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1. Introduction

We study the images of the standard Gaussian measure under trigono-
metric polynomials. We prove an estimate for the total variation distance
between such images in terms of the L9%-distance between the polynomials
themselves. Our result is a generalization of the result obtained in [9]. We
also discuss the densities of such images and their properties in terms of
fractional Sobolev spaces. It was proved in [16] that for any non-const
trigonometric polynomial f the image measure 7, o f~! has a density from
the Nikolski-Besov class B*. However, the proof in [16] had some gaps.
Here we explain how to correct the reasoning in [16], moreover, we prove
that v, 0 f~1 has a density from the Nikolski-Besov class B® with & greater

* This research is supported by the Russian Science Foundation Grant 17-11-01058
(at Lomonosov Moscow State University).



78 G.1. ZELENOV

than a obtained in [16], which is a stronger result. Concerning distributions
of algebraic polynomials, see [3—7;10;11;14;15].
2. Measures and mappings

The standard Gaussian measure v, on R” is a probability measure with
density p,, (x) with respect to Lebesgue measure on R", where

RUNND SRS « S
(o) = e e = (2.1)

Let f: X — R be a measurable function on a measure space (X, u) and
o f~1 the image of 1 under f defined by

po f~YB)=pu(f1(B)) where B CR is a Borel set.

In terms of probability theory, if f is a random variable and p is a prob-
ability measure, then p o f~! is the distribution of f. In this paper, we

study measures jt = v, o f~', v = v, 0 g~!. The total variation distance

dry between p and v on the R can be defined as follows:

drv(p v) = sup{ [ edtn=v), o CER), el < 1}.

For pt = v, 0 f~1, v =7, 0 g~ ! the change of variables rule implies that

drv(p,v) = Sup{/R (pof—wog)dym v €CRY), |lolle < 1}-

3. Trigonometric polynomials

For a function on R™ we use the notation O f := a%k I

Definition 1. A function f is a trigonometric polynomial of order d if

B

f@)=ao+ ) (ak-cos(vg,x)+ bsin{vg, x)), (3.1)

k=1
where a;,b; € R, each vy = (vp1,...,06n) € Z" is a non-zero vector with
log| = Jvga| + ... + |vkn] < d. The set of all trigonometric polynomials of

order d on R™ will be denoted by T (d,n).
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ON DISTRIBUTIONS OF TRIGONOMETRIC POLYNOMIALS 79

Remark 1. The sum in (3.1) has only d terms. This fact has many
implications. For example, 7 (d,n) is a linear space only when n = 1. Each
f € T(d,n) has at most d nonzero terms in (3.1). If n = 1, then there
are exactly d different non-zero elements vy > 0. We can ignore v < 0 in
(3.1), as cos is even and sin is odd. Thus (3.1) provides the decomposition
of f € T(d,1) with respect to a basis consisting of 2d + 1 functions. For
n > 1, there are more than d possible non-zero vectors vy even with all
Uk 1s--->Vkn > 0. So one can take f,g € T(d,n) such that f+¢g ¢ T(d,n).

Any f € T(d,n) can be represented by using complex exponents.

Proposition 1. Every f € T(d,n) has a representation of the form:

d

fl@)=ao+ Y (cp- ) 4y emilomn)) (3.2)
k=1

In this representation of f, the coefficients ¢, and di belong to C, while the
real number ag and the vectors vy, are the same as in formula (3.1).

From formula (3.2) one can easily derive the following two results.

Corollary 1. Let f € T(d,n) and ay,...,a, € R. Then the functions Fy,
defined by the formulas

Fl(t) = f(t,CLQ,ag, RN an), Fg(t) = f(al,t,a3, RN an), -
F.(t) = f(ai,a2,a3,...,1)

belong to the set T (d, 1) with respect to the variable t € R.

Corollary 2. Let f € T(d,1) be non-constant. Then for any a € R the
equation f(t) =0 has at most 2d solutions t € [a,a + 27].

We now discuss some properties of functions from 7 (d,1) related to
the Gaussian measure 7, (see (2.1)). Formula (3.1) guarantees that all
functions from the class T'(d,n) are bounded, thus, for any p € [1,00) we
have

T(d,n) C L>(vn) C LP(yn).

We will use || - [|, to denote the norm | - || zs(y,) of the LP(v,)-space.

