oCTBEy,
od& %"r;_ Cepusi «<MaTemMaTukas M3BECTUIS
2021. T. 35. C. 87—102 Nprymeroeo

EocyaapcmeeHHOZO

§TCKWA 1,
28]
IE2]

“94zanw

o
&
g
P
%
%,

]

:

0 . . yHusepcumema
HJIQMH-OCTYI K 2KYPHAJLY:

http://mathizv.isu.ru

YAK 512.53
MSC 08A30
DOI https://doi.org/10.26516,/1997-7670.2021.35.87

S-acts over a Well-ordered Monoid
with Modular Congruence Lattice *

A. A. Stepanova

Far Eastern Federal University, Viadivostok, Russian Federation

Abstract. This work relates to the structural act theory. The structural theory includes
the description of acts over certain classes of monoids or having certain properties, for
example, satisfying some requirement for the congruence lattice. The congruences of
universal algebra is the same as the kernels of homomorphisms from this algebra into
other algebras. Knowledge of all congruences implies the knowledge of all the homo-
morphic images of the algebra. A left S—act over monoid S is a set A upon which S
acts unitarily on the left. In this paper, we consider S—acts over linearly ordered and
over well-ordered monoids, where a linearly ordered monoid S is a linearly ordered set
with a minimal element and with a binary operation max, with respect to which S is
obviously a commutative monoid; a well-ordered monoid S is a well-ordered set with a
binary operation maz, with respect to which S is also a commutative monoid. The
paper is a continuation of the work of the author in co-authorship with M.S. Kazak,
which describes S—acts over linearly ordered monoids with a linearly ordered congruence
lattice and S-acts over a well-ordered monoid with distributive congruence lattice. In
this article, we give the description of S-acts over a well-ordered monoid such that the
corresponding congruence lattice is modular.

Keywords: act over monoid, congruence lattice of algebra, modular lattice.

1. Introduction
A significant number of works are devoted to the study of S-acts with
given conditions on their congruence lattices. In particular, in [1], unars,
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Federation, additional agreement from 21.04.2020 N 075-02-2020-1482-1.
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that are the unary algebras with one unary operation, with linearly ordered,
distributive or modular congruence lattices are described. A description
of commutative unary algebras whose congruence lattices are a chain is
obtained in [4]. The congruence lattices of disconnected S-acts over
monoids are studied in [8]. A description of acts over certain classes
of semigroups (such that semigroups of right and left zeros, rectangular
bands, linearly ordered monoids) that have modular, distributive or linearly
ordered congruence lattice is obtained in [2;7;10]. For commutative S-acts
the conditions of modularity and distributivity of the congruence lattice are
investigated in [3]. In this paper, we describe S-acts over a well-ordered
monoid with modular congruence lattices.

2. Preliminaries

Let us recall some definitions and facts from act theory and universal
algebra (see [5;6;9]). Throughout this paper S will denote a monoid with
identity 1. An algebraic system (A; s)scg of the language Lg = {s | s € S}
consisting of unary operation symbols is a (left) S-act if s1(s2a) = (s152)a
and la = a for all s1,s9 € S and a € A. An S-act (A; s)ses is denoted by
sA. Let gA be an S-act and gB be a subact of gA. An equivalence relation
0 on gA is called a congruence on gA, if (a,b) € 6 implied (sa, sb) €  for
a,be A, s € S. Any subact gB C gA defines the Rees congruence p(B) on
sA, by setting (a,b) € p(B) if a,b € B or a =b.

Elements z,y of an S-act gA are called connected (denoted by x ~ y) if
there exist n € w, ag,...,a, € 4, $1,...,8, € S such that x = ag, y = an,
and a; = s;a;_1 or a;_1 = s;a;. An S-act gA is called connected if we
have z ~ y for any =,y € gA. It is easy to check that ~ is a congruence
relation on the S-act gA. The classes of this relation are called connected
components of the S-act gA. A coproduct of S-acts gA; is a disjunctive
union of this S-acts. The coproduct of S-acts gA; is denoted by [] s4;. It

el
is known (see [5]) that that every S-act gA can be uniquely represented as
a coproduct of connected components.

For a congruence 8 on gA and a subact ¢B C gA we define the restriction
01 Bofffor sBbyf|B=0nN(Bx B). Instead (a,b) € § we will write
sometimes afb. The class of a € A with respect to congruence 6 is a set
O(a) = {b € A | abb}. Note that the set of all congruences on gA forms a
lattice according to the relation C, which is called the lattice of congruences
on the S-act gA, and denoted by Con(gA).

Theorem 1. [5] Let sA be an S-act, a,b € A, 61,02 € Con(sA). Then
a (01V02) b if and only if there are the elements xo, x1, . .., Tapn in A such that
a = g, Top = b, Tok 01 Top 1 and Toky1 02 Topyo for allk € {0,1,...,n—1}.

Ussectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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A lattice (L, A, V) is called modular if (a Vb) Ac = aV (bAc) for all
a,b,c € L with a < c.

Theorem 2. [9] A lattice L is modular iff the conditions a < b, and
aVe=bVe,aNc=bAc for somece L imply a=> for all a,b € L.

A congruence 0 on an S-act gA is called perforating if there are S-acts
sB, ¢C and elements by,by € B, c1,cy € C such that

sA =g BlUgC,(bi,b2) €0, (c1,c2) &0, (bi1,c1) €0, (b2, c2) €0.

Theorem 3. [8] A lattice Con(gA) is modular if and only if the following
conditions are true:

(1) the S-act gA contains no more than three connected components;

(2) the latices of congruences on all connected components of an S-act
sA are modular;

(3) there are no perforating congruences on an S-act gA.

A lattice (L, A, V) is called distributive if (aVb) Ac= (aNc)V (bAc)
for all a,b,c € L. It is clear that a distributive lattice is modular.

Let < be a total ordering on S and 1 be a minimal element in S. Then
(S;-) is a commutative monoid relative to the operation a - b = max{a, b}
for a,b € S, at that 1 is identity of monoid S. This monoid is called a
linearly ordered monoid. If (S; <) is well-ordered set then linearly ordered
monoid (5;-) is called a well-ordered monoid.

