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Abstract. In this paper, complete Riemann solver of Osher-Solomon and the HLLEM
Riemann solver for unified first order hyperbolic formulation of continuum mechanics,
which describes both of fluid and solid dynamics, are presented. This is the first time
that these types of Riemann solvers are applied to such a complex system of governing
equations as the GPR model of continuum mechanics. The first order hyperbolic for-
mulation of continuum mechanics recently proposed by Godunov S. K., Peshkov I. M.
and Romenski E. 1., further denoted as GPR model includes a hyperbolic formulation
of heat conduction and an overdetermined system of PDE. Path-conservative schemes
are essential in order to give a sense to the non-conservative terms in the weak solution
framework since governing PDE system contains non-conservative products, too. New
Riemann solvers are implemented and tested successfully, which means it certainly acts
better than standard local Lax-Friedrichs-type or Rusanov-type Riemann solvers. Two
simple computational examples are presented, but the obtained computational results
clearly show that the complete Riemann solvers are less dissipative than the simple
Rusanov method that was employed in previous work on the GPR model.

Keywords: Riemann solvers, the hyperbolic GPR model, continuum mechanics, HLLEM
Riemann solver.

1. Introduction

In this work, unified first order hyperbolic formulation of continuum me-
chanics, further denoted as GPR model proposed by Godunov, Peshkov and
Romenski [3;9]. Especially, the Osher Riemann Solver [7] and the HLLEM
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Riemann solver [2] are described. Simple and universal formulation of the
HLLEM Riemann solver [2] is proposed that works for general conservative
and non-conservative systems of hyperbolic equations. The computational
results present for large set of different conservative and non-conservative
hyperbolic systems, without stiff source term. Since the governing PDE
system proposed in [3] contains non-conservative products, the use of so-
called path-conservative schemes becomes necessary, in order to give a sense
to the non-conservative terms in the framework of weak solutions. Riemann
solvers are the key modern numerical schemes for hyperbolic systems and a
large number of Riemann solvers are available in conservation form. In [4] a
simple extension of the well-known Osher-Solomon solver to a rather general
class of hyperbolic systems in non-conservative form was proposed. They
have been applied the method to the shallow water equations with spatially
variable and temporally fixed bottom as well as to the two-fluid debris flow
model. Except the Osher-Solomon solver, Parés [8] and Castro et al. [1]
concerned on path-conservative numerical schemes based on Godunov, Roe
methods. It is important to mention, that high order fully-discrete one-step
ADER-WENO finite volume schemes (see [5]) and ADER discontinuous
Galerkin finite element schemes were used to solve the GPR model in the
stiff relaxtion limit, but only a simple Rusanov flux was employed in [3].
Hence, the purpose of this paper is to extend complete Riemann solvers
to instead of complex GPR model in order to improve the resolution of
intermediate waves. Subsequently, other higher order nonlinear schemes for
the GPR model have been proposed, such as the Split-WENO method [6]
and ADER -WENO-ALE schemes [10]. The implementation and testing
of the new Riemann solvers was successful and the complete Riemann
solvers clearly behave better than standard local Lax-Friedrichs-type or
Rusanov-type Riemann solvers.

2. Model

We consider the first order hyperbolic Godunov- Peshkov-Romenski
(GPR) model [3;9], which is the first successful attempt to build a unified
and thermodynamically compatible formulation of continuum mechanics
under a first order symmetric hyperbolic form that includes classical fluid
mechanics and solid mechanics just as two special limiting cases of the
same formulation. We refer to the recent work of Dumbser et al. [2], where
a detailed introduction to this model is given and where the GPR model has
been solved numerically for the first time using high order accurate Eulerian
ADER-WENO and ADER-DG schemes on fixed grids, and where many
numerical examples have been provided. The GPR model also includes a
hyperbolic formulation of heat conduction and it can be written under the
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form given in [2] as follows:

ag:i L Opvivy g gfk — oK) _ (2.1b)
aggk . aggkvm o, <6£€ ~ %i:) _ 911?(2'7'2) (2.1¢)
(9;; n O(P“gfgg‘]: ) _ 0?Twik¢ik + %LTHH >0 (21¢)

The solutions of the above PDE system fulfill also the additional conserva-
tion of total energy

OpFE n IvkpE + vi(pdix — oik) + qr)

= 2.2
ot 8.%'k 0 ( )

At this point we emphasize that the system above is an overdetermined
system of PDE, hence in the numerical solution of the above model we solve
the total energy conservation equation (2.2) and not the entropy equation
(2.1e), in order to obtain the correct propagation of shock waves.