Proposition 2. Let f € T(d,n). Then 1) All partial derivatives 0;f also
belong to T (d,n). 2) There is a number C(d) such that ||0;f]l2 < C(d)]| f]2-
3) There is a number C(d) such that ||0;f + O0igll2 < C(d)||f + gll2 for all
f,g€T(d,n).

Proof. The fact that 0;f € T(d,n) follows directly from (3.1).

The definition of 7(d,n) also implies that there are % - ((2d + 1) — 1)

distinct non-zero vectors vy, satisfying (3.2) and (3.1). Thus, the definition
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of T(d,n) implies that 7 (d,n) is a subset of a linear space of dimension
(2d+1)"—1. The function || f|2 is a norm on this linear space and || 2,9, =
|0i f||2 is a seminorm on the same space. We deal with a finite-dimensional
linear space, hence there is a number C(d,n) such that

10 fll2 = [ fll2,0, <C(d, )| Iz, i=1,...,n.  (3.3)
Hazf +8igH2 - Hf +gH2,3¢ SC(d, n)”f +gH2a t=1,...,n. (3‘4)

To complete the proof, we need to replace C(d,n) with some C(d) indepen-
dent of n. Any vy = (vg,1,...,Vky) in Definition 1 has at most d nonzero
coordinates vy ;. Hence, any term in (3.1) and (3.2) depends on at most
d variables z;. So f in (3.1) depends on at most d? variables, because the
sum in (3.1) has at most d nonzero terms. This enables us to consider
only d? variables when dealing with one f € 7(d,n), and 2d? variables
when dealing with two functions f,¢g € 7(d,n). Hence in (3.3) one has
C(d,n) < C(d,d?) and in (3.4) one has C(d,n) < C(d, 2d?). O

Proposition 2 implies that not only 7(d,n) € LP(~,), but also 7(d, n)
is contained in the Sobolev space WP (y,) of functions ¢ € LP(7,) such
that their partial derivatives d;¢ belong to LP(~y,). The proposition 2 and
the definition 1 imply that 7(d,n) C C;°(R"). Let F,G € Cy°(R™). From
formula (2.1) for 7, we can easily derive the integration by parts formula
a,cF-Gd%:—/ (F-0uG — - F - G) doy. (3.5)

n

R
As T(d,n) C Cp°(R™), the formula (3.5) holds true for F,G € T(d,n).
The following theorem is proved in [12].

Theorem 1 (Turan’s Lemma). Let d € N and let I C R be an interval.
Then there exists a number Ay such that for each f € T(d,1) and each set
E C I with Lebesgue measure (E) > 0 one has

sup [p(t)| < C(d |T]) sup Ip(t)] (Aol I))* (u(E)) ™,

where |I| is the length of I and C(d,|I|) depends only on d € N and |I|.

Let f € T(d,n) and f # const. If 0 < p < 1, we define || f||, = || f | r(yn)
by the same formula as in the case p > 1. In the case p = 0 we set
| fllo = limp—o || f||p. Note that || - ||, are not norms in the case p € [0, 1).

There is a number M (f) such that v,(z € R" | f(z) > M(f)) = e L.
Turan’s Lemma yields the following bounds (see [13, Section 2]).

Proposition 3. For every f € T(d,n) one has
Yz €R™ | f(2) < (ApA)*M(f)) <A, (3.6)
I £1lp < (8A0 max(1,2dp))*d - M(f),
(eAo) M (f) <[ fllo < (340)%d - M(f).
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ON DISTRIBUTIONS OF TRIGONOMETRIC POLYNOMIALS 81

Corollary 3. If p,q € [0,400) and d € N, then there exist numbers
m(d,p,q) >0 and M(d,p,q) > 0 such that for every f € T(d,n)

m(d,p,q) - [[fllp <[ fllg < M(d,p,q) - | f]lp- (3.9)
Proof. If 0 < p < ¢ < oo, we have ||f|, < || f|l; (Holder’s inequality applied
to |f|P and 1). Using (3.7) and (3.8) completes our proof. O

Remark 2. Note that for a fixed number d the numbers m = m(d, p, q)
and M = M(d,p,q) in (3.9) do not depend on n.

The following proposition is an analog of the Carbery—Wright inequality
(see [8] and [13]) for functions from T (d, n).