Proposition 1. [10] Let S be a well-ordered monoid. Then the lattice
on any cyclic S-act is distributive.

3. S-acts over a well-ordered monoid with modular congruence
lattices

Lemma 1. Let S be a linearly ordered monoid, sA be an S-act, a,b € A,
Sa = 5Sb. Then a = b.

Proof. Let the conditions of the Lemma hold. Since Sa = Sb, we have
a = sb and b = ta for some s,t € S. Suppose that s < t¢. Then a = sb =
sta = ta = b. O

Lemma 2. Let S be a linearly ordered monoid, sA be an S-act, a,b,c € A,
Sc C Sb C Sa, 0 be a congruence on an S-act gA and afc. Then afblc.

Proof. Since Sc¢ C Sb C Sa, we have b = ta and ¢ = sb = sta for some
s,t € §. Since aflc, we have b = taftc = tsta = tsa = c. Hence blc.
Therefore, afcfb, that is afb. O
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Lemma 3. Let S be a well-ordered monoid, sA be a connected S-act.
Then the following conditions are true:

(1) for any a, b € A there is a minimal element m € S such that
Sa N Sb= Sma and ma = mb;

(2) there are a; € A (i € I) such that A= |J Sa; and a; & Sa; for any
el
different elements i,j € 1.

Proof. Let us prove (1). The existence of minimal element m € S such
that ma = mb follows from the connectivity of g¢A and the well-ordering
of the monoid S. Let us check for equality Sa N Sb = Sma. Obviously
Sma C SanNSb. Let ¢ € SanN Sb. Then ¢ = sya = s1b for some sg, s1 € S.
This means that ¢ = sa = sb, where s = max{sg, $1}. In particular, s > m.
Therefore, ¢ = sa = sma € Sma.

To prove (2), let A = {ay | @ € K}, where £ is some ordinal. Then we
assume | = {f € k| there are no~y € k such that Sag C Sa}. O

Theorem 4. Let S be a well-ordered monoid. The lattice Con(sA) is
modular if and only if the following conditions are true:

(1) an S-act sA contains no more than three connected components;

(2) if a1,a0 € A, s € S, s # 1 and Sa; N Saz = Ssa; N Ssay then
sa1 = sag, or sa; = raj, or Sas = ras for somer € S, r <s;

(3) if a1,a2,a3 € A and s € S such that s # 1, a; & Saj, sa; = saj and
Sa; N Sa; = Ssay for any different i,j € {1,2,3}, then sa; = ra; for some
reS,r<s,andiec{1,2,3}.

Proof. Necessity. Let Con(gA) be a modular lattice. By Theorem 3 we
have (1).

Let us prove (2). Suppose for contradiction that there are elements
ai,ae € A and s € S such that s # 1, Sa; N Sas = Ssa; N Ssaq, say # sas
and sa; # ra; for all r < s and for all i« € {1,2}. Let us define the
equivalence relations 01, 62, n on the set A as follows:

(u,v) € 61 © u,v € Ssa1USsay, or u,v € Saj\Ssay, or u,v € Saz\Ssas,
or u = v;

(u,v) € 02 & (u,v) € 61 or u,v € (Say \ Ssai) U (Saz \ Ssaz);

(u,v) €n < u,v € {tay |t < s}, or u,v € {tag |t < s}, or u =v.

We show that the relation 0 is a congruence on gA. Let u,v € Sa; U Sas,
teS. If t > s then tu = tsu € Ssa; U Ssas and tv = tsv € Ssa; U Ssao,
that is (tu,tv) € 6. So, we assume that ¢ < s. If u,v € Ssa; U Ssay then
tu,tv € Ssa; USsag and (tu,tv) € 6. Let u,v € Sa; \ Ssa; and tu € Ssa;.
Then tu = stu = su and u = lay for some [ € S. As u & Ssa; then [ < s.
Hence tlay = tu = su = sla; = sa;. Because of the inequality tl < s we
get the contradiction. So tu & Ssaj. Similarly, it is shown that tv € Ssay.
Thus, tu,tv € (Sap \ Ssay), i.e. (tu,tv) € 6;. Therefore, the relation 6; is
a congruence on the S-act gA.

Wssectns VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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Similarly, it is proved that the relation 65 is a congruence on the S-act
sA.
We show that the relation 7 is a congruence on gA. Let (u,v) € 7,
r € S. We can assume that u = tja; and v = t3a1 for some t1 < s, t5 < s.
Since
rt1 <s&r<<s&rta <s

then (ru,rv) € n. So 7 is a congruence on the S-act gA.

It is clear that ;1 C #3. Now we show that 6; C 65. If a1 € Ssaq, then
Say, = Ssa; and by Lemma 1 we have 1-a; = a1 = saq, this contradicts
the assumption. Therefore, a1 ¢ Ssaj. If a1 € Sas then a; € Sa; N
Sas = Ssa; N Ssas C Ssap, contradiction. So, a1 & Ssa; U Ssas and
ay € Say \ Ssaj. Similarly, as € Ssa; U Ssag and ag € Sas \ Ssaz. Hence
it is proved that (a1, as) € f2. Note that (Sa; \ Ssai) N (Saz \ Ssaz) = 0.
Indeed,

(Saq \ Ssa1) N (Sag \ Ssaz) = (Say N Sasz) \ (Ssa; U Ssaz) =

= (Ssa; N Ssaz) \ (Ssa; U Ssaz) = 0.

So, (a1,a2) & 61. Thus, (a1,az2) € 62\ 0.

To prove the equality 81 An = 02 A7 it is enough to check the inclusion
02 A C 6. Indeed, let (u,v) € 02 An. Since (u,v) € n then we can
assume, for example, that u = t1a1, v = tea; for some t1,t5 < s. More
over, since (u,v) € 03 we can assume u,v € (Sajy \ Ssa1) U (Sag \ Ssaz)
(otherwise (u,v) € 61, as claimed). If u € Sag \ Ssay then u € Sa; N Say =
Ssa; N Ssag C Ssag, contradiction. So u € Sap \ Ssa; and, similarly,
v € Say \ Ssa;. Hence, (u,v) € 6;.