We use the following notations: p is the mass density, [v;] = v = (u, v, w)
is the velocity vector, [A;x] = A is the distortion tensor, [J;] = J is
the thermal impulse vector, s is the entropy, p = ,02Ep is the pressure,
E = E(p,s,v,A,J) is the total energy potential, d;; is the Kronecker
delta, [ojx] = 0 = —[pAmiEa,,]| is the symmetric shear stress tensor,
T = E; is the temperature, [gx] = q = [EsE,] is the heat flux vector and
01 = 01(71) > 0 and 0y = 6(12) > 0 are positive scalar functions depending
on the strain dissipation time 71 > 0 and the thermal impulse relaxation
time 1 > 0, respectively.

The dissipative terms ;; and H; on the right hand side of the evo-
lution equations for A,J and s are defined as [¢;] = ¥ = [E4, ] and
[H;] = H = [E},] respectively. Accordingly, the viscous stress tensor and
the heat flux vector are directly related to the dissipative terms on the right
hand side via & = —pAT1 and q = TH. Note that E, Es, Ey, and Ey,
denote the partial derivatives OF/0p,0E/0s,0E/0A;; and OFE/0J;, they
are the energy gradients in the state space or the thermodynamic forces.

These equations express the mass conservation (2.1a), the momentum
conservation (2.1b), the time evolution for the distortion tensor (2.1c),
the time evolution for the thermal impulse (2.1d), the time evolution for
the entropy (2.le), and the total energy conservation (2.2). The PDE
governing the time evolution of the thermal impulse (2.1d) looks similar
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to the momentum equation (2.1b), where the temperature T' takes the
role of the pressure p. Therefore we refer to this equation as the ther-
mal momentum equation. To close the above system, the total energy
potential E(p,s,v,A,J) must be specified. This potential definition will
then generate all constitutive fluxes ( i.e. non advective fluxes) and source
terms by means of its partial derivatives with respect to the state variables.
As s consequence the energy potential specification is fundamental for the
model formulation. The total energy E is the sum of three terms (details
can be found [3]), each of which represents the energy distributed in its
corresponding scale. Thus, we assume that

E(p,s,v,A,J) = Ei(p,s) + E2(A,J) + E3(v) (2.3)
Fy is the ideal gas equation of state:

2
€

2 ~v—1_s/cy
——, cp=79p' e 2.4
yy-1)" " (24)

Ey (p ) S ) =
where ¢y has the meaning of the adiabatic sound speed, ¢, and ¢, are the
specific heat capacities at constant volume and at constant pressure, which
are related by the ratio of specific heats v = ¢, /cy.

For the non-equilibrium, part of the total energy:

Ey(A,J) = éGT.FG.TF + a—QJiJZ» (2.5)
47 T
with )
(G =dev(G) =G - 3(G)T, and G = ATA (2.6)

Here, c¢; is the characteristic velocity of propagation of transverse pertur-
bations, « is the characteristic velocity of propagation of heat waves. The
specific kinetic energy per unit mass:
1
Eg(V) == 5’[)1'1)1‘ (27)
For simplicity, in this paper we consider velocities c; and « are assumed to
be constant.

3. General Form of the Governing PDE

Here we want to show general form of nonlinear system of hyperbolic
PDEs with non-conservative products and stiff source terms:

0Q  OF  Loq _

+
8t+8x+ 8x_S(Q)’ reQCR, teRy (3.1)
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Q(z;t) € Qg C Ry is the state vector, ), is the space of admissible states
(state space), F(Q) is a nonlinear flux that contains the conservative part,
B(Q) is an n x n matrix that includes the purely non-conservative part of
the system. S(Q) is a nonlinear algebraic source term.