Proposition 4. For every d € N there is a number c(d) such that for all
n €N and f € T(d,n) one has

(/1 <0 - < e(@e?, e >o0. (3.10)
Proof. Tn (3.6) we take A\ = M/24(f).- Ag'-+71/24 ¢ > 0, apply (3.7) with
p=1and get y(|f| <) - || £/ < e(Ag, d) - 11/24, O

Corollary 4. For every d € N and p > 1 there is a number c(d,p) such
that for allm € N and f € T(d,n) one has

1 _ _
/Rn o m ST )1 (3.11)

Proof. The function ¢ = (f2 4+ ¢)~! is a random variable on R™ with the
measure v,. We know that f2 >0, so & € (0,71). Hence

—1

[ aaran=r@ = [ poi (Pt 2
L [TREE 2 CulISVE VD),

(3 + 5)p+1 - ep 0 (u —+ 1)p+1

This chain of equalities along with (3.10) implies that

1/4d o 1/4d
2 —p (¢) c(d, p) , / U
+ dy, < ———— =, d,p) := 2c(d ————du.
/(f e) Pdy o HfH}/Zd c(d,p) c(d)p e u

n

Estimate (3.11) is proved. O

Remark 3. In order to derive the presented results from Turan’s Lemma
(Theorem 1), it is crucial that we define our set 7 (d,n) by formula (3.1).
One might expect that in place of f € T(d,n) we could consider

N

f(z) =ap+ Z(ak - cos(vg, x) + by sin(vg, ) (3.12)
k=1
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with arbitrary NV € N and vectors v with integer coordinates similar to
the ones in Definition 1. However, Theorem 1 cannot be used without
the condition N < d in (3.12). This fact is evident from Section 2 of
[13], especially from the remark made there. Note that any function f €
T (d,n) satisfies the definition of an exponential polynomial given in the
aforementioned remark in [13]. This follows from formula (3.2). Thus,
the proofs of the presented results heavily employ the condition N < d in
(3.12). Notice, however, that f(x) from (3.12) still belongs to 7 (di,n) with
d; = max(d, N). Even in the case N > d we have f € T (max(d, N),n).

Remark 4. Let us mention the following error made in our paper [16]:
there we defined trigonometric polynomials in such a way that we actually
allowed N > d in (3.12), while still basing our proofs on Turan’s Lemma
and its corollaries. As explained above, this reasoning is incorrect. The
main results of [16] (Theorem 3 and Theorem 4) are not made completely
invalid by this error, however. The numbers « in Theorem 3 and Theorem
4 depend not only on d but also on N from (3.12). In theorem 3 it is enough
to replace a = 1/(4d + 7) with o = 1/(4max(d, N) + 7). This fact follows
from Remark 3 above and Remark 7 below.

Moreover, replacing all TR4(R™) in [16] with T (d,n) defined as in Def-
inition 1 of this paper, we can fix most of the errors occurred in [16].
Nevertheless, even after this substitution, some other corrections should be
made, which is discussed in Remarks 7 and 8 below.

To formulate our next theorem, we set ||gllo = supy_y__, [|Okgll2. We
follow the convention that for g = const one has ||g[|;" = +oc.

Theorem 2. For each d € N there is a number C(d) such that, for each
n and every pair of trigonometric polynomials f,g € T(d,n), one has

H’Yn o f*1 — ngluTV < C(d)(HgHgl/(Qd) + 1)H.f i g‘|;/(2d+l)-

Proof. Fix a function ¢ € C§°(R) with ||¢| < 1. Consider the function
t
u(t) = / o(T)dr.

For any k = 1,...,n one has 0x(u(g)) = ¢(g) - Org. Thus,
(e(f) — »(9)Okg = Ok(u(f) —u(g)) — @(f)(Orf — Okg), (3.13)

where 0y denotes the partial derivative with respect to the variable zy.
Note that the hypotheses of our theorem say that f(z) = f(x1,...,2,) and
g(x) = g(z1,...,2,). Thus, for each € > 0 we have

P= [ (o) —plo) = [ (@0 +)EL 20

dn, 3.14
. Org)re D G
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ON DISTRIBUTIONS OF TRIGONOMETRIC POLYNOMIALS 83
We apply (3.13) to Jxg in (3.14) and get

~_ f OkgOk(u(f) —ulg)) , [ Okg-o(f)(Okf — Okg)
= /n (Org)? + ¢ @in /n (Org)? +¢

+e /Rn ((f) = (@) ((Org)® + ) dym = T1 + To + T3 (3.15)

dryn+

We now estimate each term in (3 15) separately. First, we shall prove
that 7 in (3.15) is bounded by C(d)e~/2|f — g|l2. To this end, we first
consider the one-dimensional case n = 1. In this case z € R and therefore
g = ¢ (x), 02g = ¢"(z), zx = x. The integration by parts formula (3.5)
and the formula (2.1) allow us to write