Let us prove 61 V1 =602V n = p(Say USas), where p(Sa; U Sasg) is the
Rees congruence. Clearly, 1 C 03 C p(Saj U Sag) and n C p(Sa; U Sas),
ie. 1V C 0 vn C p(Say USay). Note that ajnsaifisasnas. Then
(a1,a2) € 61 V. Let t € S. Since taina; (if t < s) or tajbysa; (if
t > s) then (tai,aq) € 61 V7. Analogously, (tas,a2) € 61 V n. So for all
u,v € Sa; USag we have (u,v) € 61V n, ie. p(SaiUSaz) C O VvnC V.

Thus, 61 C 02, 01 A =63 Anand 01 Vn =6sVn By Theorem 2 it
contradicts the modularity of the lattice Con(sA).

To prove the condition (3) we suppose to the contrary that there are
ai,az,a3 € A and s € S such that s # 1, Sa; N Sa; = Ssa1, a; ¢ Sa;,
sa; = sa; for all different 4, j € {1,2,3} and sa; # ra; for all r < s and for
all i € {1,2,3}. Let us define the equivalence relations 6y, 62, n on the set
A as follows:

(u,v) € 61 & wu,v € (Sa; U Sag) \ Ssay, or u,v € Ssaj, or u,v €
Sas \ Ssay, or u = v;

(u,v) € 02 < (u,v) € 6 or u,v € Sag;

(u,v) €n < u,v € (SagUSaz) \ Ssay, or u,v € Say, or u=v.

We show that 6; is a congruence on gA. Let (u,v) € 61, r € S. The proof
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is divided into three cases.

Case 1: u,v € Ssaj. Then it is obviously that ru,rv € Ssa; and (ru,rv) €
0, for any r € S.

Case 2: u,v € (Sa; U Sag) \ Ssa;. If r > s then ru = rsu € Ssa; and
rv = rsv € Ssaj, that is ru,rv € Ssa; and (ru,rv) € 6;. Suppose that
r < s and, for example, u € Sa; \ Ssa;. Then u = ta; for some t < s,
i.e. ru = rtay, where rt < s. By assumption, sa; # rta;. By Lemma
1 Ssa; C Srtay = Sru, that is ru € Ssa;. So ru € (Sa; U Sag) \ Ssay.
Similarly, rv € (Sa; U Sag) \ Ssai, that is (ru,rv) € 6;.

Case 3: u,v € Sas \ Ssaj. This case is considered similarly to case 2.
Thus, it is proved that 6, is the congruence on gA. Similarly checked that
02, n are the congruences on gA.

It is clear that 681 C 65. Let us show that 81 C 6. Since sa; = sas then
sai,as € Sas, i.e. (sa1,az) € 3. By assumption, as ¢ Saj, in particular,
as ¢ Ssay. So, (sai,a3) & 01. Thus, (sai,as) € 02\ 0;.

To prove the equality 61 An = 02 A7 it is enough to check the inclusion
02 Am C 01. Indeed, let (u,v) € 2 An. Since (u,v) € 02 then we can assume
that u,v € Sag (otherwise (u,v) € 61, as claimed). Since (u,v) € n than we
have either u,v € Sag \ Ssa; (then (u,v) € 0;), or u,v € Saz \ Ssa; (then
(u,v) € 61 t00), or u,v € Saj. In the last case we have u,v € Sa; N Saz =
Ssay, ie. (u,v) € 6.

Let us prove 61 Vn = 62V = p(Sa1USasUSas), where p(Sa;USasUSas)
is the Rees congruence. Clearly, 6; C 02 C p(Saj U Say U Sas) and n C
p(Sa; U Saz U Sag), i.e. 61V C 0 vy C p(Say U Say U Sas). Note
that sa101a101a2nas for all s € S. Then sai6itasntas for all s,t € S, i.e.
p(Sa1 U Sas U Sag) CoHvnCo V.

Thus, 61 C 02, 01 A =63 Anand 01 Vn =6yVn By Theorem 2 it
contradicts the modularity of the lattice Con(sA).

Sufficiency. Let us prove few statements first.

Lemma 4. Let the condition (2) of the theorem is true, sA be a connected
S-act and a, b € A. Then the following statements are true:

(1) if @ € Con(sA), adb and m € S is the minimum element with the
conditions SaNSb = Sma and ma = mb then safb and afsb for all s < m;

(2) if 0 € Con(gA), abb and San Sb C Sc C Sa then afchb;

(3) if 01,...,0, € Con(sA), 0 = 610...080,, adb and m € S is the
minimum element with the conditions Sa N Sb = Sma and ma = mb then
safb and afsb for all s < m.

Proof. Since gA is a connected S-act then Sa N Sb # (.

Let us prove (1). If m =1 then @ = b and (1) is satisfied. Let m > 1. If
(mb,b) € § and s < m then Smb C Ssb C Sb implies bfmb, i.e. by Lemma
2 we have afbfsb and safsbdb. Suppose that (mb,b) ¢ 6. Then (mb,a) ¢ 6.
We assume k1 = min{r € S| (rb,a) ¢ 0}, ks = min{r € S | (rb,b) ¢ 6}.

Ussectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
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If k9 < k1 then by the definition of k1 we have bfafkob which contradicts
the definition of ko. If k1 < ko then by the definition of ko we have a0bfk1b
which contradicts the definition of k1. So k1 = ks =k and 1 < k < m. Let
z € SanSb. Then z = sa = sb for some s € S. It means that sb € Sa and
by the definition of m we have k < m < s. Hence, kx = ksa = sa = x and
kx = ksb = sb =z, i.e. x € Skan Skb. Thus, Sa N Sb = Ska N Skb. By
the condition (2) of the theorem we have la = ka for some | < k, or Ib = kb
for some [ < k, or ka = kb. In the first case, by the definition of ko = k
we have [b0b; the condition afb implies kb0ka = laflbOb, that contradicts
the definition of ky = k. In the second case, (lb,b) = (kb,b) ¢ 6, that
contradicts the definition of k9 = k. And in the third case, since k < m,
from the definition of element m we have kK = m; from the definition of
element k& we have saflsbfbla for all s < m = k.

