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Existence and Uniqueness of Weak Solutions for
the Model Representing Motions of Curves Made
of Elastic Materials

T. Aiki!, C. Kosugi'

L Japan Women’s University, Tokyo, Japan

Abstract. We consider the initial boundary value problem for the beam equation with
the nonlinear strain. In our previous work this problem was proposed as a mathematical
model for stretching and shrinking motions of the curve made of the elastic material
on the plane. The aim of this paper is to establish uniqueness and existence of weak
solutions. In particular, the uniqueness is proved by applying the approximate dual
equation method.
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1. Introduction

In this paper, we consider the following initial and boundary value prob-
lem for the partial differential equation: The problem is to find a function
u: Q(T) — R?, where Q(T) := (0,T) x (0,1), T > 0, satisfying

Ou ' 3<f(5)3“>:0, 5:‘&"_1OHQ(T), (1.1)

P o dxt  Ox ox oz
(i”(to)—aiu(tl) for all t € [0, 7] and i = 0,1,2,3 (1.2)
oxi - oxi ora ) a t=VY,1,2,9, .
u(0,x) = ug(x), @(O, x) =wvo(x) forall x € [0,1], (1.3)

ox
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where p is a positive constant denoting the density, v is also a positive
constant, ¢ is the strain of the elastic material, f is a continuous function
on R, wug is the initial position and vy is the initial velocity. We call the
system (1.1) — (1.3) the problem P.

The problem P is a mathematical model for stretching and shrinking
motions of the one-dimensional elastic material on the plane R? as in Fig-
ure 1. In [2] we proposed, an ordinary differential equation system as a
model describing the motion of a polygon having N vertices, and proved
existence and uniqueness of solutions to the ODE system. Also, we showed
some theorems concerned with the numerical scheme developed by applying
the structure preserving numerical method (see [4;12]). Here, by letting
N — oo in the ODE system and adding the fourth derivative term Yz,
we can obtain the problem P. This limiting process and numerical results
for the ODE system and P will be discussed in our forthcoming paper. We
note that the boundary condition (1.2) means that the material is connected
smoothly. Now, we emphasize that our problem P has the following four
features.

Time 0 Time €

—

uy(x) € R?
\/a(t' x) € RZ
| |

0 X 1
Natural length

Figure 1.

i) (Unknown function) Usually, the kinetic equation for elastic materials
is described with the displacement as an unknown function (see Figure
1). In our argument the unknown function of the system is the position
u, since we would like to represent the motions, directly.

ii) (Nonlinear strain) In this paper we define the strain € by € = |u,| — 1.
This strain expresses the ratio between the length of stretching and its
original length. Since we describe the motion of the one dimensional
material on R?, such nonlinear strain appears. Here, we note that |u|
may vanish in general and in this case it is impossible to calculate the
derivative of ¢ with respect to x. Hence, in this paper we consider only
weak solutions such that the differentiability of € is not necessary.

iii) (Stress function) In [2] the magnitude of the stress is given by the
function f(e) having a singularity such that f(¢) - —oo0 as e | —1.
This type of the singularity for the stress function was already studied
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in material science for the compressible elastic body (see [5], [9], [10]).
However, it is not easy to handle this singularity, mathematically.
Therefore, we suppose that the stress function f = f(¢) is continuous
on R in this paper.

iv) (Fourth derivative term) The equation (1.1) is called a beam equation
which contains the fourth derivative term yu .., and appears when we
approximate the motion of a three-dimensional material by the one-
dimensional model. This kind of equations is a part of the Falk model
dealing with shape memory alloys and is well studied, mathematically.
Due to [3], this term is regarded as a description of non-local effect
induced by interfacial energy. In order to investigate the role of this
term we will observe the numerical results for solutions to P.

The aim of this paper is to establish existence and uniqueness of weak
solutions of P under the following conditions for f:

f : R = R is Lipschitz continuous, monotone increasing and f(0) = 0.