When written in quasilinear form, the system (3.1) becomes

0Q 0Q
N AQ- =5 (32
where the matrix A(Q) = JF(Q)/0Q + B(Q) includes both the Jacobian

of the conservative flux, as well as the non-conservative product.

The system is called hyperbolic if all the eigenvalues of the matrix A are real
numbers and if there exists a complete set of n eigenvectors that are linearly
independent. In the case B(Q) = 0, the PDE (3.1) reduces to a flux form
and is hence called a system of conservation laws. In the following we will
denote the eigenvalues of A(Q) with A(Q) = diag(A1, Ae, ..., \,), where the
eigenvalues are ordered as A1 < \g, ..., < \,. The left eigenvectors of A(Q)
associated with the eigenvalues will be denoted by L(Q) = (17,13, ...,11)T
and the matrix of right eigenvectors of A(Q) with R(Q) = (r1,r2,...,Ipn).
We furthermore assume that the left and right eigenvectors are orthonor-
mal, i.e. L - R = I, where I is the identity matrix.

When the system (3.1) is hyperbolic, the matrix A (Q) can be diagonalized,

hence A(Q) = R(Q)A(Q)L(Q).

4. Complete Riemann solvers

For solving the mathematical models presented in the previous section
3, three different numerical fluxes namely a standard Rusanov-type, an
Osher—type and a HLLEM-type have been chosen and compared. The
integration over the space-time control volume [z, 1T ] x [t t"T1] and
application of Gauss’ theorem, the following integral formulation for the
(3.1) is obtained:

F

Q”“ Q" — At (

At
el S +
e Pey) -y (P L)

Q (4.1)

~ AB(Q'TY) n+AtS(Q 2)

where Ax = Tipl =T

and the time step, respectively. A new term DiJr has been introduced in

T 1 and At = t"F! — " represent the mesh spacing

order to take into account the jumps of the solutlon Q+;, 1on the space-
time element boundaries. This method is stable under conventional CFL
condition: N

x
At=CFL— =% with CFL<1. 42
e [A(QF) 2
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While eqiation (4.1) is exact relation, a numerical scheme is obtained by
using a numerical flux, which is a function of two arguments.

4.1. OSHER TYPE RIEMANN SOLVER

For the Osher-type scheme [7], the numerical flux is defined by

FH%:;(F( ) +F@Q ) /|A |—ds (4.3)

and the so-called jump terms by

L1 /0 ov
D w73 ), B (¥(s)) s ds, (4.4)
with the segment path
U(s) = + N 4.5
©=-a,+s(Q, -, (4.)

that connects the left state Q;; with the right state Q;,:l
2

4.2. HLLEM RIEMANN SOLVER

Here we briefly summarize the HLLEM-type Riemann solver of Dumbser
and Balsara [2], which allows to resolve intermediate fields with less numer-
ical dissipation than the standard HLL method or local Lax-Friedrich-type
schemes. In [2], the HLLEM-type Riemann solvers have been properly
adapted to hyperbolic systems with non-conservative products using the
family of path-conservative finite volume schemes of Parés [8] and Castro
et al. [1].

In the following, we use the notation Q = Q;% and Qgr = Q:r% In

the HLLEM Riemann solver, the jump terms read

S 0
D ,=——%" /B(‘I/( ))%fd (4.6)

+ —
D}, =+ / B (U d (4.7)

and the numerical fluxes are given by

PEREL R (Q)6.(QL.(Q) (Qr—Qr),  (48)

SR — SL

Furrem = Fuaun —

with the standard HLL flux

spFr — s Fr + SLSR

(Qr—Qr)- (4.9)

FuLL =
SR — SL SR — SL
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Here, Q = % (Qr + Qgr) is the arithmetic average of the left and the right
state and ¢ in the range 0 < ¢ < 1 is a flattener. To control the amount

of anti-diffusion, the diagonal matrix §,(Q) is given by

5.(Q) =1- A Aj, 0<6.(Q) <1 (4.10)
ST, SR

with T the identity matrix. The computation in (4.10) is based on the
diagonal elements A, = A,(Q). Suitable wave speed estimates for s;, and
sgr are given by

SL = min(07 A(QL)a A(Q))v SR = maX(O, A(Q)? A(QR)) (4'11)

Since equation (3.1) only gives an evolution equation for the cell averages
Q7 but the interface flux F, 41 needs values at the element interface, a
2

spatial reconstruction operator is needed that produces suitable interface
values from the given cell averages.