Let us prove (2). By Lemma 3 there exists a minimal element m € S
such that Sa N Sb = Sma and ma = mb. Since Sma C Sc¢ C Sa then
¢ = sa for some s < m. So by (1) we have ¢ = safb.

Let us prove (3). Suppose s < m. By induction on n we will prove safb
(afsb is proved similarly). If n = 1 then (3) is done by (1). Suppose n > 1,
and for n—1 (3) is done, and = 63 0...080,. Then abcnd for some ¢ € A.
Since gA is a connected S-act then Sa N Sc # () and Se N Sb # (). By
Lemma 3 there exists minimal element r € S such that SaNSc = Sra and
ra =rc. If s <r then by (1) we have sabyc, i.e. saficnb and sabb. If s > r
then m > r. By Lemma 3 there exists a minimal element k € S such that
ScnSb = Skband kb = kc. If s < k then from the induction hypothesis we
obtain scnb, i.e. safyscnb and safb. Suppose that s > k. Then m > k. If
r > k then the equation kb = kc implies 7b = rc¢ = ra. So, by the choice of
the element m, we have r > m. Contradiction. If k > r then the equation
ra = rc implies ka = kc = kb. So, by the choice of the element m we have
k > m. Contradiction. O

Lemma 5. Let the conditions (2) and (3) of the theorem are true, sA be
a connected S-act and c,c1,c2,c3 € A are such that Sc; N Sc; = Sc for all
1,7, 1 <i < j<3. Then the following statements are true:

(1) if 0,m € Con(gA) and c10cancs then c10c or cnes;

(2) ifOr,...,00,m,....,0m € Con(sA), 0 =010...00,, n=mn10...00y,
and c10conces then c16c or encs.

Proof. Let 01,...,0n,m,...,0m € Con(gA), 0 = 010...00,, 7 =mn10...0ny
and c10cancs. If ¢; € Sc; for some different ¢, j € {1,2,3} then S¢; NS¢ =
Sc; = Sc and by Lemma 1 we have ¢ = ¢;, that is c¢16c or ¢ncs. Suppose
that ¢; € Sc; for all different 4, j € {1,2,3}. By Lemma 3 for all 4, j, i < j,
there exists a minimal element s;; € S such that Sc¢; N Se¢; = Ss;;¢; and
sij¢; = 8;j¢;. Since S¢;NSc; = Sc then by Lemma 1 we have ¢ = s;;¢; where
i < j. If s12 < so3 then by Lemma 4(3) we have ¢ = s1acancs, i.e. cncs.
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Similarly, if so3 < s12 then cfc;. So, we can assume that sjo = s93 = s.
Therefore, scy = sco = sc3 = ¢ and S¢; N S¢j = Sscy for all different
i,7 €4{1,2,3}.

Let us prove (1). By condition (3) of the Theorem there exists r < s
such that s¢; = r¢; = ¢ for some i € {1,2,3}. By Lemma 4 (1) we have
rcica, c10rca, reanes and conres. If rep = ¢ then c16rcefre; = c. Similarly,
if rcg = ¢ then cncs. If reco = ¢ then ¢10rco = ¢ and ¢ = reanes.

By induction on m + n let us prove (2). If m = n = 1 then the required
statement follows from (1). Let m +n > 2. Without loss of generality
we can assume that n > 1. Let £ = 61 0...00,_1. Then ¢1&x0,cy for
some z € A. Let k = min{s’ € S | sca = s’z}. Then by Lemma 3
Skcy = Sco N Sz. In view of well-ordering of the monoid S there is one of
three cases.

Case 1: s = k. In this case Sco N Sz = Sc. Let t = min{s' € S | s'c3 =
s'x}. Then by Lemma 3 Stcg = Scz N Sz. Again in view of well-ordering
of the monoid S we have s < ¢t or s > t. In the first case, Sc¢ = Ssc3 D
Stes = Ses N Sx 2 Se, so Sc = Stes, that is by Lemma 1 we have ¢ = tcs;
thus, ScoNSx = ScsNSx = ScaNSes = Sc; from the induction hypothesis
applied to relation x6,,concs, we obtain c1&xb,c or cncs, i.e. ci1fc or cncs.
Let s > t. Since x0,c2, Sx N Sco = Ssca, sco = sx and t < s, then by
Lemma 4 (1) we have tz6,cs. Let | = min{s’ € S | s'c; = s’x}. Then by
Lemma 3 Slc; = Scqp N Sz and le; = lz. Since sc; = scy = sz, it follows
that Sx N Sec; D Ssep and [ < s. If t > [ then tc; = tic; = tlx = tleg = tes,
i.e. tc; = teg and ¢ > s, contradiction. Let ¢ < [. By Lemma 4 (3) we have
c1&tx0,c0. Note that Sc = Scy N Scy D Sle N Stx = Slx O Ssx = Sscy =
Sc. Hence Slz = Sc. By Lemma 1 we have lx = ¢. So SciNStx = Slx = Se.
Therefore, Sc; N Stx = Sc; N Secg = Se for all i € {1,2}. By the induction
hypothesis, we obtain ci1&c or cf,,¢co. If cf,,co then c1€x0,,c00,c, i.e. c1€xb,c
and c16c. Thus, ¢10c or encs.

Case 2: s > k. In this case Sc = Sscy C Skcy. Then Sc¢; N Skey =
Sc;NSea N Skey = Sen Skeg = Sc = Sse; for all @ € {1,3}. It is clear that
sc1 = scg = skeg. Since s > k then by Lemma 4 (3) we have ¢;&kcy and
kconcs, i.e. c1ékcones. By the induction hypothesis, we have ci€c or cnes,
i.e. c10c or cnes.

Case 8: s < k. Since Sx N Sco = Skco, kcag = kxr and s < k, then by
Lemma 4 (1) we have z6,sco = c¢. Hence c¢1€z0,c, i.e. c10c. O

Let S be a well-ordered monoid and gA satisfies the conditions (1)—(3)
of Theorem. If gA is a cyclic S-act then by Proposition 1 Con(gA) is a
distributive lattice, therefore, Con(sA) is a modular lattice.