Here, we give a remark for the proof of the uniqueness. From the as-
sumption for f, the regularity of the solution is not enough to apply the
standard method for the uniqueness. Namely, we can get no good estimates
by multiplying (1.1) with the time derivative of the difference of solutions.
Therefore, we prove the uniqueness by using the approximate of the dual
equation.

The idea using the dual equation is found in [6] for proofs of unique-
ness of weak solutions to parabolic and hyperbolic equations. Niezgddka
and Pawlow had proved the uniqueness of weak solutions to the multi-
dimensional Stefan problem by approximating the dual equation of the
original equation in [8]. Also, by applying their method Aiki [1] proved
uniqueness of weak solutions to the Falk model. Moreover, Yoshikawa [11]
established uniqueness of solutions in a wider class than that in [1].

In this paper, since the stress function f satisfies only Lipschitz con-
tinuity, it is also not easy to obtain uniform estimates for solutions of
approximate dual problems. In order to overcome this difficulty, we multi-
ply the approximate dual problem by (—A +I)~'5,, where 7, is a solution
of the approximate dual problem, —A is the Laplace operator and I is the
identity. By this idea, we can obtain the useful estimate in Lemmas 2 and
3, and prove the uniqueness in the similar class to that of [11]. Moreover,
we can weaken the regularity conditions for the stress function f discussed
in [1] and [11].

We define a weak solution for our problem and give a statement of our
theorem in the next section. In Section 3, we prove the uniqueness of a
solution to P. Finally, we show the existence of a solution by applying the
standard Galerkin method.

Ussectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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2. Main result

Throughout this paper, we use the spaces
H:= (L2(0,1))%V == {z e (W22(0,1))°]2(0) = 2(1), 2:(0) = zx(l)}

with standard norms denoted by |- |g, |- |v, respectively, and Z-y :=
{n € Z|n > 0}.
First, we give a definition for a weak solution of P.

Definition 1. A function u from Q(T) to R? is called a weak solution of P
on Q(T) if u has the following properties: u € WH>°(0,T; H)NL>(0,T;V),
u(0) = wug and satisfying

p/ uy - pdxdt + ’y/ Uz * Nepdrdt + / f(e)ug - npdxdt
Q(T) Q(T) Q(T)

1
= p/ vo - n(0)dx for n € WH2(0,T; H) N L*(0,T; V) with n(T) = 0.
0

We note that u-v = uivy + ugve for u = (ug,v1), v = (v1,v2) € R%. The
main result of this paper is as follows:

Theorem 1. Let T > 0. If f : R — R is Lipschitz continuous, monotone
increasing and f(0) =0, ug € V and vog € H, then P has a unique weak
solution on Q(T).

The proof of the uniqueness is given in the next section. In Section 4
we prove the existence of solutions.

3. Uniqueness of the solution

In this section we give a proof of the uniqueness for a solution to P and
suppose that all assumptions of Theorem 1, satisfy.

Let u1 and ug be solutions of P, namely, v and us satisfies the properties
of Definition 1. Also, we put u = u; — ug, and W = {77 c W22(0,T; H)

2 4,2 2 9" o'
AL2(0, Ts W20, %) [n(T) = me(T) = 0, 51(t,0) = 51(t,1) for ¢ € [0,7]

x x

and 7 = 0, 1,2,3}. For any n € W, we have

_p/ ug - medxdt + ’Y/ Uzg " Nzzdzdl
Q(T) Q(T)

[ peun — fea)uns} ot = .
Q(T)
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By integrating by parts in this equation, we have

p/ u - ndxdt + ’y/ U+ Nygggdrdt
Q(T) Q(T)

. / ((F(e1) — F(e2) wae + F(e2) (ure — uze)} - moderdt
Q(T)

:-/ (Foa- i + F(22)} na - wadadt, (3.1)
Q(T)

where e = &1 — g9, a = (a(l),a(2)>,

fle)—fle2) . MOBNO)

