as the accuracy of the estimates obtained from the test sample of half the size.
This result can be easily explained by the fact that all the objects of the test sample
are independent, and the estimates built by the cross-validation on different subsamples
(folds) are not independent.

Keywords: K-fold cross-validation, accuracy, statistical estimates, machinelearning.

1. Introduction

The K-fold cross-validation method is the most commonly used method
of evaluating the quality of solutions [6;7] in machine learning problems [5;
11;12;17]. However, despite the large number of papers devoted to the

* The study was carried out within the framework of the state contract of the Sobolev
Institute of Mathematics (project no 0314-2019-0015) and with partial support by RFBF
grant 19-29-01175.
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study of this approach, the problem of assessing the accuracy of the re-
sulting quality estimates remains open [10;13;14]. In particular, confidence
intervals for the cross-validation are currently unknown, there are only very
rough estimates of such intervals [19].

The paper [18] shows that the formally constructed 95% confidence inter-
val for cross-validation estimates is not even an estimate of the confidence
interval, since the probability of going beyond the interval is much greater
than 0,05. At the same time, in the mentioned work the term confidence
interval, however, continues to be used, as in many other sources. But in the
strict sense, such constructions shouldn’t be called as confidence intervals.

In [1] the confidence intervals based on CV-score are proposed, but those
intervals estimate some non-standard version of test error.

The question of choosing the optimal number of folds K is also actual [2].
In some sources there is a recommendation to choose K = 10 and carry
out 10 repetitions of the cross-validation procedure. Other authors believe
that it is advisable to choose K as large as the computational capabilities
(and sample size) allow.

The goal of this work is to develop some empirical approach for inves-
tigation of the accuracy of cross-validation. This approach includes the
method of statistical modelling on real data that allows to introduce and
estimate some new statistical characteristics. In particular, this allows to
substantiate the choice of number of folds.

2. Problem statement

Consider the statistical formulation of the problem of decision function
construction [3;15;16].

Let X be the set (space) of values of a given set of variables xy, ..., z,,
and Y is the set of values of the target variable. Suppose that a probability
space (o-algebra and probability measure P) is given on X x Y.

We introduce a notation for the expectation of a measurable function
f: XxY—=>R

EX,Yf(xvy) = / f(xay) P(dﬂi‘,dy)

XxY

The decision function is a mapping A : X — &, where & is the set of
solutions (the space of estimates). The values of & can be, in particular,
the values of the variable Y or, for example, estimates of the probability
that an object belongs to a given class.

The quality of the decision function is estimated by some criterion
IC(A, P), which in general is a functional of the decision function and dis-
tribution.
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In this paper we will consider quality criteria that can be represented as
a mathematical expectation from the so-called loss function L : XY — R,
ie.

KX, P) =ExyL(\z),y)

Some criteria (for example, the area under the error curve) can not be
represented in this form, but most of the quality criteria used in practice
can be expressed through the loss function.

The problem of constructing the decision function is to construct A,
which would minimize the criterion IC(\, P). Particular statements of this
problem are the problems of classification and regression analysis (recover-
ing of dependencies) [4] [8] [9].

In this formulation, the problem is actually not yet set, since the criterion
depends on the distribution, which in real problems is unknown.

In practice, a decision function is constructed based on a sample

VN: ((l’“yl),lz 17"'7N)7 T €X7 Yi GY, VN € WN7 WN: (XXY)N

Method of constructing the decision functions is a mapping

Q:W—A W= |] Wy,
N=1

where A is a given class of decision functions.

The purpose of this work is to evaluate the quality of the solution
constructed by a given method.

Let Ag vy = Q(Vn) be a solution built by the method @ on the sample
V.

We are interested in the value

Ko(Vn) = ExyL(Agvy (), y).

Here we have introduced the notation Kg(Vy) instead of K(Ag vy, P) to
simplify the writing, and to emphasize that the criterion is a function of
sample, while the parameters Q and P will be fixed.

Because the expression is a function of sample, it is a random variable.

In real machine learning tasks we have some fixed sample. If the sample
is fixed, than Kq(Vn) becomes the unknown value dependent only on the
distribution, which can be evaluated by statistical methods similar to the
estimation of parameters of distributions.

For such evaluation, the method of cross-validation is usually used.

In this method, the sample is split into K disjoint parts of V]\lf, v VNK
of equal (or nearly equal) size.