[ OkgOk(u(f) —uwlg) . [ g u(f)—ulg)
0= ™ (@) te d””_/a (¢')?+e

" yd N2 11
= —/(u(f) —u(g)) <(gg 2 +g€ - 2((;’9)2)55)2> dm (3.16)

[f —gl-1g"]
< 5o @) = gte lal i) +3 [ Lo @) de

Observe that 7(d, 1) is a (2d + 1)-dimensional linear space (see Remark 1)
and || f|lcc = sup,er |f(2)| is a norm on it. Hence there is a number C(d)
depending only on d such that |f(z) — g(z)| < C(d)||f — gl|2. Thus,

LU e < c@lf gl [ JEE g e 347

d’yl =

We take the intervals I; = [27j; 2mj + 27| and write

oo ar
/R(g,(gw)())J'rpn( ydr < ) ig?pvl( )/I @l g, (3.18)

j=—00 J
Note that both ¢’ and ¢g” belong to T (d,1) (see Proposition 2). Let’s now
consider only x € I;. Each interval I; is of length 27. Corollary 2 implies
that ¢” € 7(d,1) has m < 2d zeros 71 < ... < Ty, in the interval I;.
Consider the intervals (7, 7;+1) with ¢ = 0,...,m and 79 = 27j, Tpy1 =
27§ + 27. On each of the intervals (74, 7;+1) the function ¢” has a constant
sign. Thus,

T g . ” Tit+1 1 /
| et s @) [ @) <

There are (m + 1) < (2d + 1) intervals (7;, 7i+1) C I;. Therefore,

lg” ( i o m(2d + 1)
/1- (g'(2))? ;f Ve

J

S
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Applying this result to (3.18), we have

+oo

[ iy < TEEY 3 sl <C@ (19

The series in (3.19) converges (we substitute p,, (z) using (2.1)):

o2
2

2.2
e I = S1 < 4o0.

_ 2
X el = 3 et = 25

j=—o0®
Combining (3.19), (3.16) and (3.17), we estimate T3 from (3.15):

1< G 2 1) - gt el (o)

By the Cauchy—Bunyakovskii inequality the integral on the right is esti-
mated by || f — gll2 - C with C = ||z||2. Hence we proved the bound

_ [ g u(f) —ulg))
T = 5
R () +e
for the first term in (3.15) in the case n = 1.
We now proceed to the case n > 1. The space R can be decomposed
into the sum R" = (e;) @ Ej, with Ey = (ex)*. If R” = (e},) @ Ej, then the
measure v, can be represented as 7y, = 1 ® Yn—1, where y; is the standard

Gaussian measure on (e;) ~ R and v,_1 is the standard Gaussian measure
on Ej, = (e;)+ ~ R"1. By Fubini’s theorem

/Ek / = )> n im)))/ dyidn-1. (3.21)

dy < Co(d)||f - 9‘2%

(3.20)

In (3.21) we have x € By, = (ex)1, t €R, (-
the variable ¢, and f,(t) := f(:v—i—tek) 2
1, for any fixed x € Ey, the functions f(t
to T(d,1). We can use (3.20) to write

ol fx) — ulgs)) : 1
/R (g:,r;)2+6 dy < C(d)Hfm_ngZ%a

where f, = f.(t) and g, = g,(t) are regarded as functions of one variable
t. Substituting this into (3.21) we get

)’ is the derivative with respect to
) := g(x+teg). Due to Corollary

t
) f:):( ) and g( ) = gm(t) belong

1/2
T1<C'(d)k</,; ||fm—gxu%%_1<dx>) —cald) 2l - gl (322

where also the Cauchy-Bunyakovskii inequality || F'||1(p) < [[F]|z2(p) for
the probability measure P = ~,_1 and F(z) = || fz — g=||2 is used.
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The estimate (3.22) for the term T} in (3.15) is valid for any n € N.
Now we will consider the term 75 in (3.15). It is easily estimated as
follows (here we need the Proposition 2 and the Proposition 3):