— = if g1 F#eo, X Mz T T2z e 0

Fo= €1 — €2 1# 2 a(’): |u1m\—|—\u%] 1 ‘ulw’+’u2x|7é s
0 lf £€1=¢€29, 0 if ‘U1x|+|UQ$| _ O,

fori=1,2, and uj, = (uﬁ?,uﬁ) for j = 1,2. Recall that £; = |uj,|—1 for

j=1,2. Also, we put F = Fya-uiy + f(e2), and then (3.1) is represented
by F' as follows:

/ - (Pt + YNwawe ) dxdt + / Ug - (F'ny) dzdt = 0 for n € W.(3.2)
Q(T) Q(T)

Since f is Lipschitz continuous and ui, € L*°(Q(T')), we have F € L*(Q(T))
and can approximate it by {F,} C C5°(Q(T)) satisfying

{F,} is uniformly bounded in L*°(Q(T)) and

F, — F in L*(Q(T)) as n — oo. (3.3)
The first lemma is concerned with the existence of a solution of the approx-
imate dual problem.
Lemma 1. Let ¢ € CP(Q(T)). For n € Zsq, there ezists a unique
solution n, € W2>(0,T;H) N L™ (O,T; (W4’2(0, 1))2) of the following

approzimate dual problem:

Pntt + Vnzzze — (ann:c)m =pin Q(T)a (34)
nn(T> = nnt(T) =0 on (07 1)> (3'5)
Pty 0y = S (41 fort € [0,7] and i =0,1,2,3.  (3.6)

o' o'

We can easily prove Lemma 1 by the standard discretization method, see
Section 5.2 in [3], since (3.4) is linear. So, we omit its proof. The following
Lemmas 2 and 3 are keys in the proof of the uniqueness.

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
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Lemma 2. For each t € [0,T] there exists a unique solution &,(t) € V
such that

_gnmx(t) + fn(t) = Un(t) on (03 1)7 (3 7)
En(t,0) = &, (t, 1) and £,2(t,0) = e (2, 1). ’

Moreover, it holds that &, € W*2(0,T;, (W?2(0,1))?) and

_gntt.tz(t) + §ntt(t) = nntt(t) on (07 1)7
Entt (,0) = Enue (£, 1), Enea (t,0) = Enpen(t, 1) for a.e. t € [0,T].

This lemma is a direct consequence of the Riesz representation theorem
to the Hilbert space X = {z e (Wh2(o, 1))2 ‘2(0) = z(l)} In fact, we
define a weak solution of the problem (3.7), if &, satisfies

&n€ X and (§,2)y = /1 M (t, ) - z(x)dz for z € X, (3.8)
0

where (-,-)x is the standard inner product of X. Thanks to the Riesz
representation theorem, there exists a unique weak solution &, (t) of (3.7)
for each ¢ € [0,T], since n,(t) € H for t € [0,T]. Moreover, it is easily seen
that &,(t) is a strong solution of (3.7).

From Lemma 2 we can get the following uniform estimate for n,, with
respect to n.

Lemma 3. There exists o > 0 such that

|zl < a on [0,T] forn € Zsy.

Proof of Lemma 3. For n € Z<g, let n,, be a solution for the approximate
dual problem (3.4) - (3.6), and &,, be a solution of (3.7). By putting ,,(t) =
77n<T - t), gn(t) = gn(T - t)7 Fn<t) = Fn(T - t) and @(t) = (p(T - t) for
t€(0,T), and n € Z~(, we have

x
1n(0) = 1t (0) = 0 on (0,1),
0'n, 0'n, )
5 (¢,0) = 5 (t,1) on (0,T) for : = 0,1, 2,3,

and

_gnttzx(t) + Entt(t) = et (t) in (0,1),
Entt(£,0) = Ene(,1) and Enua (£, 0) = Enua(t, 1) for ace. t € (0,T). (3.10)