A cross-validation estimate is the value

N

~ 1

Kox(Vn) =+ > L()‘Q,VN\VI’;‘“ (@i), i)-
=1
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Here Vﬁ(i) is the part of the sample that contains (x;,y;). This fold is
removed from the original sample when you build a solution for (z;, ;).
The error of a cross-validation estimate is expressed by the value

A(Vy) = Ko.x (Vi) — Ko (V).

The main characteristic of cross-validation accuracy will be the standard
error

errcv = 1/ Ewy (A(VN))2.

The expectations are taken over all samples of size N.
Let us use the decomposition

Ewy (A(VN))? = 6% + 0% + biasty, — 260,

where

5’2 = DWN,EQ7K(VN)7 02 = DWNICQ(VN)’

biascy = EwyA(Vy), 2= corry, (IEQ,K(VN), Ko(Vn)).

Here corryy,, is a normalized correlation coefficient (the expectation is taken
over Wy ), D denotes a variance.

The goal of this work is to investigate properties of errcy and to propose
a method to estimate it.

3. Proposed statistics

Now let us introduce a notation for the standard deviation of the loss

Sa(Vw) = /Dy LAgus (2).9).

The distribution on the value of losses depends on the constructed de-
cision function, and hence on the training sample. To characterize how
significant this dependence is, we introduce the value

€S = \/DWN lnSQ(VN).

The logarithm is used to get a scale-free measure that is a characteristic of
the relative spread of a random variable (given its positivity).

The value Sg(Vy) can not be calculated directly, so we will estimate it
via

Sl = 137 (0 (qgoteon) ~Komt)'



88 V.M. NEDEL’KO

The relative deviation of the obtained estimate is defined as

s = \/DWN In S (V).

If we have a test sample, we can estimate Kg(Vx) with inaccuracy of
order 52
VN
Experimental studies show that the error of cross-validation estimates is
much higher than the estimate obtained from the test sample of the same
size.
In our experiments we will investigate a possibility to estimate errcy

on the base of §Q(VN).

4. Method of research

The idea of the approach is based on the fact that the estimates made for a
large sample are close to the expected values (i.e. to the values obtained on
the distributions themselves). Note that in our case there is some subtlety,
namely that the notion of a large sample becomes relative. To study the
properties of quality estimates, it is important that the size of the test
sample will be much larger than the size of training samples.

The scheme of the experimental study is as follows. The initial sample
is divided into two approximately equal parts. One part is reserved for the
test. The second part is divided into many training samples, each of which is
used for independent training, as well as for evaluation by cross-validation.

This approach allows us to draw conclusions with same statistical relia-
bility as by modeling on distributions, but based on real data.

5. Experimental results

Numerical studies was performed on the task “adults” from the UCI repos-
itory. The data size is 32560 object with 5 variables (we selected only
numeric features). The target variable is represented by the values of two
classes.

We used logarithmic loss function

LA\ (z),y) = —yInA(z) — (1 — y) In(1 — A(z)),

where y € {0,1}, M(z) € (0,1).

To avoid too large losses, the predicted probabilities were clipped to a
range (0,001, 0,999].

We used gradient boosting as a classification method (class Gradient-
BoostingClassifier from sklearn.ensemble), max_depth=2.
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Table 1
The parameters of the experiment

n_esti learning EEQ EXq o ESq €s  erriest Tab.

N mators _rate
1000 100 0,2 0,314 0421 0,007 0,637 0,064 0,019 2,3
100 30 0,05 0,368 0,480 0,020 0,553 0,175 0,056 4,5

Table 2
Characteristics of the cross-validation estimate when N = 1000
biascv  errcv G »x  EwySo(Vn) €s  Sfoias Ryolds
K

2 0,040 0,052 0,030 -0,421 0,729 0,051 0,025 1,367
3 0,022 0,035 0,024 -0,390 0,690 0,045 0,028 0,642
5 0,012 0,032 0,026 -0,454 0,662 0,039 0,042 0,397
10 0,007 0,031 0,027 -0,485 0,649 0,036 0,065 0,250

The table 1 contains parameters (training sample size N, n_estimators,
learning_rate) , the experimental results (those doesn’t depend on the num-
ber of folds K), and the references on the tables with corresponding results.

The column EKg(Vy) contains the average values of the quality criterion
on the training sample.

The values of o are relatively small, which means that the quality of
solutions does not depend very much on a particular training sample.

The erries: column contains quality criterion estimates based on a test
sample of the same size as the training sample.

The table 2 presents the results of experiments to evaluate the charac-
teristics of the cross-validation depending on K.

You can see that the bias of the cross-validation estimate becomes in-
significant at K = 10, i.e. too small in comparison with the variance.

The error of cross-validation estimation at small K decreases slightly
with the growth of K, at K > 10 the error varies slightly.