_ [ Owge(f)(Okf — Okg) |Okg| |0k f — a1~39|
= /n (Org)* +¢ @ < /n (Okg)? + i

0k f —Okgl . ||Okf — Okgllx o
S/nwgd n=""oqpn  =clde Tf gl

To estimate the last term in (3.15), we apply (3.11) to the trigonometric
polynomial drg and obtain the bound

— 1
n (Okg)? + rRn Okg® +€ (3.24)
s%«MJmmmfm%ﬂﬂmzqu@w?”%“¢

(3.23)

Using (3.22), (3.23) and (3.24) together with (3.15) we get

[ (6 = e(9) dr < C@IF - gl

Jﬂ*mmmmx”d”w>

with some new constants. Taking € = || f — ¢||5 (4d)/2d+1

we obtain

/n(so(f) —¢(9)) dyn < (C(d) +er(d) By 4V >||f gl V2

Finally, we replace ||Okgll2 with ||glls = supy—;__, [|Okgll2 and take the
supremum over all smooth ¢ with ||¢||s < 1, completing our proof. O

Remark 5. In case g # const, Theorem 2 generalizes the result of
Davydov (see [9, Section 4]) to the case of R". Davydov’s estimate for
a pair of non-constant functions F,G € T(d, 1) is

lyio FH =910 Gty < Cra(d)I|IF — GHM+1 < Cre(d)|F - GlE,

where Cr (d) depends on the number d and can depend on some Besov—
Nikolskii norms of F' and G (for a discussion of Besov—Nikolskii spaces,
see the next section). Our Theorem 2 provides a similar result, but for
T (d,n) instead of T(d,1): along with (3.9) it implies that for any pair of
non-constant functions f,g € 7(d,n) with ¢ # const one has

[Yn o f = mog trv < Co(d)|| f — QIIQd“’

where Cy(d) depends on the number d and can depend on ||gs.

In the next section we show that the Besov—Nikolskii norm of g € T (d, 1)
can be bounded by a number depending on ||g||s. Thus, the result of
Theorem 2 has even more similarity with the result of [9, Section 4].
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4. Fractional Sobolev spaces

Let vy, be the shift of a measure v by a vector h: vy(A) = v(A — h).
Let 0 < o < 1. Let BY(R¥) be the Besov-Nikolskii class (see [1]) of all
functions ¢ € L'(R¥) such that, for some number C(p), one has

lo(-+h) — o1 < C(o)|h]® VheRF:

If 0 < a < 1, the class B*(R¥) coincides with the set of all densities p, of
bounded Borel measures v on R¥ for which with some C,, one has

HVh — V”TV < Cy‘h|a Vhe Rk (41)

A measure v belongs to B*(R¥) if its density is in BY(R¥); (4.1) implies that
v has a density (see [2, Proposition 3.4.3].) For measures (and functions)
from the linear space B*(R¥) we use the following norm || - || ga:

lv||ge :=inf{C: ||[v—vy|rv < C|h|*}.

Note that B*(R¥) is not a Banach space with this norm.
To check that a measure v belongs to the class B*(R¥) we employ the
following proposition (see [7, Proposition 3.1], [6, Theorem 1], [5, §2]).

Proposition 5. Let a € (0,1) and let v be a Borel measure on R! such
that for each function ¢ € Cy°(R) one has

/R o (@) v(dz) < Cllell%, 1¢I5

Then v € B*(R) and ||v|| g < 2179C.

Remark 6. It is enough in Proposition 5 to use only ¢ € Cp°(R) with
ll¢|looc < 1. For such ¢ the condition in the proposition can be written as

/R o () vl(dz) < Cllg/)|'5°.

We now prove that non-constant trigonometric polynomials f € 7(d,n)
have distributions from the class v € B*(R¥). We show that the measure
Yn o f~1 with f € T(d,n) belongs to the class BY(R¥) for some a.

Theorem 3. For every d € N, there is a number C(d) such that, for every
feT(d,n) and every ¢ € C;°(R) with ||¢|c < 1, one has

& < C@rly I 1.