Let sA = (J;c; s5a; be a connected S-act and |I| > 1. By Lemma 3 (2)
we can assume that a; & Sa; (i # j).

For 6 € Con(gA), we denote (6 | Sa;) U04 € Con(sA) by 6°. Note that
(61 A B2)F = 0% A G for all 01,0, € Con(sA) and i € 1.
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Suppose that 01, 02,m1 € Con(gA) such that 1 C 09,01 Anp =02 An,01V
1n = 63 V n. By Theorem 2 it is enough to prove 6; = 05.

Let i € I. Then 6% C 65, 0 An' = 04 A1,

We divide the proof into several steps.

Step I. We show that n® Vv 61 = n® v 65.

Clearly, n' VvV 68 C n* Vv 0. Let ta;(65 V n')ra; and ta; # ra;. Then
ta;(02Vn)ra;. Hence ta;(0; Vn)ra;. By Lemma 1 we have Sra; # Sta;. Let,
for example, Sra; C Sta;. By Theorem 1 there exist n € w, kg,...,kop € 1
(ko = kop = i) and d; € Say; (0 < j < 2n) such that ta; = do, ra; =
don, dojfidajy1ndojr2 (0 < j < n). Since gA is a connected S-act then
Sa; N Sdy, #0 (0 <k <2n). Let Sb, = Sa; N Sdy (0 <k < 2n).

By induction on n we prove (x): if do(65 V 1')dan, dojb1dajy1mdajio for
all j, 0 < j <n, and Sdy, C Sdo, then do(0 V 1n')day.

Let n = 1. Then Sdy C Sby, or Sby C Sdo, or Sdo C Sb; C Sdy. In
the first case, we have Sdy C Sdy; since dinde and Sdy C Sdy C Sdy,
by Lemma 2 we have don'ds, i.e. do(6% V n')da. In the second case, since
dob1d; and Sdy N Sdy = Sby C Sdy C Sdy, by Lemma 4 (2) we have
dobrda, ie. do(0iV n')dy. Let Sdy C Sby C Sdy, i.e. the first and second
cases are wrong. Since dinds then by Lemma 2 we have byn'dy and bind .
Since dpf1d; then by Lemma 4 (2) we have cf1dy and cf1dy for all ¢ € A
such that Sb; C Sc C Sdy. Since do(65 V n')ds then by Lemma 2 we have
do(05Vn")by. Theorem 1 and Lemma 2 imply the existence of element ¢ € A
such that Sby C Sc C Sdy and cnby or claby. If ecnby then dgbicnbinds, i.e.
do(0%Vn')dy. If chaby then in view of 81 C 63 we have byaclady; since bynd;
then b1(02 A n)dy; so the equality 01 A n = 62 A n implies by (61 A n)dy, in
particular, by6;dy; hence dof1d161b11da, dob1binds and do(6% V n')ds. Thus,
for n =1 (x) is proved.

Let n > 1. Consider two cases.

Case 1: Sdy C Sb; for some j > 2. Since Sda, = Sba, C Sdo then we
can choose j such that Sb; 1 C Sdg C Sbj and j > 2. Since d;(dj41, where
¢ € {91,7]}, and de N de-i-l = Sdy N de-i-l = Sbj.H C Sdy C de, then
by Lemma 4 (2) we have dp(d;j+1. Let j be even number. Then ¢ = #; and
do@ldj+177dj+2. Besides that, dog01dogr1ndorso for all k, j +2 < 2k < 2n.
From the induction hypothesis we obtain do(6% V n%)day, as claimed. Let
J be odd number. Then j > 3, ¢ = n and dothdondj+1. Besides that,
dopO1dogr1mdogyo for all k, j+1 < 2k < 2n. From the induction hypothesis
we obtain do(6% V n%)day, as claimed.

Case 2: Sbjy1 C Sda, for some j < 2n — 3. Since Sda, C Sdy = Sbg
then we can choose j such that Sbj;1 C Sda, € Sb; and j < 2n — 3. Since
djcdj—I—l? where ( € {01,77}, and de N de_H = Sdp N de_H = Sbj_H -
Sda, € Sdj, then by Lemma 2 we have dz,(d;. From the reasoning given
in case 1, it follows do(0% V ')dan, as claimed.
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Hence we can assume that
Sb; C Sdy for all j > 2 and Sda, C Sbjy1 for all j < 2n — 3.

Let n > 2. Again consider two cases.

Case 1: Sdo, C Sbjt1 C Sb; C Sdy for some j, 2 < j < 2n — 3. Since
dj(dj.H, where ¢ € {91,7]}, and dedej-H = Sdoﬂde+1 = Sbj.H - Sbj -
Sdj, then by Lemma 4 we have d;y1¢b;. By Theorem 1 do (0% V n%)day,
implies do (6% V 1n)bj, b;i(05 V n')dan. Let j be even number. Then j <
2n — 4, C = 91 and djelbjelde. Sincej < 2n — 4, dj@lbj, do(@é \Y ﬁi)bj
and dop01dog1ndog1o for all k, 0 < 2k < 2n, then from the induction
hypothesis we obtain do(6% V 7')b;. Since j > 2, bjf1dj41, bj(05 V 7')d2n
and dogf1dok11ndogao for all k, 0 < 2k < 2n, then from the induction
hypothesis we obtain b;(6] V n')da,. Hence do(6% V 1')da,,. Let j be odd
number. Then j > 3, ¢ = n and d;nb;ndj;1. Since j < 2n — 3, djnb;,
do(05 Vv n')b; and dogbrdoi1mdaks2 for all k, 0 < 2k < 2n, then from
the induction hypothesis we obtain do(6} V 7°)b;. Since j > 3, bjndjt1,
b; (95 V nt)doy, and dopbrdog1mdog o for all k, 0 < 2k < 2n, then from the
induction hypothesis we obtain b;(6% V ')d2,. Hence do(6% V n')day,.

Case 2: Sda, C Sb; C Sbj11 C Sdy for some j, 2 < j < 2n — 3. From
the reasoning given above when considering case 1, it follows do (6% V 7')da,.

Thus, we can assume that for n > 2
Sbon_1 C Sdy, Sda, C Sby and Sdsy, € Sby = Sbg = ... = Sby,_o C Sd.

