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Abstract. Dual techniques have been used in many engineering papers to deal with
singularity and ill-conditioning of the boundary element method (BEM). Our efforts are
paid to explore theoretical analysis, including error and stability analysis, to fill up the gap
between theory and computation. Our group provides the analysis for Laplace’s equation
in circular domains with circular holes and in this paper for elliptic domains with elliptic
holes. The explicit algebraic equations of the first kind and second kinds of the null
field method (NFM) and the interior field method (IFM) have been studied extensively.
Traditionally, the first and the second kinds of the NFM are used for the Dirichlet and
Neumann problems, respectively. To bypass the degenerate scales of Dirichlet problems,
the second and the first kinds of the NFM are used for the exterior and the interior
boundaries, simultaneously, called the dual null field method (DNFM) in this paper.
Optimal convergence rates and good stability for the DNFM can be achieved from our
analysis. This paper is the first part of the study and mostly concerns theoretical aspects;
the second part is expected to be devoted to numerical experiments.

Keywords: boundary element method, degenerate scales, elliptic domains, dual null
field methods, error analysis, stability analysis.
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1. Introduction

Dual techniques have been used in many engineering papers (see [1-3;
11]) to deal with singularity and ill-conditioning of the boundary element
method (BEM). However, it seems to be lack of strict analysis, including
error and stability analysis. In [6], the analysis for Laplace’s equation in
circular domains with circular holes is provided by our group, and this
paper is a continued study of [6] for Laplace’s equation on elliptic domains
with elliptic holes ( [9;12]) by the dual techniques. When the field nodes are
located on the exterior elliptic boundary, the degenerate scales of algorithm
singularity occurs at a + b = 2 [5], where a and b are two semi-axes of the
exterior ellipse. It is too complicated to find all pitfall nodes of the null
field method (NFM) causing algorithm singularity, as done in [5]. However,
when the field nodes are confined on the same ellipses, the degenerate scales
may be bypassed, see Section 2.2.

To guarantee the non-singularity of coefficient matrices obtained, other
numerical algorithms should be solicited. In [1], a self-regularized method
is proposed in the matrix level to deal with non-unique solutions of the
Neumann and Dirichlet problems which contain rigid body mode and de-
generate scale, respectively. In [3], they have examined the sufficient and
necessary condition of boundary integral formulation for the uniqueness so-
lution of 2D Laplace problem subject to the Dirichlet boundary condition by
five regularization techniques, namely hypersingular formulation, method
of adding a rigid body mode, rank promotion by adding the boundary
flux equilibrium (direct BEM), CHEEF method and the Fichera’s method
(indirect BEM).

The dual null field method (DNFM) is studied in this paper to avoid the
algorithm singularity. More importantly, the error analysis of the DNFM
can be made for elliptic domains with one elliptic hole to reach the optimal
convergent rates. The bounds of condition numbers of the DNFM of a
simple case are derived to display good stability. This paper with [6] may
shorten some gap between computation and theory of the dual null field
method (DNFM).

This paper is organized as follows. In the next section, for elliptic
domains with one elliptic hole, the null field method (NFM) are described,
and the degenerate scales are discussed. In Section 3, the dual techniques
of the the NFM and the interior field method (IFM) are proposed to remove
the degenerate scales. In Section 4, the analysis of errors and stability is
explored. In the last section, a few concluding remarks are made.

* The reported study was funded by the Ministry of Science and Technology (MOST),
Grant 109-2923-E-216-001-MY3 and RFBR, research project 20-51-S52003.
t Corresponding author
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2. The Null Field Methods in Elliptic Domains with Elliptic
holes

2.1. THE FirsT KIND OoF NULL FIELD METHOD
The elliptic coordinates are defined in [10] by
x = ogcoshpcos, y = ogsinhpsiné, (2.1)

where o9 > 0 and two coordinates (p, 8) have the ranges: 0 < p < oo and
0 < 0 < 27. Denote the large ellipse Sp with p = R, where the elliptic
coordinates (p,6) are given by (2.1) with the origin (0,0). Also denote a
small ellipse Sg, C Sg with p = Ry, where the other (i.e., local) elliptic
coordinates (p, #) are given by

T = oy coshpcosf, = oysinhpsinb, (2.2)

where o1 > 0. This Cartesian system (Zz,y) with the origin (z1,y1) is
rotated from the axis X, by a counter-clockwise angle © as in Figure 1.