Therefore, v, o f~1 belongs to the Besov-Nikolskii class BY/4+1(R) pro-
vided that f is not a constant.
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ON DISTRIBUTIONS OF TRIGONOMETRIC POLYNOMIALS 87

Proof. We assume that f # const, since for f = const we use the convention
I f||51 = +00, and the inequality in our theorem is trivial in that case.
Consider an arbitrary function ¢ € Cy°(R) with |[¢[|cc < 1. Then

/ _ (ak;f)z / € W(f)

Rn%b(f)dV—/Rn[Ww(f)} d’yn+/Rn(5kf)2+8d%' (4.2)

Let us write the first term in (4.2) as
(8kf) akf
/ (O f)? + = / %Y 3kf ;D
Integrating by parts, we obtain
B RS+ 6kf  2(0kf)?Oif 3103/
Jo e~ o) e s /R @ et

‘3kf| || -1/2
+/Rn(3kf) dyn <C( (6d+3)\/m/2+ 1)e (4.3)

The last step in (4.3) follows from the following two inequalities:

Of Ve< (Onf)+e 101 d < Ce '?3d\/7/
k >~ k 5 Rn(akf) Yn =

The second inequality here is proved similarly to (3.19) .
We now use (3.11) with p =1 to write

() N . g—1+1/4d ~1/2d
/ e D Sl T (@ D01 (4.4)

Using (4.2), (4.3) and (4.4), and taking ¢ = \\¢’\|g§+2/<2d+1) we obtain

/w’(f)dv < cr(d) |0 £ 117 20 |04 + ea(d)eV/2 <
< (er(d)|3ufll5 > + ea(d)) ||| 15/ @D,

This result holds true for every £ € N. Thus, we have

[ nar< (a@ifls ™ + @)L @)

Since f # const and ||f||s > 0, the function f - ||f||;" belongs to 7(d,1).
Applying (4.5) to g = f - || fl5" € T(d, 1), we obtain

/w (FIFIZY dy < (er(d) + ea(d)) 0|35/ Y. (4.6)
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Let ¢ € Cp*(R), [lelloc < 1, 9(t) = @(t]l fllo). Then o(t) = (¢ fl5") and
¢'(f) = lIfllp" - ' (fIfll5")- Hence, using (4.6) we get

[y < c@IsIg I = c@l e e,

with C(d) = (c1(d) + c2(d)). Having this estimate, we complete the proof
by applying Proposition 5 and Remark 6. O

Remark 7. Let us complete our discussion of the error in [16], explained
in Remark 4. As noted in Remark 4, replacing 7R4(R"™) in [16] with T (d, n)
we correct some errors in [16], but for some statements this replacement is
not sufficient. In some proofs in [16] we used the following fact:

If f,g € TR4(R"), then f-g € TRoa(RY). (4.7)

This is true for f,g € TR4(R™), but it is not true for f,g € T(d,n) if n > 1.
One can easily find f,g € 7 (d,n) such that for h = f - g the decomposition
h(ﬁ) = ag —|— Zi\le (Ck . €i<vk7$) _|_ dk . €_i<vk7$>)
will have more than N > 2d vectors vy, which is not allowed for 7 (2d,n)
(see Definition 1 and Remark 3). So the inclusion f,g € T(d,n) does not
guarantee that f-g € T(2d,n). We now correct the reasoning in [16] relying
n (4.7). Both Theorem 3 and Theorem 4 in [16] use (4.7). Let us first

discuss Theorem 3. In its proof we use (4.7) when we state that
(VFVE) =310 1(8:;f)* belongs to TRaq(R™).
With TR4(R™) replaced by 7 (d,n), Theorem 3 from [16] now states:
For every d € N and any number o > 4*1d’ there is a number C(d, )
that depends only on d and « such that, for every f € T(d,n) and every
function ¢ € Cp°(R) with ||¢llee < 1, we have

—1/a « -1/
| #(0) < c@.aja el e (48)
Note that the hypotheses in Theorem 3 from [16] are the same as in

Theorem 3 above. Combined with Remark 6, Theorem 3 above yields

1
C2d+1°

- d « —l/«
/ P () dva < C@IFI5 Nl 1

So our present paper provides a result similar to (4.8), but with a larger
exponent «. Here and in [16] we employ such inequalities to establish
the membership of 7, o f~! in BY(R). Therefore, a larger value for « is
preferable. Thus, Theorem 3 above gives a better result than Theorem 3
n [16], so in principle there is no need to explain in detail how to correct
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the reasoning there, nevertheless, this can be done. Indeed, in Theorem 3
in [16] the condition (4.7) is used to prove the first inequality in

1 c(d) “it1/ad _ S(d)  _141/4a
—————dy, < € < g )
/Rn (VL V) +e V1,9 F)I™ of*

But a similar result can be derived from inequality (3.11) of this paper.
Note that by (3.11) for all k& we have