Clearly, it is true for n = 2.

By Lemma 1 b; = b; = b for all 4,75, 2 < 4,7 < 2n — 2, i.e. Sda, C SbC
Sd.

We show that b(6% V n')day,. If Sb C Shy,_1 then in view of day,_1nday,
by Lemma 2 we obtain bnda,. If Sbs,_1 C Sb then in view of da,_2601don—1
and Sdg,_o N Sdo,_1 = SdyN Sdoy,—1 = Sbay,—1 C Sb C Sdsy,—1, by Lemma
4 we obtain bf1dg,_1, i.e. b(010m)day,. Since b(65Vn)da, then by induction
basis we have b(6% V n%)dap,.

Hence to prove do(6: V 1')day, it is enough to prove do(6% V n')b.

If Sdy N Sdy = Sby € Sb C Sdy then in view of dpf1d; by Lemma 4 (1)
we have dof1b, i.e. do(6% V 7')b. So we will assume that Sb C Sby. Since
do (05 V n')day, it is clear that do(0% V n°)b. The proof is divided into three
cases.

Case 1: deﬂde+1 = 5b for somej S {2, ey 2n—3} Let dj_1<djgldj+1,
where ¢, (" are different elements {6;,n}. Since SdyNSd; = SdyNSdj11 =
Sd;NSdji1 = Sb then by Lemma 5 (2) we obtain doby 0. ..o (b or b('dj41,
ie. dpbio...od;j¢’dj1¢'b. Since j < 2n — 3, then in both cases from the
induction hypothesis we obtain do(6 vV 7°)b. So, in this case * is proved.

Case 2: Sd;jNSdji1 # Sbforall j € {2,...,2n—3} and Sd;NSdy, = Sb
for some different elements i,k € {2,...,2n—2}. Hence Sd; N Sda,—o2 = Sb

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
2021. T. 35. Cepus «Maremarukay. C. 87-102



S-ACTS WITH MODULAR CONGRUENCE LATTICE 97

for some i € {2,...,2n — 3}. Let j be a minimum element such that
2 <j <2n—3and Sd;j N Sda,—2 = Sb. Then Sdj;1 N Sday—2 O Sb and
Sd; N Sdjy1 = Sb, that contradicts our assumption.

Case 3: Sb C Sd; N Sdy, for all different elements j, k € {2,...,2n — 2}.
By Lemma 3 (1) we have (|  Sd; = Sd for some d € A. So, Sb C Sd.

2<i<2n—2

We have three sub-cases: Sb = Sby and Sb = Sdy N Sd, or Sb = Sb; and
Sb C SdiNSd = Se, or Sb C Sby. In the thirst case we have Sdy N Sdy =
SdyNSd = SdynSd, since dgf1dinds and SdiNSde = Sb C Sd C Sds then
by Lemma 4 (2) we have dind, and then by Lemma 5 (1) we have bf,dy,
i.e. do(0% vV n')b, or bnd; if bnd then by induction basis dof1dindnb implies
do(Q”i vV n%)b. In the second case, since dof1d; and Sdy N Sd; = Sb C Sc C
Sdy, then by Lemma 4 (2) we have dyf;c; if Sc¢ C Sday,—1 then by Lemma
2 we have da,_1ndoy, implies cnb, i.e. dgficnb; by induction basis we have
do(@i V ni)b. If Sen Sde,—1 C Sc then by Lemma 4 (2) dop—901doy—1 and
Sdon—o N Sdop—1 € Sdop—2 N SeN Sdy,,—1 = SeN Sdyy,,—1 C Sc C Sdo,—o
imply cf1don—1; so dobich1do,_1mdson, hence by induction basis we have
do(0% V n')day, and by Lemma 2 we have do(0% V n%)b. Let Sb C Sb;. Note
that by Lemma 4 (2) dindy implies und; and vndy for all u,v such that
Sb C Su C Sby C Sdy and Sb C Sv C Sd C Sdo, in particular, bynd;
and dnds. Let Sb C Sbo,_1. Clearly, Sb; N Sbo,—1 = Su where u = by
or u = ba,_1. By Lemma 2 do,_1ndoe, and Sdo, € Sb C Su C Sdop—1
imply unb. As noted above und;. Hence dyf1dinunb, so by induction basis
we have do(6% V n')b. Let Sb = Sbe,_1 C Sd N Sds,—1. By Lemma 3
(1) we have Sd N Sdg,—1 = Sv for some v € A. By Lemma 2 da,_1nda,
implies vnb. As noted above vnd, i.e. dopf1dindnunb. By induction basis
we have do(6% V n')b. Let Sbo,_1 C Sb or Sby,_1 = Sb = Sd N Sda,_1.
In the first case, by Lemma 4 (2) da,,—261d2,—1 implies df1b. Let us prove
do(0% V n*)b or df1b in the second case. By Lemma 4 (2) do,_201do,_1
and Sb C Sd C Sds,_o imply dfids,—1. By Lemma 5 (1) dlnd91d2n,1
and Sdy N Sd = Sdy N Sday,—1 = Sd N Sdoy,—1 = Sb imply either dinb,
i.e. dof1dinb and by induction basis do(6% V 7°)b, or b01da,_1, i.e. brd. It
remains to prove that bf1d implies do(0% V7')b. Let bf1d. Since do(65V 1n°)b
then there exists u € A such that Sb C Su C Sb; and unb or ubsb. As
noted above we have und;, i.e. dofi1dinu and by induction basis we have
do(0% vV n')u. If unb then do(6: V n')unb, i.e. do(0% Vv n')b. Let ufeb. Since
b0, d then blad. So, ubabbad. Since und then u(fy An)d. Since O3 An = 61 An
then uf1d. So, ufdb and do(6% V n)ubb, i.e. do(0i V n)b.

Therefore, we proof do(6% V n')da,. So, (*) is proved. Thus, % V ' =
0% v 7' and step I is finished.

Since by Proposition 1 the lattice Con(sSa;) is distributive then it is
modular and by Theorem 2 we have 6 = 65.