50 T. AIKI, C. KOSUGI
We multiply both sides of (3.9) and (3.10) by &nt, and then we have
Piintt * Ent + Viinawrs - Ent = (ﬁnﬁn1>x Et + P € in Q(T), (3.11)
_gnttm: . fAnt + fAntt : fAnt = Dot - gnt in Q(T). (3.12)
By substituting (3.12) into (3.11) we have

1 1 1
—P/ gnttmm : gntdx + P/ gntt ' gntdx + 7/ ﬁnxmmx : gntdx
0 0 0

1 1
:/ <Fn7’7\m) -§ntdac+/ o &udr a.e. on [0,T].
0 x 0

Here, we note that

1 1
0 0

1 1
= —/ Nnaz * Mntdx + / Tnaz - Emedz on [0, 7).
0 0

Accordingly, we have

1d
2dt \*

1
= 7/ ﬁnz : gnmtdx
0

o~

gnzt

2 —~ |2 9
" +p‘£nt‘H +’7|77nx|H

1 1
—/ Fnﬁmfmtdx—F/ ©-&udx a.e. on [0,T].
0 0

Since ¢ € C§°(Q(T)), there exists a positive constant C; such that
lp(t,z)| <Cy for (t,z) € Q(T), and then we have

d
ar \”

SCQ{P

2 ~
H+p é‘nt

gnxt

2 2
" +'Y‘77nx|H

Ent

~ 2 2
Enat " +p . —|—’y\77mﬁ{} +C? ae. on [0,T7,

where (s is a positive constant depending only on p,~y and
mexlfl
nelso L>(Q(T))

By applying Gronwall’s inequality, we obtain

2 A~ 2
H+7|nnm!H

gnt

2
P

P gnact
S eCQT <p

NsBectust VIpKyTCKOro rocyapCTBEHHOIO yHUBEPCUTETA.
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Hence, in view of (3.7) and (3.9), this lemma is proved. O

Proof of the uniqueness. Let n € Zso and ¢ € C§°(Q(T))%. By Lemma 1,
there exists a solution 1, € W of (3.4) - (3.6). From (3.4), integration by
parts and (3.2), it follows

/ u{ Pntt + Vnzazs F drdt, — / u (Fnng),, dedt
Q(T) Q(T)

/ u - pdxdt
Q(T)

for each n € Z+.

/ (Ey, — F) uy - npadzdt
Q(T)

Thanks to Lemma 3, we have

T
< ’ul‘|L°°(Q(T))/O | Fn — Fpy di

< VT [te| oo oery) [ Fn = Fli2oery for ¢ € C(Q(T)).

/ u - pdadt
Q(T)

Thus, (3.3) implies that
/ u - pdxdt =0 for ¢ € C§(Q(T)),
Q(T)

and then v = 0 on Q(T). Hence, we have proved the uniqueness of the
solution for P. O

4. Existence of the solutions

In this section we prove existence of a solution to P. Since V is a separable
Hilbert space, we can choose a complete orthonormal system {¢y, }>> ; of V
normalized in H. Also, we shall use the closed linear space V,, generated by
1,0, ...,y for n € Zsg. Moreover, since ug € V, vg € H and V is dense
in H, there exist {uon}tnez., C V, {Von}tnezoo C V, and {mup}n € Z>g
such that

Uon, Von € Vin,, for n € Z-g,

ugn, — ug in V' and vy, — vg in H and m,, — oo as n — oo.
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We prove the existence by the Galerkin method, namely, first for n € Z+
we find wu, (¢ Z a(n) (t)1y satisfying

1 1
/0/ Unitt (t) : %dx + 7/ Unitt (t) . w]x:vdx
0 0

1
+/ F(En(®))tima () - yada = 0 for ¢ € [0,T] and j = 1,2,...,mn, (4.1)
0
Un(0) = ugp, Unt(0) = von, and &, = |upgy| — 1 on Q(T). (4.2)
We denote by P,, the problem (4.1) and (4.2) for each n € Z-. For proving

the existence of a solution u,, of P, for n € Z~, we solve the following initial
value problem I,, for the ordinary differential equations:

