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Abstract. The paper deals with an optimal control problem by a system of semilinear
hyperbolic equations with boundary differential conditions with delay. This problem
is considered for smooth controls. Because this requirement it is impossible to prove
optimality conditions of Pontryagin maximum principle type and classic optimality con-
ditions of gradient type. Problems of this kind arise when modeling the dynamics of
non-interacting age-structured populations. Independent variables in this case are the
age of the individuals and the time during which the process is considered. The functions
of the process state describe the age-related population density. The goal of the control
problem may be to achieve the specified population densities at the end of the process.
The problem of identifying the functional parameters of models can also be considered
as the optimal control problem with a quadratic cost functional. For the problem we
obtain a non-classic necessary optimality condition which is based on using a special
control variation that provides smoothness of controls. An iterative method for improving
admissible controls is developed. An illustrative example demonstrates the effectiveness
of the proposed approach.
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1. Introduction

Optimal control problems with time delays play an important role in
various fields of applications. The study of such problems began in the
60s of the XX century (see, for example, [6]) from ordinary differential
equations.

Optimal control problems for specific classes of distributed parameter
systems with delay were investigated in the following areas:

1) existence of optimal control [10;11];

2) necessary optimality conditions [9];

3) computational methods based on ideas of dynamic programming, reduc-
tions to simpler problems, etc. [3;5].

The study of optimal control problems for distributed parameter systems
is closely related to the study of partial differential equations and/or inte-
gral equations, including generalized solutions of such systems. At the same
time, it makes sense to consider a number of optimal control problems in a
smooth control class. In this case solutions of the corresponding boundary
value problems for differential equations could be considered in the classical
or "almost” classical sense. In particular, the solution of inverse problems
for partial differential equations can often be reduced to the corresponding
problems of optimal control in the class of smooth control functions. In
this paper we consider an optimal control problem by boundary differential
conditions with delay for semi-linear hyperbolic equations. Such problems
arise in modeling of age-structured biological populations. Boundary delay
is connected with environmental factors, reproduction peculiarities, etc.

A principle difference from classical statements of optimal control prob-
lems is the investigation of problems in the class of smooth admissible
controls. In this paper, we study the problem in the class of smooth controls
that satisfy the pointwise constraints in each point. It is impossible to use
the optimal control methods based on the Pontryagin maximum principle
or the classic gradient optimality conditions. These methods are focused
on the classes of discontinuous controls. We apply the idea of the general
approach [2] based on using a special variation that provides smoothness
of controls and satisfaction the constraint. This approach is based on the
”inner” variation idea, originally applied by L. Zabello for optimal control
problems in ordinary differential equations [12]. However L. Zabello used
a combination of inner and needle variations. His approach, generally
speaking, is effective for researching problems with lag, but in the class
of discontinuous controls.

Another way of deriving constructive necessary optimality conditions
was suggested in [4; 7;8]. The new class of optimal control problems
governed by the dissipative and discontinuous differential inclusion of the
sweeping/Moreau process with controlled moving sets was investigated.
Controls actions of moving sets must be continuous. Authors used the
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method of discrete approximations and combined it with advanced tools of
first-order and second-order variational analysis and generalized differenti-
ation. These techniques can be useful for the class of problems considered
below.

2. Problem statement

Consider the system
x4+ A(s, t)zs = f(x,s,t), (2.1)
(S,t) ell, Il = S X T, S = [80,81],T = [to,tl],

Here x = x(s,t) is a n-dimensional vector-function of state variables, A =
A(s,t) is a (n X n) - matrix. The system (2.1) is written in an invariant
form, i.e., A is a diagonal matrix. In addition, we assume that the diagonal
elements a;(s,t) of the matrix of coefficients possess constant signs in the
rectangle II:
ai(s,t) >0, i=1,2,...,my;
ai(s,t) =0, i=mi+1,mi+2,...,mg;
ai(s,t) <0, i=ma+1,me+2,....,n.

Respectively, the state vector = x(s,t) contains two subvectors

.’IZ’+ = (1171,1'27- . -7$m1)7 x = (xm2+17$m2+27 s 7w7’b)7

which correspond to positive and negative diagonal elements of the matrix
of coefficients.
Let the controlled initial-boundary conditions for the system (2.1) be
given in the following form:
dx(so,t)
dt
x(s,tg) = 2°(s), s €S, a (s1,t) =v(t),t €T,
¥ (s0,t) = q(t), t€[—h;to); h>0,

= g(x(s0,t), 27 (s0,t — h),u(t),t), teT, (2.2)

where h is a constant delay.
Control u = u(t) is a smooth r-dimensional vector-function on segment
T. Tt satisfies the constraint

u(t)eU, teT, (2.3)

where U is a compact set.
The problem is to minimize the functional

J(u) = /Lp(x(s,tl),s) ds, (2.4)

S
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defined on the solutions of the problem (2.1), (2.2) for admissible control
functions (2.3). Denote y(t) = x*(so,t — h).