1 1 —1+41/4d —1/2d
oo T dm S | e o dm = .1 ,
/R" (Vf,Vf)Jredfy /Rn (3kf)2+5d7 € c(d, )0kl

o1 flI2+...4+|0n f|2
Now observe that maxy [|Of|l2 > VI +10n 115 _ %H(Vf, Vf>|]i/2.

n

Taking into account that f € 7(d,n) has at most d? distinct variables x;,
we can assume that n < d?. Thus, we have
1 o(d, 1)e=1+1/4d o(d, 1) - d/2d—1+1/4d
/Rn VAV 72T Gnae [0 T2) 72 V£,V )]
This inequality enables us to correct the proof of Theorem 3 in [16]. How-

ever, as we have already noted earlier in Remark 7, that theorem can be
now replaced with a stronger result: Theorem 3 of this paper.

Remark 8. Let us now discuss Theorem 4 in [16], which also relies on
(4.7). We used (4.7) in [16] when stating that Ay = det My belongs to
TRara(R™). To correct this reasoning in [16], we add the condition

Ay =det My € T(N,n).

Observe that this condition is satisfied for N = k! - (2d)2*. This follows
from the fact that every element of the matrix M; has the form m;; =
(V i,V f;) with fi, f; € T(N,n). The decomposition

mij = (Vfi, V) = a0 + Yplq (e - €0 4 dy - e 2))
involves at most (2d)? distinct vectors v;, with |vg| < 2d < (2d)?. Hence
det My = ag + Z]kvzl(ck el ) gy e ilTk )
involves at most k! - ((2d)?)* = k! - (2d)?* distinct vectors v, and for all of
them one has || < 2kd < k!-(2d)**. Thus, we always have Ay = det M; €
T(d,N) with N = k!- (2d)?*, as required by Definition 1. After all these
adjustments, Theorem 4 in [16] will take the following form.

Theorem 4’: Letk,d € N,a > 0,b> 0, 7 > 0. Then there is a number
C(d,k,a,b,7) > 0 such that for every map f = (f1,..., fx): R® — R* with
fi from T(d,n) satisfying the conditions |A¢|1 > a, max<i o5, < b and
Ay e T(N,n) and for all functions ¢ € C°(R¥) and vectors e € R* with
le| =1 there holds the inequality

/ Dep(f(x)) ldx) < C(d,k,a,b,7) )% | Oepl| 5% a = (2N + 7).
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Consequently, v, o f~+ € BY(RF) for any a < 1/(2&)

As noted above, one can find IV such that Ay € T(N,n). The condition
fi € T(d,n), i <k, guarantees that Ay € T(No,n) with Ny = k! - (2d)?*.

5. Conclusion

The estimate obtained by Davydov in [9] for trigonometric polynomials
on R! is generalized to the case of trigonometric polynomials on R”. We
also obtain new results on the inclusion of the images of Gaussian measures
under trigonometric polynomials to Nikolskii-Besov classes. In addition,
some inaccuracies made in [16] are corrected.

References

1. Besov O.V., II'in V.P., Nikol’skii S.M. Integral representations of functions and
imbedding theorems. Vol. I, II. V.H. Winston & Sons, Washington; Halsted Press
[John Wiley & Sons], New York, Toronto, 1978, 1979; viii+345 p., viii+311 p.

2. Bogachev V.I. Differentiable measures and the Malliavin calculus. Amer. Math. Soc.,
Rhode Island, Providence, 2010, 510 p.

3. Bogachev V.I. Distributions of polynomials on multidimensional and infinite-
dimensional spaces with measures. Russian Math. Surveys., 2016, vol. 71, no 4,
pp. 703-749. http://dx.doi.org/10.1070/RM9721

4. Bogachev V.I. Distributions of polynomials in many variables and Nikolskii-
Besov spaces. Real Anal. Ezxchange, 2019, vol. 44, no. 1, pp. 49-63.
http://dx.doi.org/10.14321 /realanalexch.44.1.0049

5. Bogachev V.I., Kosov E.D., Popova S.N. A new approach to Nikolskii—Besov classes.
Moscow Math. J., 2019, vol. 19, no. 4. pp. 619-654. https://doi.org/10.17323/1609-
4514-2019-19-4-619-654

6. Bogachev V., Kosov E., Zelenov G. Fractional smoothness of distributions
of polynomials and a fractional analog of the Hardy—Landau—Littlewood in-
equality. Trans. Amer. Math. Soc., 2018, wvol. 370, no. 6. pp. 4401-4432.
https://doi.org/10.1090/tran/7181