The accuracy of the cross-validation estimation is significantly lower
than the accuracy of the errys estimate by the test sample of the same
size.

The value Sfq4s is the standard deviation of the cross-validation score
over K folds. Some sources recommend to build an estimate of the accuracy
of the cross-validation based on Syqqs. However, the large values of Rfo4s,
which are the standard deviation of Syyq4s, indicate that from sample to
sample the values of Syqqs can vary significantly, so any estimates based
on them will be unreliable.
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Table 3
Characteristics of the cross-validation when N = 1000, number of repeats is 10

biascy errcv o »  Ewy gQ(VN) s  Stoids Rfoids

K
2 0,034 0,046 0,029 -0,430 0,730 0,031 0,019 1,328
3 0,019 0,037 0,029 -0,563 0,686 0,029 0,025 0,699
5 0,010 0,034 0,029 -0,505 0,662 0,034 0,037 0,326
10 0,005 0,031 0,027 -0,446 0,648 0,033 0,054 0,272
Table 4

Characteristics of the cross-validation estimate when N = 100

biascv  errcv o »x  EwySo(Vw) €s  Sfroas Ryolds

K
2 0,030 0,092 0,082 -0,137 0,628 0,159 0,054 1,266
3 0,013 0,081 0,076 -0,085 0,590 0,127 0,077 0,771
5 0,000 0,072 0,069 -0,045 0,563 0,111 0,107 0,385
10 -0,006 0,071 0,068 -0,028 0,550 0,106 0,166 0,255
20 -0,007 0,071 0,068 -0,004 0,546 0,104 0,240 0,190

The table 3 presents the results of similar experiments in which the
procedure of cross-validation is repeated 10 times for random permutations
of sample objects.

As you can see, the accuracy of the estimates increases slightly, and only
for small K.

Tables 4 and 5 present the results of similar experiments when N = 100.

As expected, the accuracy of estimates decreases, but the qualitative
conclusions are the same.

For comparison, similar calculations were performed for the BNP Paribas
Cardif Claims Management problem
(https://www.kaggle.com/c/bnp-paribas-cardif-claims-management).

We kept only numerical variables with the least number of missing
values: v10, v12, v14, v21, v34, v40, v50, v114. The parameters of the
algorithm: n_estimators: 100, learning_rate: 0,1, max_depth: 2.

The results are given in tables 6, 7. There is no qualitative difference
from previous experiments.

Since £g is small, the Sg(Vx) may be used as an estimate for Sg (V).

Finally, we can estimate errcy by the value Lj\‘[//]\;). This is rough and
fully heurisric estimate, but it seems that we have nothing better.

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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Table 5
Characteristics of the cross-validation when N = 100, number of repeats is 10

biascy errcv o n EWNgQ(VN) s  Stoids Rfoids
K
2 0,024 0,085 0,077 -0,117 0,628 0,102 0,048 0,989
3 0,016 0,076 0,071 -0,049 0,587 0,097 0,080 0,691
5 -0,001 0,070 0,067 -0,029 0,565 0,100 0,103 0,464
10 -0,004 0,069 0,066 -0,017 0,553 0,103 0,165 0,317
Table 6

Characteristics of the cross-validation when N = 1000, dataset “Paribas”

biascy errcv o n EWNgQ(VN) s Stoids Rfoids
K
2 0,020 0,032 0,024 -0,234 0,633 0,039 0,019 1,055
3 0,009 0,022 0,020 -0,059 0,605 0,037 0,028 0,522
5 0,005 0,021 0,020 -0,233 0,591 0,033 0,038 0,378
10 0,001 0,020 0,019 -0,210 0,582 0,035 0,056 0,286

6. Conclusion

The studies confirm the well-known empirical recommendation to choose
the number of partitions (folds) in cross-validation equal to 5 or 10. At
K =5, the accuracy of the estimates is slightly lower, but in practice it is
usually not significant, so K = 5 is also a justified choice.

Of greater interest are the obtained results on the accuracy of the esti-
mates. The results of the experiments allow us to formulate an empirical
assessment that the accuracy of the estimates obtained by cross-validation
is approximately the same as the accuracy of the estimates obtained from
the test sample of half the size.

The fact that cross-validation estimate is much less accurate that hold-
out one can be qualitatively explained by that all the objects of the test
sample are independent, and the estimates built by the cross-validation on
different folds are not independent.