Y

Figure 1. The ellipse Sg with an elliptic hole Sg, .

Denote the annular domain by S = Sg \ Sg,, and its boundary by
0S = 0SRr U OSR,. In this paper, consider the Dirichlet problem only,

*u 0% .
u=f on 0Sg, u=g on 0Sg,, (2.4)

where f and g are the known functions. On the exterior elliptic boundary
0SR, suppose that there exist the approximations of series expansions [9],

M
u=fr~ag+ Z{ak coskf + by sinkf} on OSg, (2.5)
k=1
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1
ao70(0)

M
{po+ D {prcoskd +qesink0}} on 9k, (2.6)
k=1

where ag, bg, pr, and g are coefficients, and 74(0) = \/sinh2 R + sin® 6.
On the interior elliptic boundary 0Sg,, similarly

N
u=g~ag+ Z{ak cos kf) + by sinkf} on OSg, (2.7)
k=1

ou ou 1 N = A
= x—— <P+ E P, cos kO + g, sin k6 on 0Sg,, (2.8
ov 8/) 0171(9) {po k:l{ ) o }} : ( )

where ay, by, pr. and g, are coefficients, and 74 (6) = \/sinh2 Ry + sin? 0. For
the Dirichlet problem, the coefficients aj and by in (2.5) and aj and by in
(2.7) are known, but the coefficients p; and ¢ in (2.1) and p and g in
(2.8) are unknown to be sought.

In [9], we have derived two explicit algebraic equations of the first kind
NFM, Lewi(p,0:5,0), Lint(p,0;p,0), and the interior solution uy_n =
unr—n(p, 0;p,0) is also given. For the numerical computation of explicit
algebraic equations, the coordinate transformations between different el-
liptic coordinates are needed. In general, the axes of the small ellipse are
not along the X and Y axes. The local Cartesian coordinates X'O’'Y”’
are located from the standard Cartesian coordinates XOY by rotating a
counter-clockwise angle © € [0,7), see Figure 1. The explicit formulas
of the transformations between two different elliptic coordinates can refer
to [9].

2.2. ANALYSIS OF DEGENERATE SCALES

Denote Leyt(p, 0;p,0) and Lini(p, 0; p, 0) simply by

p+n% p+In% Po fo\ _¢g

<R+m?1ﬁ+mg><m>+<%>—Q (2.9)
where fy and gy are the remaining terms of algebraic equations without
po and pg. For the IFM of p = R and p = Rj, the matrix singularity
occurs when R +1In % = ln(“Ter) = 0, which yields a + b = 2 of the exterior
boundary Sk (see [9]). How about the degenerate scales for a+b # 2 and
p > R of the NFM? In [5], all pitfall nodes causing algorithm singularity
are found for circular domains with one circular hole. For elliptic domains
with one elliptic hole, however, it is troublesome and complicated to find all
pitfall nodes. Degenerate Case III in [5] is less important in computation,
since the filed nodes are not located on the same exterior circular boundary
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to cause large condition numbers. In applications, it is strongly suggested
that the field nodes be located on the same ellipses in [5, Section 4.4].
Hence, the constant p is confined in this paper. Denote the ellipse 95, =
{(p,0)|p = constant,0 < 6 < 27}, and all field nodes are located on 95,,.
The global elliptic coordinates (p, ) are defined in (2.1) with focus oy,
and the local elliptic coordinates (p,f) in (2.2) with focus o1, where x1,
and © are parameters. If 01 = 09,21 = y1 = 0 and © = 0, two elliptic

coordinates are identical (i.e., the same as (p,0) = (p,0)). Otherwise, they

are different. For two different elliptic coordinates, (p, ) # (p,0), we have
the following proposition without proof.

Proposition 1. Suppose that constant p (> R), a +b # 2, and two

different elliptic coordinates, (p,0) # (p,0), are used. When M > 2, there
exrist no degenerate scales of the NFM.