Find a(® = (agn) agn), . agfi) € C2%([0,T])™ such that

d2a™
b (n)) _ (n)
P F(a ) G(a ) on [0,T7,
(n)
CL(n) (0) _ a((]n)’ da _ b((]n)’

dt

where aén) = (ag)q)va(()g)w"?a(()?:r)zn) S Rmna bén) = <bél)7bgg)7 : 7b(()7rlr)zn) €
Rm”, F = (Fl,FQ,...,an> ,G = (Gl,Gg,...,Gmn),

Mn 1
By () =3 a0 /O Braa - Vjand,
k=1

Gj (a(")) Z/Olf < 2 ) (Z ap” () Pk (x 1/%(@) dx

for j =1,2,...,my.

Here, we note that Picard’s theorem for ordinary differential equations
guarantees the existence and uniqueness of the solution for I, since F' and
G are locally Lipschitz continuous on R™", and the uniform estimate (4.4)
for u, holds. Thus, we have:

Mn

Lemma 4. Letn € Z~g. If a(()n) = (aél),agg), .. aé:fg ) € R™n,

0 = (0 0, ) € R sating o, = 3 o,
k=1

mn

Von, = Zbg,?wk, then there exists one and only one u, € C?([0,T]; Vin,)

NsBectust VIpKyTCKOro rocyapCTBEHHOIO yHHUBEPCUTETA.
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satisfying (4.1) and (4.2). Also, it holds that
1 1 1
/0/ untt(t) : 77d37 + 7/ unac:c(t) ' 77md96 + / f(gn(t))unm(t) ’ ﬁxdﬂ? =0
0 0 0
form eV, . (4.3)

Now, we give a lemma dealing with the uniform estimate of wu,,.

Lemma 5. If u, is a solution of P, on [0,T] for n € Zq, the following
energy Gy, is conserved:

1 1 1 /1
Gy = g’/ |unt]2dx+g/ tmgel? dz + 2/ §(lttnal?)d,
0 0 0
d
%Gn =0 on [O,T],
where g is a primitive of f, and satisfies g(1) = 0. Moreover, it holds that

p1| 25+ 2 [ sl di < Ga(0) o [0,T 4.4
50 unt| $+§0’Unzz‘ T = n()on[v ] ()

Proof. Let u, be a solution of P, on [0,7], namely, it is represented by

Up = Za,(C )¢k on Q(T) for n € Z~g. Since uy; = C;’; Vi € Vip, on
k=1 k=1

Q(T), we can substitute 7 = uy,; into (4.3) and have

1 1
p / it (£) - g () + / e (£) - Ut (t)
0 0

1
+/ f(en(t))unx(t) . ’Lbnm(t)dﬂj‘ =0forte [O,T]
0

Here, we put z = |uns|? and g(z) = f(v/z — 1) for z € R, and then we have
! 1 [
/ F(en(®) tna (1) - tnga(B)dz = / 9 5(z)dx
1d (!

= 5% ) g(]um]Q) dx for t € [0, T,

where g(r) = / g(&)d¢ for r € R. Hence, we obtain
1

d(p (' v [ 2 Lt
dt<2/0 |tnt] da:—|—2/0 |Unaal d$+2/0 g(!unx‘)dx =0 on [0,T].
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Clearly, g is a primitive of g and satisfies g(1) = 0. Since f is monotone
increasing, we see that g(r) > 0 for any r € R. Thus, Lemma 4.4 has been
proved. O

Lemma 6. It holds that {u,}
Whee(0,T; H).

is bounded in L>°(0,T;V) and

n€Z>0

Proof.  First, by the boundedness of {uon}nez., in V, {Uona}nez., is
bounded in L°°(0,1). This shows that {G,(0)}nez., is bounded and

{tnt fnez-o and {Unzz }nez., are bounded in L>°(0,7; H). Hence, it is clear
that the assertion of this lemma is true. ]

Next, we show existence of a convergence subsequense. Here, we put

X = {z € Wh2(0,1)%|2(0) = 2(1)}, again.