For evaluating the accuracy of cross-validation estimates one should eval-
uate the variance of the values of the loss function calculated separately for
each object of the sample (using the decision function constructed without
using this object). The resulting value should be divided by N/2. This
will give a rough estimate of the variance of the quality estimated by the
cross-validation.
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Table 7
Characteristics of the cross-validation when N = 1000, number of repeats is 10

biascy errcv o n EWNgQ(VN) s  Stoids Rfoids
K
2 0,027 0,032 0,018 -0,283 0,638 0,028 0,024 0,191
3 0,016 0,022 0,015 -0,266 0,607 0,033 0,030 0,142
5 0,010 0,020 0,017 -0,320 0,591 0,034 0,038 0,127
10 0,007 0,018 0,016 -0,319 0,582 0,036 0,054 0,100
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Hrnemumym mamemamuru um. C. JI. Coboaesa CO PAH, Hosocubupck, Poccudi-
ckan Dedepavus

Ansoramms.  Merog ckoub3siiero sksamena (K-fold cross-validation) sisasiercs
HauboJIee IaCcTO UCIOJIb3YEMbIM METO/IOM OIEHUBAHUSI KadeCTBA PENIeHH B 3aaUax Ma-
muHHOro o0ydenusi. Hecmorpst Ha 6oJIbIIoe YUCIO PaboT, MOCBSIIIEHHBIX UCCIIEI0BAHUIO
JAHHOTO TIOIXO/Id, OCTAETCsI OTKPBITON NPOOJeMa OIEHHBAHUS TOUHOCTH IOJIYJIAE€MbIX
OIIEHOK KadecTBa. B dWacTHOCTH, B HacTosIlee BpeMs HEM3BECTHBHI JOBEpPUTETbHbIE MH-
TepBaJIbl JJIs1 OIEHKU CKOJIB3SIIIIEro 9K3aMeHa, CyIIeCTBYIOT JINIIb OUeHb I'PyOble OIEHKH
TaKUX UHTEPBAJIOB.

OcCHOBHOI uzeeit pabOTHI ABJISAETCH CXEMa CTATUCTHIECKOTO MOJIEIMPOBAHMA, KOTOPasi
TIO3BOJIAET MCIOJb30BATE pPeaJIbHble JAHHBIE JJIs IOJydIeHHs CTATUCTUYECKHX OIEHOK,
KOTOpPBbIe OOBIYHO ITOJIYYalOTCs TOJBKO IIPU HCIIOJIb30BAaHUU MOJEJIbHBIX PaCIpeesIeHuit.
IIpeniozKeHHBIH TOAXO, MTO3BOJISIET JOCTATOYHO TOYHO BBIMUC/IATL KaK OOIIYIO ITOTPEI-
HOCTH OIIEHOK CKOJIB3SIIIEr0 K3aMeHa, TaK M OT/eJbHbIe ee KOMIIOHEHTHI (CMeleHue,
JIUCTIEPCHIO), & TAKKE OIEHUBATD CBA3b TOH IOTPENTHOCTHU € PA3INIHBIMYA CTATACTHKAMHE.

Vcrnonp30BaHme MOBTOPSIOMIETOCs CKOJIB3SIIETO S9K3aMeHa CO CIIyYallHbIM pa3OueHneM
Ha IIOABBIOODKM TaKXKe He J1aeT IPUHIUINAAILHOIO BBIMTPHIINIA B TOYHOCTH. Pe3ysbra-
TBI 9KCIIEPUMEHTOB IIO3BOJISIOT CHOPMYJINIPOBATH IMIUPUIECKYIO OIIEHKY, YTO TOYHOCTH
OIIEHOK, IIOJIyYeHHBIX METOJOM CKOJIB3SIIEro 9K3aMeHa IPUOIM3UTENIbHO TaKas Ke, KakK
TOYHOCTb OLIEHOK, IIOJIy 9€HHBIX 110 KOHTPOJIBHOM BBIOOPKE, BIBOE MEHBIIETO 00beMa. DTOT
Pe3YbTAT JIETKO O0bSICHUTH TeM (DaKTOM, UTO BCe OObEKTBI KOHTPOJIBLHOM BBIOODKHN He3a-
BHCHMBI, & OIEHKH, IIOCTPOEHHBIE CKOJIB3SAIIUIM 9K3aMEHOM Ha Pa3HbIX HMOJBBIOOPKAX, HE
SIBJISIIOTCSl HE3ABUCHUMBIMU.

KirodeBrble ciioBa: ocTpoeHue pernaonux OYHKINNR, CKOIb3SIMUNA 9K3aMeH, TOU-
HOCTb CTATUCTHYECKUX OIEHOK, MAIMHHOE 00yJeHHe.
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