When the same elliptic coordinates, i.e., (p,0) = (p,0) with o1 = o9 is
used, and suppose that p = R, the degenerate scales of the IFM do occur at
at+b" = a+b = 2, to coincide with the analysis in [9]. Then the degenerate
case with a + b = 2 is inevitable to cause the algorithm singularity. In
this case, to bypass degenerate scales is essential in computation, and the
advanced algorithms and the removal techniques are needed for Dirichlet
problems in real application. Our progress has been reported for circular
domains in [5;6]. To deal with Dirichlet problems in elliptic domains, in
this paper we explore the application of dual techniques in [1;2;4;11].

3. Dual Techniques

3.1. SEconD KIND OoF THE NFM

For the dual techniques, we need the second kind Green formula of null
field nodes from [12],

a{/ Uy 240 g _/ u(y)wd(,y} _o,
81/)( 8SRU85R1 8Vy 8SRU85R1 8Vy

x € S, (3.1)
where two nodes x = Q(z,y) and y = P({,n). Denote v and v as the

directions of § = const and @ = const, respectively, and 7 and 7 as the
angles of v and v from the X axis, respectively. We have from [12]

tan 6 B o . tan 6
tann = , T=n0n"4+0, tann° =

. 3.2
tanh p (3.2)
Based on (3.1), two explicit exterior equations of second kind of the null
field method (simply as second kind NFM),

0 _ _
%ﬁezt (p,0;p,0) and ﬁﬁmt (p,0;p,0)
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are derived from [12], the explicit formulas are not given here.

3.2. ALGORITHMS OF DuAL NULL FIELD METHODS

Traditionally, the first and the second kinds of the NFM are used for
the Dirichlet and Neumann problems, respectively, see [9;12]. The first
kind NFM may also be applied to Neumann problems, and the numerical
performance is as good as that by the second kind NFM [9]. Hence, we may
also apply the second kind NFM for Dirichlet problems. When two kinds
of NFMs are applied for exterior and interior boundaries, there are four
types, I-1, II-1I, I-II and II-I, where I and II denote the first and the second
kind NFM, respectively, and their appearances before and behind from “-”
denote the exterior and the interior boundaries, respectively. Type I-I is
studied in [9] already. For type I-II, Let(p, 0; p,0) and %EW are denoted

<,0-|—1(I)1(020) ﬁ+1g(?)><gg>+<§g>:6, (3.3)

and for II-1I, %Eext(p, 9; p,0) and %Lint as

. 1 cos(n—m)
oS =1) ( w8 oim () (po) + <f°> =0, (34)
a171(p, 0) 0 0 bo 9

where fy and gy are the remaining terms of algebraic equations without
po and pg. Since there are no leading coefficients pg and pg in %Emt,
the determinants of the matrices of pp and po in (3.3) and (3.4) are zero,
and the algorithm singularity always happens. Only type II-I by using
%ﬁext(p, 0; p, 9)7and Lint(p,0;p,0) is worthy to study. %Ewt(pﬂ;ﬁ, 0)
and Lt (p, 0;p,0) are denoted as

1 1 A
( aoto(p0)  o171(p,0) cos(1) —17) > <130 > + < fo ) = 67 (3.5)
R+In%  Ri+In% Po go

or can be denoted as

Dezt(p7 97 ﬁu 9) = 07 Elnt(p707ﬁ7 9) = 07 (36)

which are called the dual null field method (DNFM) in this paper.
We provide their collocation equations for stability analysis given in
Section 4. Choose the uniform nodes on the same ellipses,

(10? 0) = (R+67]A0)7 ] = O? 17 "'72M7 (37)
(p,0) = (R1 — €,jA0), j=0,1,...,2N, (3.8)
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where ¢ > 0, 0 < € < Ry, A9 = 2]\2/[7;1 and Af = 2]\2,% We obtain

2(M + N) + 2 collocation equations of the NFM,

w4 —_ w5
—%Dewt(RJre,jAe;ﬁj,ej): M]f(jAQ), j=0,1,...,2M, (3.9)

VWi Lint(p;, 05 R1 — € jAO) = Jwjg(jAF), j=0,1,..,2N, (3.10)

where the corresponding coordinates (p;j,0;) and (pj,6;) can be evaluated
from (R+e¢, jAf) and (R;—¢, jAG), based on the coordinate transformations
in [9]. The wights wp = 1 and w; = 2 for j > 1. Egs. (3.9) and (3.10)
are called the collocation Trefftz method (CTM). When p = R, p = Ry,
e = € = 0, and collocation equations of the NFM lead to those of the IFM.