4.3. DATA RECONSTRUCTION

Higher order spatial and temporal accuracy can be obtained by using a
more sophisticated reconstruction operator. The computational domain 2
is discretized by a computational mesh, composed of conforming elements
denoted by T;, where the index ¢ ranges from 1 to the total number of
elements Ngp. The discrete solution of PDE (3.1) is denoted by wup(x,t™)
and is represented by piecewise polynomials of maximum degree N > 0.
Within each cell T; we have

M

up(z, t") = Zwl(:):)ﬁ? =Y(x)a], zeT; (4.12)

=0

where uy, is referred to as the discrete representation of the solution, while
the coefficients 4;' are usually called degree of freedom.

In order to derive the Path conservative WENO schemes, we first multi-
ply the governing PDE system (3.1) with a test function ¢ defined by
discrete solution space and integrate over the space-time control volume
Q x [t .

tn+1 tn+1

/tn /Qcﬁk%?dxdt—i—/tn /bek (gi +B(Q)§£> dedt =

tn+1

/t ) /Q opS(Q)dzdt.
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5. Result

In this section, we solve a test problem for continuum mechanics, used
in [9]. The computational domain is given by 2 = [—1;1]. The final
computational time is chosen as ¢ = 0.50; the chosen physical parameters
are v = l4,cy = 1,p = 1, = 2 and ¢; = 1. The initial data for the
Riemann problem in conservative variables are

1;0; 151,
1;0:151

0;0;0;1;0;0;0;1;0;050) ; (5.1)
;0;0;0;1;0;0;0;1;0;0;0) ’

7 7 ) )

QL= (10,0
1;0;40

which corresponds to an isolated shear layer. The numerical results ob-
tained with the new Osher-type solver and of the HLLEM-type Riemann
solver are compared with the simple Rusanov method. Furthermore, in the
viscous fluid limit (13 << 1,72 << 1) we also show a comparison with the
exact solution of the compressible Navier-Stokes equations. The obtained
computational results are shown in Figs. 1, 2 and 3 for the Rusanov,

Time t=0.500000

Figure 1. Rusanov Riemann solver in the viscous fluid limit. Comparison with
the exact solution of the incompressible Navier-Stokes equations.

the Osher and the HLLEM type Riemann solver, respectively and are com-
pared with the exact solution of the viscous fluid limit. For the relaxation
times, in this case we have chosen 7 = 0.05 and 7 = 0.05.

Fig. 4 compares the numerical solution of the Osher and the Rusanov
Riemann solvers and Fig. 5 compares the numerical solution of the HLLEM
and the Rusanov Riemann solvers for the elastic solid limit (71 = 10%° and
9 = 1029).
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Time t=0.500000
T T

Exact
O Osher

Figure 2. Osher Riemann solver with viscous fluid limit. Comparison with the
exact solution of the incompressible Navier-Stokes equations.

Time t=0.500000
T

Exact
©  HLLEM

Figure 3. HLLEM Riemann solver with viscous fluid limit. Comparison with the
exact solution of the incompressible Navier-Stokes equations.

6. Conclusions

We have presented and applied two complete Riemann solvers to the
GPR model of continuum mechanics. To the best knowledge of the authors,
this is the first time that these types of Riemann solvers are applied to such
a complex system of governing equations as the GPR model of continuum
mechanics. Since both Riemann solvers need the entire eigenstructure of
the governing PDE system, which was discussed in [3], we rely on nu-
merical linear algebra in order to compute the necessary eigenstructure
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Time t =0.500000
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Figure 4. Comparison of the Osher-type solver with the simple Rusanov scheme
in the case of an ideal elastic solid, i.e. in the limit 3 — oo and T2 — co.