Lemma 7. There exist a subsequence {ni} C {n} and a function u on
Q(T) such that uw € L=(0,T; V) NW1(0,T; H),

Up, — u  weakly™ in L>(0,T;V), in L*(0,T; X),
and weakly* in W(0,T; H) as k — oo.

Proof. By Lemma 6 and the Aubin-Lions lemma (cf. [7]), it is easy to
show existence of the subsequence with the required condition. ]

The following lemma, is concerned with approximation of the test func-
tion 7.
Lemma 8. Forn € WY2(0,T; H)NL?(0,T;V) with n(T) = 0, there exists
{m}y ¢ WH2(0,T;V) such that

N € L*(0,T; Vo), nn(T) = 0,1,(0) — n(0) in H as n — oo,
Nn — 1 in L2(0,T; V) and nne — 1 in L*(0,T; H) as n — oo.

Proof of the existence. Put uy = uy,, and n, = 0y, for k € Z>o. Since uy
is the solution of Py, , by Lemma 4 we obtain

p/ Uktt - deﬂﬁdt + 7/ Ukzx * kaxdfﬂdt + / f(gnk)ukx : kadﬂﬁdt = Oa
Q(T) Q(T) Q(T)
and

p/ Ut - ﬁkzdﬂﬁdt + ’Y/ Ukzx * nkac;tdxdt + f(snk)ukm : nkqu:dt
Q(T) Q(T) Q(T)

1
= —/ von, Mk (0)dx for k € Z.
0

Ussectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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By letting £ — oo in this equation, Lemmas 7 and 8 guarantee that u
satisfies the condition in Definition 1. Hence, the existence of the solution
to P has been proved. O

5. Conclusion

In this paper we have established existence and uniqueness of a weak
solution to the initial boundary value problem for the beam equation ac-
companying with the nonlinear stress and strain functions. We note that
we consider the stress function as a continuous function f on R having
no singularity and the uniqueness is proved thanks to application of the
approximate dual problem. In near future we will investigate the similar
problem in case the stress function has the singularity such that f(r) — oo
asr | —1.
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MoaeJin, Hpe,Z[CTaB.HﬂIOH_[eﬁ ABU2KEHNA KPUBbIX M3 3JIaCTUY-
HbIX MaTepuajioB

T. Auxku'!, 9. Kocyru'

L SInonckuti orcencruts ynusepcumem, Toxuo, SAnowus

Awnnoranusi. PaccMoTpena HagaibHO-KpaeBast 33/1a9a JJIs1 yPABHEHHS OAJIKH C HEJIH-
HeltHOI nedopmanmeii. B Hameil nmpeabiayieit pabore sTa 3ajada ObLIa pPacCMOTPEHA
B BH/Ie MaTeMaTHYeCKON MOJEN JJid PACTATUBAIONINX U CKUMAIOIINUX JIBUKEHUN KpHU-
BO# M3 JIACTUYHOIO MaTepuaJja Ha IJIOCKOCTU. 1lesb crarbu — yCTAHOBUTDH €IUHCTBEH-
HOCTb U CYHIECTBOBAHME CJIA0BIX pelleHuii. B qacTHOCTH, € ITMHCTBEHHOCTD JOKA3bIBAETCS
MpUMEHEHNEM TTPUOINKEHHOTO METO/1a IBOMCTBEHHBIX YPABHEHHIA.

KuroueBrnie cioBa: 3amada co cBOOOIHOMN I'DaHUIIEN, TIEPUOTIMIECKIE PEIIEHNS.
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