3.3. REMOVAL OF ALGORITHM SINGULARITY

Let us discuss the degenerate scales of the DNFM. We have a proposi-
tion, the proof is similar to Proposition 1 and is given next.

Proposition 2. For Laplace’s equation in elliptic domains with one ellip-
tic hole, when a+b = 2, there do not exist degenerate scales of the DNFM.
When a + b # 2, the statement is true if constant p (> R) and not small
M are chosen.

Proof. We have the zero determinant from (3.5),

1

L ) cos(n—n)| B+h%G

Dual| = | 0m00)  o1mi(p, = — 3.11
| | R+In% Ri+1n % ooto(p, 0) ( )
R+In% In &£ In &b
_ —2_cos(n —17) = — £ cos(n—mn) =0.
o171(p, 0) (n=1) aomo(p,0)  o171(p,0) tr=7)
When a + b = 2, we have
I @tb
|Dual| = ——2_ <, (3.12)
oo70(p, )

since a+b < a+b = 2. Hence, the DNFM may remove algorithm singularity
at a + b = 2 of the IFM. This confirms the first statement.

Next, for a+b # 2, the exterior ellipse 0.5, with constant p(> R) is fixed.
Then from (3.11), we have a nonlinear equation with respect to 6 € [0, 27],

a070(p, ) b
o(g) = 2907 —q) = L at+b#£2, 3.13
(0) gy cos(n — 1) et a+b# (3.13)

For the given constant p, the coordinates (p,6) via the transforation in [9]
are dependent only on variable 6, and so is (n — 7). The solutions 6 from
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(3.13) are the roots of a nonlinear equation.  In [0, 27], since the sign
changes of derivatives ®’(f) are finite, only a few roots exist. When M is
not small (or even large), not all § = 6;(j =0,1,...,2M + 1) are just equal
to the roots of (3.13). Then Eq. (3.11) does not always hold, to imply no
algorithm singularity of the DNFM. O
Note that the degenerate case, a + b = 2 of the IFM, disappears in
the DNFM. Not only is the algorithm singularity bypassed, but also the
optimal stability as Cond = O(M) can be achieved, see Section 4.2.

4. Analysis of Errors and Stability

4.1. ERROR BOUNDS

For simplicity, we only explore the analysis for elliptic domains with one
elliptic hole. The other mixed types of elliptic and circular boundaries with
circular and elliptic holes are similar. We also choose p = R and p = Ry,
and the original NFM is equivalent to the interior field method (IFM),
see [9, Section 4].

Since the DNFM Dey(p, 0; p, ) (or a%ﬁext(p,@;ﬁ, 0)) at p = R and

Lint(p,0;p,0) at p = Ry can be classified to the Trefftz methods, we will
follow the outlines of analysis in [9]. Define the energy

= w2 v, — £*)2ds v — q)3ds .
I(v) = ASR<V f)%d +/85R1< 0)%ds, (4.1)

where v = ups_n is given in [9]. The function ¢ is approximated in (2.7)
with known coefficients a; and ag, but the function f; in (2.1) is still
unknown yet. The weight w = ﬁ is used to seek optimal convergence for
the mixed problems of the Dirichlet and the Neumann problems [7]. For
the Dirichlet problems, the coefficients pg, qx, pr. and g, are unknowns, and
the total number is 2(M + N + 1). Denote the set of u%, x(p,0;p,0) tas
Vvi—n. The Trefftz method reads: To seek up;—n such that

I(up—ny) = min  I(v). (4.2)

veEVA N
When there exists the numerical integration, Eq. (4.2) gives

I(upr—n) = min I(v), (4.3)

veEVM_N

where

~

A

I(v) = wQ/aS (v, — ) ds +/ (v — g)%ds, (4.4)

9Sp,

L i, N is the interior solution with true Fourier coefficients
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where | 0S5k and | SR, Are the approximations by the rules of numerical

integrals. For the DNFM, the collocation equations in Egs. (3.9) and
(3.10) at € = € = 0 can be described as (4.3) with the trapezoidal rule.
From the solution, u},_(p,6; p, 0), we have the derivatives and is given
in [8], the explicit formula is not given here.
Then, the remainders of solution derivatives on the exterior boundary