7. Bogachev V.I., Zelenov G.I., Kosov E.D. Membership of distributions of polyno-
mials in the Nikolskii-Besov class. Dokl. Math. 2016, vol. 94, no. 2. pp. 453-457.
https://doi.org/10.1134/5S1064562416040293

8. Carbery A., Wright J. Distributional and L? norm inequalities for polynomials over
convex bodies in R™. Math. Research Letters., 2001, vol. 8, no. 3. pp. 233-248.
https://doi.org/10.4310/MRL.2001.v8.n3.al

9. Davydov Y.A. On distance in total variation between image mea-
sures. Statistics €  Probability Letters, 2017, vol. 129, pp. 393-400.
https://doi.org/10.1016/j.spl.2017.06.022

10. Kosov E.D. Fractional smoothness of images of logarithmically concave measures
under polynomials. J. Math. Anal. Appl., 2018, vol. 462, no 1, pp. 390-406.
https://doi.org/10.1016/j.jmaa.2018.02.016

11. Kosov E.D. Besov classes on finite and infinite dimensional spaces. Sbornik Math.,
2019, vol. 210, no 5, pp. 663-692. http://dx.doi.org/10.1070/SM9058

Ussectust VIpKyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2021. T. 37. C. 77-92



ON DISTRIBUTIONS OF TRIGONOMETRIC POLYNOMIALS 91

12. Nazarov F.L. Local estimates for exponential polynomials and their applications to
inequalities of the uncertainty principle type. St. Petersburg Math. J., 1994, vol. 5,
no. 4. pp. 663-717.

13. Nazarov F., Sodin M., Volberg A. The geometric Kannan-Lovasz—Simonovits
lemma, dimension-free estimates for the distribution of the values of polynomials,
and the distribution of the zeros of random analytic functions. St. Petersburg Math.
J., 2003, vol. 14, no 2, pp. 351-366.

14. Nourdin I., Poly G. Convergence in total variation on Wiener
chaos. Stochastic Process. Appl., 2013, wvol. 123, no 2, pp. 651-674.
https://doi.org/10.1016/j.spa.2012.10.004

15. Zelenov G.I. On distances between distributions of polynomials. Theory Stoch.
Processes, 2017, vol. 22, no. 2. pp. 79-85.

16. Zelenov G.I. Fractional smoothness of distributions of trigonometric polynomials
on a space with a Gaussian measure. The Bulletin of Irkutsk state Univer-
sity. Series Mathematics, 2020. vol. 31. pp. 78-95. https://doi.org/10.26516/1997-
7670.2020.31.78 (in Russian)

Georgii Zelenov, Candidate of Science (Physics and Mathematics), Ju-
nior Research Fellow, Department of Mechanics and Mathematics, Moscow
State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation;
Associate Professor, Faculty of Computer Science, National Research Uni-
versity Higher School of Economics, 20, Myasnitskaya st., Moscow, 101000,
Russian Federation, email: zelenovyur@gmail.com

Received 05.06.2021

O pacnpefiesieHUSIX TPUTOHOMETPUYECKUX IOJMHOMOB OT
rayCCOBCKUX CJIy4YallHbIX BeJINYUH

.. Benenos?

L MTY um. M. B. Jlomonocosa, Mockea, Poccutickan Pedepayus
2 HUY BII3, Mocxksa, Poccutickas Pedeparusa

Awnnoranusi. B crarpe 0Ka3aHBI HOBBIE PE3Y/IHTATHI O BIIOKEHUN PACIIPE/IEICHUIN
TPUTOHOMETPHUIECKUX IIOJIMHOMOB OT I'ayCCOBCKUX CJIy4ailHBIX BEJIMYHH B KJIacChl becosa
— Huronbckoro. Takxke moJiydeHna OIEHKA PACCTOSTHUSI MO BaPHUAIMA MEXKIY pacipe-
JIeJIEHUSIMU TPUTOHOMETPHUYECKUX ITOJIMHOMOB depe3 paccrosiHue B LY-merpuke Mex iy
CaMHUMH ITOJIMTHOMAMU.

Kuarouesrie caosa: Kitacc Hukonbckoro — Becosa, rayccosckast Mepa, pacipeseie-
HHUE TPUTOHOMETPHUYIECKOT'O ITOJIMHOMA.
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