Time t = 0.500000
T

o HLLEM
o Rusanor

Figure 5. Comparison of the HLLEM solver with the simple Rusanov scheme in
the case of an ideal elastic solid, i.e. in the limit 71 — oo and 72 — oo.

numerically at the aid of the eig function of MATLAB. T'wo simple com-
putational examples are presented, but the obtained computational results
clearly show that the complete Riemann solvers are less dissipative than
the simple Rusanov method that was employed in previous work on the
GPR model, see [3]. Future work will concern the extension to multiple
space dimensions and to moving meshes in the framework of high order
accurate Arbitrary-Lagrangian-Eulerian WENO finite volume schemes [5].
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ITosabie pemaresiu Pumana pas runepbosimyueckoit GPR
MO/IeJII MEXaHUKU CIJIONIHOM cpejibl

V. Apuynaal, M. JIym6eep?, 11. Capantysial

L Moneoavcxuti ynusepcumem nayku u mexnonozuu, Yaan-Bamop, Monzoius
2 Viusepcumem Tperwmo, Tpernmo, Umanusa

Amnnoranusi. B crarbe paccmorpen nodablii pernaresns Pumana Omrepa-Cosiomona
u pemarensb Puvana HLLEM nnsa yaudwumumpoBannoit runepOoandecKoit (hopmMympoB-
K/ MEXaHUKHU CIUIOMIHBIX CPEJl IIEPBOTO IOPsIIKA, KOTOPas OINNCHIBAET JUHAMUKY KakK
KUIKOCTH, TaK U TBEPJOrO Teja. DTO MEPBBIN CIydail, KOT/Ia 3TU TUIBI pemareseit Pu-
MaHa IPUMEHSIOTCS K TAKOW CJIOXKHOI CHCTeMe OIPeIeJIsIIONINX YPAaBHEHN, KaK MOJIEJIb
MEXaHWKHU CILIONTHBIX CPEJl C MOMOIIBIO reopaiapoB. ['umepbosimaeckass hOPMyIHPOBKA
MeXaHWKH CILIOIIHOW CpeJbl MepBOro mopsiaka, HegapHo npesmoxkennas C. K. Fomxywo-
BoiM, V. M. IMemkosbim u E. . Pomenckum, najiee obosnauaemasi kak mojuenb GPR,
BKJIFOYAET TUMEPOOTNIECKY0 (POPMYJIUPOBKY TEIIONMPOBOIHOCTH ¥ IEPEOIPEIETIEHHY O
cucremy JIY c¢ HII. CxeMbl ¢ KOHCEPBATUBHBIM IIyTEM Ba)XHbI [IJIsl TOTO, YTOOBI IATh
CMBICJI HEKOHCEPBATUBHBIM TEPMUHAM B CTPYKTYype C/1ab0ro peIeHust, MOCKOJIbKY yIIpaB-
astiomas cucrema JIY ¢ YUl takxKke comepKUT HEKOHCEpBaTHBHBIE HPOAYKThbl. HoBble
pemarenu Pumana peann3oBaHBI W yCIENTHO MPOTECTHPOBAHBI, YTO O3HAYAET, YTO OHU
opeJIeJIEHHO PaboTaloT JIydllle, YeM CTaHJAPTHBbIE JIOKAJbHBbIE pemnaresu Prmvana Tu-
ma Jlakca — @punpuxca uwian Pycanosa. [IpencraBiersr qBa IPOCTBIX BBIYUCIUTEIBHBIX
MIPUMEPA, HO IOJIyYeHHBbIE PE3YIbTAThI sICHO TMOKA3BIBAIOT, UTO IOJIHBIE periaren Pu-
MaHa MeHee JUCCUIATHUBHBI, YeM MPOCTOi MeTon PycanoBa, KOTODBIM MCIIOIB30BAJICS B
npeapayeir padore ¢ Mmoaenbo GPR.

KiroueBsle ciioBa: pemarenu Pumana, runepbosmdeckas mozeinb GPR, mexanuka
CILJIONIHOM cpefbl, pemarenb Pumana HLLEM.
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