OSR are given as

8 * 6 — * — N
5(“ —upy_N) = a(U(Ra 0;p,0) —up_n(R,0;p,0)) (4.5)

1 o
= — ke "R Lq, sinh kR cos k0 + by, cosh kR sin k6
oo7o(R, 6) { k:%;rl {a k }

+ Z e FR{p; sinh kR cos k@ + qj, cosh kR sin k@}}
k=M+1

1

_07'(ﬁ§){ Z ke—kﬁ{ak sinh k Ry cos[kf — n + 7]
171(P,

k=N+1
+by, cosh kR sin[kf 4 1 — 7]}

+ Z e kP {py, cosh kR cos[kf — n + 7] + j sinh kR sin[kf + n — 7‘)]}}
k=N+1
We cite the following lemma from [8].

Lemma 1. Suppose u€ HP(9SR), u, € HP~1(OSR) (p > 2), u€ H? (0Sg,)
and u, € H°71(0Sg,) (o0 > 2). Then there exist the bounds of the remain-
ders of,

0 . 1

| oo =uiem)], . < gm0 Nulbass + lul-sos:)

1
oy (lullnasr, + s lo-v05,) }- (4.6)

. 1
lu = s —wlloose, < C{ 55 (ullposn + lullp-1054)
1
5 Ulullnas, + lullo-105n,) }- (4.7)

where all coefficients in uy,_ 5 and %U’M_N are the true Fourier coeffi-
cients, and C' is a constant independent of M and N.

Define the norm ||v||§ = \/wQ fasR v2ds + fasR v2ds, we have the fol-
1

lowing theorem.
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Theorem 1. Let the conditions in Lemma 1 hold, and the ezact co-
efficients of the Dirichlet conditions in (2.5) and (2.7) be given. Then
the solutions from the DNFM %Emt(p,ﬂ; p,0) and Lini(p,0;p,0) have the
following bound,

[ullp.osy + [lwwllp-1655) (4.8)

N 1
e = ur-wlisr < O{ 55

77 ([l s, + lusllo—1080,) }-

Proof. For the exterior boundary condition (2.1), denote

M
R 1 .
Dup(0SR) = o) {po + kgl{pk cos k@ + gy, sin kG}} . (4.9)

. 1 >
Duso(OSR) = ———— < po + prcos kO + qpsinkd} >, (4.10
s =L e 30 . )
where coefficients p; and ¢ are the true Fourier coefficients. The remainder
is given by

1
o070(0)

Z {pk, cos k6 + qj, sin k6 }.
k=M+1

[)R’U,M = f)uoo(aSR) —DUM(aSR) =

From [8] we have

I1DRuntlloosy = | (Duso — Duar)llops, < Crmg

= Mp 1 HU’VHP*LaSR‘

Since g = Duyy and w, = f* = Dus,, we have from (4.1),

1
lu—vl§ = {w2 /85 (uy — vy — (Do — Dupy))?ds + / (u— v)2d8}2.
R

Sk,

From (4.2) we have

}

Let u =u},;_yand w = ﬁ, where u},_ is the interior solution given in [9]
with true Fourier coefficients. We have

fu—un-nls < _inf {wllu, v, (Duos = Duas)lloosi
veEVAM N

}

0,0SR

* 1 ~ 8 *
hu = uar—wly < C{SIDRunrlo sy + || 3-(u = wis_n)
+lu - U"M_Nllo,asRl}. (4.11)
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Eq. (4.8) follows from Lemma 1 and (4.11). O

4.2. CONDITION NUMBERS

We choose p = R and p = R;. For simplicity, consider the simple case:
(1) the symmetric cases gy = gy = 0 and M = N, and (2) the same elliptic
coordinates with (p,0) = (p,0) are used, i.e., 09 = 01,21 =31 = 0,0 =0
and 77 = 7. We obtain from B%Eewt(p, 9;p,0) at p =R,