Step II. We show that 6; = 65.
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We suppose to the contrary that 8; C 0. Then there are dy,d; € A and
different ko, k1 € I such that dy € Sag,, di € Sag, and (dp,d1) € 62\ 0.
Then dy ¢ Sdy and dy ¢ Sdy. By Lemma 3 (1) there exists a minimum
element s € S such that Ssdy = Sdyp N Sd; and sdy = sd; = b. Note that
sdy # rdy and sdy # rd; for all r € S, r < s. Indeed, suppose for example
that sdy = rdp for some r € S, r < s; by Lemma 4 (2) we have dyfardyfads;
since Hlfo = 0];0 and 9’1“ = 0’2“ then dof1rdpbi1dy, i.e. dybidy, contradiction.

Since dpbad; then dy(f2 V n)dy. Since 61 V= 602V n then do(61 V n)d;.
By Theorem 1 dinds61ds . .. dson_1ndoy, = dg for some da, . ..ds,—1 € A and
n > 1. Note that n > 1 (otherwise dy(62 An)d1, so do(61 An)dy and dob:d;,
contradiction).

There is one of two cases.

Case 1: Sdj, N Sdy C Sb and Sdi N Sd; C Sb for some k, 1 < k < 2n.
Let ¢ be a minimum number such that Sd; N Sd; C Sband 1 < i < 2n, j be
a maximum number such that Sd; N Sdy € Sb and 1 < j < 2n. Consider
only the case i > 2, j < 2n — 2 as the most difficult. By Lemma 3 (1)
we have Sridy = Sd;—1 N Sdy D Sb, Srody = Sdj1 N Sdg O Sb for some
r0,T1 € S. Note that r1 < s, rp < s. By Lemma 4 (2) d102r1d102r9do62dy.
Clearly, Sd; N .Sd;_1 C Sb.

Suppose that

Sd; N Sdy = Sb and Sd; N Sdy D Sb. (1)

Let Sd; N Sdy = Stpdy and d;—1&d;, where £ € {01,n}. Since Sd;—1 N Sd; C
Sb C Stydy C Sd; and Sd;_1 N.Sd; € Sb C Srid; C Sd;_1, then in view of
di_lfdi by Lemma 4 (2) we have todof?’ldl. Since d0¢92d1, SdoﬁSdl =5bC
Stodg C Sdy and Sdy N Sdy = Sb C Sridy C Sdy, then by Lemma 4 (2)
we have d092t0d002T1d192d1. Since 911430 = 9]50 and glfl = 9]51, then do@ltodo
and di0yr1dy. If € = 61 then dybitodpfir1d16:, i.e. dpbidy, contradiction.
If £ = n then tody(02 A n)ridy; since 01 An = 02 A n then todo(61 A n)rid;
and dogltodoeﬂ'ldleldl, i.e. do@ldl, contradiction.
Let (1) not be done. We show that

?”1d177b\/ r1d101b. (2)

Let Sd; N Sdy C Sb. Since d;€d;—1, where £ € {61,n}, then in view of
Sd;_1NSd; € Sb C Sd;_1 and Sd;_1NSd; C Sridy C Sd;_1 by Lemma 4 (2)
we have b&d;_1 and rdi€d;—1, i.e. bérid;. Let Sd;NSd; = Sb. Because (1)
is wrong then Sd; N .Sdy = Sb. Since d162dy and SdyNSdy = Sb C Sridy C
Sdi, by Lemma 4 (2) we have ridi0a2dy. Since d;éd;—1, where £ € {61,n},
and Sd; N Sd;—y C Sridy C Sd;_1, then by Lemma 4 (2) we have r1d;£d;.
By Lemma 5 (1) we have do@gb, or dlfb If d092b then b02d092T1d1 and in
view 01 = 05 we have bfyrid;. If d;€b then béd;Erid;.

Thus, (2) is proven. Just like (2), it is proved rodonb V rodo61b.

If T’ldl@lb or Todoelb then Tldlagb or Todo@gb; hence dlegbegdo; n view
9’1“’ = 9’50 and Qlfl = 9]2“ we have di601dy, contradiction. Let ridinbnrodp.
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Then doegdi, Sdo N Sdl C STQdO - Sdo and Sdo N Sdl C S’f’ldl - Sdl
by Lemma 4 (2) imply r1di02r9dg. Then r1di(02 A n)rody, ie. in view
02 AN = 601 A n we have d101r1d101r9dp01dy, contradiction.

Case 2: Sdip N Sdy D Sb or Sdp, N Sdy D Sb for all k, 1 < k < 2n.
Then we have Sd, NSdy D Sb for all k, 1 < k < 2n, or Sd,. N Sdy O Sb
for all k, 1 < k < 2n, or Sdi, N Sdy D Sb and Sdi, N Sd; D Sb for
some ki, ko, 1 < ki,ko < 2n. In the first case by Lemma 3 (1) we have
Suy = Sdop—1 N Sdy D Sb for some u; € A. Since do,_1ndy and dobad;
then by Lemma 4 (2) we have do(n A 62)u; and dif2u;. Since 9’1“ = 9’2“
then di61u; Since 6; An = 63 A n then do(61 A n)uy, in particular, dpfiu;.
Therefore, dyf1u101d1, i.e. dob1dy, contradiction. The second case is similar
to case a. Let Sdi, N Sdyp D Sb and Sdi, N Sd; O Sb for some ki, ko,
1 < k1,ko < 2n. Since Sdi N Sdy D Sb or Sdy N Sdy D Sb for all k,
1 < k < 2n then Sdip N Sdy D Sb and Sdyr1 N Sdyg O Sb for some k,
1<k <2n—1,or SdpNSdy D Sb and Sdiy1 N Sdy DO Sb for some k,
1<k <2n—1. Let Su; = SdiNSd; O Sb and Sug = Sdg1NSdy O Sb for
some k, 1 < k < 2n — 1 (an other sub-case is considered similarly). Then
Sdy, N Sdiy1 C Suy and Sdy, N Sdg1 C Sug. Since dp€dgs1, where £ €
{91,17}, Sdy, N Sdg+1 C Sug C Sdy41 and Sd N Sdy11 C Sup C Sdg, then
by Lemma 4 (2) we have uoédy11 and ui&dyg, therefore, up€uy. Since dyhady,
Sdy N Sdy = Sb C Sug C Sdy and Sdy N Sdy = Sb C Suy C Sdy, then by
Lemma 4 (2) we have ugfady, ui62dy, hence upbouq, i.e. ug(f2 A n)uy or
upfruy. Since 81 An = O3An then ugbiu;. Since 9]f0 = 9]50 and Glfl = 0’2“ then
ugbid, and u161dy. Therefore, dyfiugbi1u101d1, i.e. dpfidy, contradiction.