M
— (po + po) — Zpke_kp cosh kR cos kO
k=1

1
,De$ ) = T 5
t(p,9) oo7o(R, 9){

N M
— Zﬁke_kR cosh kR; cos kO} + Z arpke " sinh kR cos k6

k=1 k=1
N
— " agke *Rsinh kR cos k@} —0, (4.12)
k=1
and Lin(p,0;p,0) at p= Ry,
Lint(p,0) = —[R+ ln )]po + Z Pk o =kR cosh kRy cos k6 (4.13)
N _
—[R1 + ln Z Z; k1 cosh k Ry cos kO
k=1
M N
+ag — ag + Z age " cosh k Ry cos kO — Z are Pl cosh kpcos k6 = 0.
k=1 k=1
Egs. (4.12) and (4.13) lead to
M
po + Po + Z(pkefkR cosh kR + pre " cosh kRy) cos k@ = f1(6), (4.14)
k 1
—[R+ ln( )lpo — [Ry + ln( 050 (4.15)

2

+ Z (Pke=kR cosh kR, + %e_ml coshkRy) cos kf = g1(6),

where f; and g are the remaining terms of algebraic equations without pg
and py.

Below, we give the stability analysis. For the collocation equations in
(3.9) and (3.10) at € = € = 0, define the matrices By € R**? such that

1 1
— M M
5= (i g o g ) )
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B — < Le FR cosh kR ?e"}f cosh kR
k

{\4 kRCOShle —k 1 COShle ) 9 k - 1,2, 7_2\4' (417)

Lemma 2. For the symmetric matriz By, (k> 1) in (4.17), two singular
values Jf: have the bounds,

1 1
+ —
Uk SC%, O'k ZCOM’ (418)
where C' and ¢y (> 0) are two constants independent of M.
Proof. The determinant of (4.17) is given by
173
Det(Bg) = —— 4.19

where
tr = e *F cosh le(e_le cosh kR — e *f cosh kERy) >0,k=1,2,..., M.

Since matrices Bi are symmetric, we may seek their eigenvalues. Two
eigenvalues satisfy

1 1

A A = Me—’fR cosh kR + %e_kp” coshkR;y >0  (4.20)

AL = Det(By) > 0. (4.21)

We conclude that /\f > 0, and that the symmetric matrices By are also
positive definite. Hence, we have from (4.20)

1 1 1
A< AT+ = Me_kR cosh kR + %e_le coshkRy < C)  (4.22)

and then from (4.21)

_ tk

L BN 42
ETRMA T M (4.23)

Since the symmetric matrices By, are also positive definite, their eigenvalues
and singular values are the same. The desired results (4.18) are obtained
from (4.22) and (4.23). O

Lemma 3. For matriz By in (4.16), two singular values aa—L have the
bounds,

1
T<C, o5 > 07 (4.24)

Denote the matrix B = Diag{Bg, B1, ..., Bys} € R™*" with n = 2M + 2.
By following the arguments in [9], we have the following lemma.
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Lemma 4. There exist the bounds,
Umax(A) <Cv Mamax(B)a Umin(A) > CoV Mamin(B)-

Theorem 2. Under the simple case of elliptic domains with one elliptic
hole, for the DNFM (3.9) and (3.10) at € = € = 0, there exist the bounds,

Cond(A) = O(M). (4.25)
Proof. From Lemmas 2-4, we have

Umax(A) < C\/Mo'max(B) < C\/M)

1 1
min (A) > Mopin(B) > MM, > M— = .
O'()Co\/O’()CQ\/MCO\/MCO\/M
The desired result (4.25) follows from Cond(A) = ‘;:?:((i)) ]

5. Concluding Remarks

Let us give a few remarks, to address the novelties of this paper.

1. Although the dual null field method (DNFM) have been widely used
in engineering computation to deal with degenerate scales (see [2;4;11]), so
far there exists no strict analysis. The second and the first kind NFM are
used for the exterior and the interior boundaries, respectively, called the
DNFM in this paper. The DNFM for Laplace’s equation in circular domains
with circular holes was first proposed in [6]; but this paper is devoted to
the DNFM for Laplace’s equation in elliptic domains with elliptic holes.
This paper and [6] may establish a theoretical foundation to fill up some
gap between theory and computation.

2. For the DNFM, the error bounds are derived in Theorem 1, to achieve
the optimal convergence rates. The stability analysis is explored for the
simple case in Theorem 2, to reach good stability with Cond = O(M).

3. Numerical experiments will be carried in the second part of the paper
to support the theoretical analysis made here. Moreover, the collocation
Trefftz methods (CTM) will also be used for comparisons. Both the CTM
and the DNFM can offer the excellent numerical performance.
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Anajim3 MeTo0B ABOMHOIO HYJIEBOrO IoJisg B 3ajave /lu-
puxJie st ypaBHeHus Jlamsaca B 3JIMOITAYECKUX 00JIACTAX C
JLTAIITAYECKIMA OTBEPCTUSIMI: IIPOGIeMa aJIropuTMIIECKON
CUHTYJISIPHOCTH

3. K. JIu!, X.1I. Xyanr?, JI.II. ’Kanr3, A. A. Jlemmepr?, M. T. JIu®

L Tocydapemeennmidi yrnusepcumem um. Cyno Imcena, Taocron, Tatisany,

2 Ynueepcumem Hwoy, Taocion, Tatisans,

3 Yoicougancruti mexnosozuneckuts ynusepcumem, Xanwoicoy, Kumadi,

4 Hnemumym dunamuru cucmem u meopuu ynpasaenus um. B. M. Mampocosa
CO PAH, Upxymcex, Poccus,

5 Vnusepcumem Yyne Xya, Cunvuorcy, Taticann

Awnnoranusi.  /IBO#iCTBEeHHBIE METOBI YACTO MCIOJIB3YIOTCS JIJIsI PEIIEHUs TPobIIe-
MBI CHHIYJISIDHOCTH M IUIOXOI 00YCJIOBJIEHHOCTH METO/ja TPaHUYIHBIX sseMeHToB (MI'D).
B crarpe ycunust aBTOpOB HampaBiIeHbI HA M3YUEeHHE TEOPETHUYECKUX ACIIEKTOB MAHHOM
MpobJIeMBbI, BKJTIOYAsT aHAJU3 OIMMUOOK W WCCJIeJOBAHNE YCTOWUIUBOCTH, YTOOBI 3AIIOJTHUTH
npobest MeXK/Iy Teopuell M BBIYUCIUTE]bHBIM SKCIIEpUMEHTOM. PaHee aBTOpamm BBIIOJI-
HEH aHaJIN3 ypaBHeHUs! Jlammaca B KpyroBBIX 0OJIACTSIX ¢ KPYTOBBIMEA OTBEPCTHUSIMU, a B
HACTOAIIEN CTAThe PACCMATPUBAIOTCS SJIIUITHIECKIE 00JIACTH C JIIUITHIECKIMU OTBEP-
crussmu. [loydens! siBHbIE arebpandecKre ypaBHEHUs IEPBOTO U BTOPOTO BHUA METOMA
uysnesoro noss (MHIT) u meroma suyrpensero mosst (MBII). TpaauimoHHO nepBbIit
u Bropoit Bumasl MHII ucnonbsyrorcss coorBercTBenno myis 3amad dupuxie m Heitma-
Ha. YTOOBI NIPEO0JIeTh AJTOPUTMUYECKYIO CHHIYJISPHOCTH B 3amade Jlupuxiie, BTOpOit
u nepsbiit Buasl MHII wcnonb3yrorcss 7j1s1 BHEITHUX W BHYTPEHHHX T'PAHMUI] OTHOBPE-
MeHHO. Takoii I0JX0/ Ha3BIBAETCS METOIOM JBoiicTBeHHOro Hysesoro mnosst (JIMHIT).
B pesyabraTe mpoBeIEeHHOTO HCCIEIOBAHUS JOCTUTHYTHI OBICTPas CXOAMMOCTH U XOPO-
masi ycroirauocts JIMHII. /lanHas craThs sSIBJISIETCS IIEPBON YACTHIO MCCJIEIOBAHUS U
KacaeTcs TEOPETUIECKUX ACIEKTOB, BTOPAasl YacCTh Oy/EeT MOCBAIEHA BBIYHCIUTEIHHBIM
IKCIIEPUMEHTAaM.

KuroueBrbie ciioBa: MeTO/T IPAHIYHBIX SJIEMEHTOB, BBIPOXKIEHHBIE IITKAJIbI, SJIJIUITH-
geckue 00JIACTH, METOJ, JBOUCTBEHHOTO HYJIEBOTO IIOJISA, AHAJHN3 OMMNOOK, aHAJIN3 yCTOI-
YMBOCTH.
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