Thus, the lattice Con(sA) is modular.

Step III. Let gA not be connected S-act. As we have proved, the
lattices of congruences on connected components of gA are modular. Let
us prove that the lattice Con(gA) is modular. By Theorem 3 it is enough
to prove that there are no perforating congruences on gA. Suppose that
sBUgC CgA, 0 is the perforating congruences on gA, by, by € B, ¢1,c0 € C,
(b1,c1) €0, (b2,c2) €0, (b1,b2) €0, (c1,c2) ¢ 6. By point 1 of Theorem we
can assume that ¢B is connected S-act.

We show that sb;0b; for all i € {1,2} and s € S. Note that Sb; N S¢; =
Ssb; N Ssc; = () for all s € S. Suppose that there is [ € S such that
(bi,Ib;) & 0. Let t = min{l | (b;,lb;) ¢ 0}. Then ¢ > 1. By point 2 of
Theorem we have tb; = rb; or t¢; = re; for some r € S, r < t. In the
first case, we have tb; = rb;0b;. Contradiction. In the second case, we have
tb;0tc; = rc;0rb;, contradiction.

Since g¢B is connected S-act then r1b; = rqby for some ri,ro € S. As
proved above bi6r1b; = robofby, contradiction. Therefore, there are no
perforating congruences on gA and by Theorem 3 the lattice Con(gA) is
modular. ]
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4. Conclusion

In this paper, we obtain a description of S-acts over a well-ordered
monoid with modular congruence lattice. In [10], S-acts over linearly
ordered monoids with linearly ordered congruence lattices and S-acts over
a well-ordered monoid with distributive congruence lattices are character-
ized. The questions of describing S-acts over linearly ordered monoids
with distributive congruence lattices and with modular congruence lattice
remain open.
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S-mMoJIMTOHBI HA/I BIOJIHE YIIOPsSJIOY€HHBIM MOHOUJIOM C MO-
IyJISPHOI penieTKOi KOHTPYIHITUIA

A. A. Cremanosa

Lanvresocmounvili edeparvhmii yrusepcumem, Baadusocmork, Poccutickas Pe-
depayun

Awnnoranusi.  VccimemoBanme OTHOCHTCS K CTPYKTYPHOH TEOPHWH MOJUTOHOB, MOJ-
pasyMeBaronieil omrcaHue MOJUTOHOB HAJl TEMU WJIM UHBIMHU KJIACCAMU MOHOWJIOB WJIU
00JTAIAIOIINX TEMU WM UHBIMH CBOMCTBAMHU, HAIPUMED Y/IOBJIETBOPSIONINX KAKOMY-JIH00
TpebOBAHUIO, MIPEIbSIBIISIEMOMY K PEIETKe KOHTpysHIMii. KOHrpysHIIMM yHUBEpCAIBLHOMN
ayirebpbl — 3TO sJpa roMOMOpPMU3MOB 3TOH ayrebpbl B Apyrue. 3HAHHE BCEX KOHIPY-
SHIMI O3HAYAET 3HAHME BCEX TOMOMOPMHBIX 06pa30B ajare6pol. JleBbrit S-mosmron Hat
MOHOHUJIOM S — 3TO MHOXkKeCTBO A, HAa KOTOpOM MoOHOWJ, S JEeACTBYeT CjeBa, IpUYeM
€/IMHUIA ITOTO MOHOWa JefCTBYeT TOXKJIECTBEHHO. PaccMaTpUBAIOTCS TOJTMTOHBI HAJT
JIMHEHHO YIOPANOYEHHBIMUA U HAJI BIOJIHE YIIOPSIOYEHHBIMH MOHOWJIAMU, TJe IIOJ JIN-
HEWHO YIOPSIOYEHHBIM MOHOWUAOM S TOHUMAETCS JIMHEHHO YIOPSTOYEHHOEe MHOYKECTBO
C MUHMMAJIbHBIM 3JIEMEHTOM M € OMHAPHOW omepaleil max, OTHOCUTEIHLHO KOTOPOil S
SABJISIETCSI, OYEBUIHO, KOMMYTATHBHBIM MOHOWJIOM; ITOJT BIIOJIHE YIOPSTIOYECHHBIM MOHO-
uaoM S MOHUMAETCs BIIOJTHE YIIOPSIIOYEHHOE MHOXKECTBO ¢ OGMHApHOI omeparueil max,
OTHOCUTEJILHO KOTOPOU S TaKKe sIBJISETCS KOMMYTATUBHBIM MOHOUIOM. CTaThs sIBJISI€TCSA
MPOJIOJIZKEHNEM aBTOPCKoro uccienosanusi ¢ M. C. Kazakom, rjae mpuBOIUTCS OMUCA-
HUEe S-IOJINTOHOB HaJ| JIMHEHHO YIOPSJOYEHHBIMH MOHOUJAMU C JIMHEHHOM peIeTKoii
KOHTPYIHIWI U S-TIOJIMTOHOB HAJI, BITOJTHE YIIOPSITIOYEHHBIMIA MOHOUIAMU C TUCTPUOY TUB-
HOI1 pererkoil KOHrpysHuuit. OUUCBHIBAIOTCs S-IIOJIMTOHBI HAJ| BIIOJHE YHOPSII0YEeHHBIMU
MOHOUJIAMHU, PEIeTKU KOHT'PYIHIUI KOTOPBIX MOY/ISIPHBL.

KuroueBrie ciioBa: mOJMIOH HaJl MOHOWJIOM, PEIleTKa KOHIPYSHIMI airedphl, MO-
JyJIsipHAST PEIIeTKa.
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