The optimal control problem (2.1)-(2.4) is considered under the following
suppositions:

1) the diagonal elements a;(s,t) of the matrix A are continuous and
continuously differentiable in II;

2) functions 2°(s), v(t), q(t) are continuous with respect to their argu-
ments on the sets S and 1" respectively and satisfy the conditions

v(to) = (z°(s1)) 7,  alto) = («°(s0))™;

3) functions f(z,s,t) and ¢(z,s) are continuous with respect to their
arguments, and they have continuous and bounded partial derivatives
with respect to the state function x;

4) function g(z ", y,u, t) is continuous and continuously differentiable, and
has bounded partial derivatives with respect to ™, y and w.

Despite the smoothness of the controls, the solution of the initial-boun-
dary problem for the hyperbolic system is understood in a generalized sense.
It is suitable to use the definition of a generalized solution in terms of char-
acteristics of the system. Let us consider characteristic curves determined
by the ordinary differential equations

o =ai(s,t), i=1,2,...,n. (2.5)
Let s; = s;(&,7;t) be a solution of (2.5), which passes through the point

(&,7) € I1. If there exists a classical solution of the system under consider-
ation, then the given system is equivalent to the following one:

t
zi(s,t) = zi(&, ) + / Jil@(§,7), &6 7) e, (5,050 AT (2.6)

(s,t)ell, i=1,2,...,n,

where (&;, ;) is the initial point of i-th characteristic curve passing through

(s,t).

By means of integral system (2.6) it is possible to prove the existence
and uniqueness of a continuous in II a generalized solution. Each compo-
nent of this solution is continuously differentiable along the corresponding
characteristic family [1]. So, instead of the left side of system (2.1) we
consider the differential operator

I = T o\ T v | T )
Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2021. T. 35. Cepust «Maremaruras. C. 3-17



AN OPTIMAL CONTROL PROBLEM WITH BOUNDARY DELAY 7

where (dz;/dt) 4 is the derivative of i-th component of the state vector along
the corresponding family of characteristic curves.

3. Increment formula

Consider two admissible processes, namely, the initial admissible process
{u,x} and the perturbated one {v = u + Au,z = = + Ax}. Write the
problem in the following form

dAzx
(dt)A = Af(z,s,t),

Azt (sg,t) =0, t € [~h;to]; Ax(s,tg) =0, s€S; Ax (s1,t) =0, t €T}
Ax+t(80at) - Ag(:r+(so,t),y(t),u(t),t), (31)
where
Ag(x™(s0,1), y(t),u(t),t) = 9", 7,0, t) — g(a™, y,u,t) =

= Aﬂg(x—‘ray:uvt) + Ai+g<x+7y7ﬁ7 t) + Ay9(5+7yaﬂa t)?

AJ(u) = /Acp(x(s,tl),s) ds.
S

Add the following terms to the increment formula for the cost functional
dA
J[wen (52) - ases s
at ) 4
I

/(p(t), AzTy(sg,t) — Ag(x™t(s0,t), y(t),u(t),t)) dt,
T

where 9 (s,t) and p(t) are still undefined n-dimensional and m;-dimensional
vector-functions having the same smoothness properties as (s, t) and 27 (¢)
respectively. Here (.,.) is a designation of a scalar product in Euclidean
space of a corresponding dimension.

Applying integration by parts, we have

AJ(u) = /Agp(az(s,tl),s) ds+/[<1/1(8,t1),Ax(5,t1)>—
S

S

—((s,tg), Ax(s, tg))] ds — H//( (CCZ;DA + Agth, Ax(s, t)) ds dt+

#1018 A1, ) = (6 (50.0) Also, ) A (s0, ) e+
T
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+<p(t1),A$+(So,t1)> - <p(t0),Ax+(80,t0>> - /<pt7Ax+(50>t)> dt—
T

—//<w(s,t),Af(a:,s,t)) dsdt — /(p(t),Ag(x+,y,u,s,t)>dt.
I T

Introduce the following auxiliary functions
H(¢(s,1),2(s,1),5,1) = (U(s,1), f(z,5,1)),

h(p(t), 2" (s0,1),y(t), u(t), ) = (p(t), g(x ™ (s0, 1), y(t), u(t), ).

Then
Ah(p, 2™, y,u,t) = Agh(p,xt,y, u, t)+

+Ag+h(p, 27y, U, 1) + Agh(p, 75, y, 1, 1),

where
Aﬂh(pa 33‘+, Yy, u, t) = h(pv .%'+, Y, ’D:v t) - h(p> $+a Yy, u, t)a

Azih(p,x™,y,u,t) = h(p, 21, y,u,t) — h(p, 2™, y,1u,t),
Agh(p, Ty, u,t) = h(p, 27,9, u,t) — h(p, 27, y, U, t).
Use the following expansions
Op(x(s,t1),s)
ox

ox
Agz+h(p,x™(s0,1), y(t), 0, t) =
B <8h(p, 2t (s0,t),y(t),u,t)
N ox

Agh(p7 5+(807 t)u y<t)7 u, t) :<

Agp(a;(s,tl),s) = < ,Ax(s,t1)> + 090(|Ax(87t1)‘)7

AH Y, xz,s,t) = ,Ax(s, b)) + o (|Az(s,t)|),

7Am+(807 t>> =+ Oh(’Ax+(507 t)’)?

ah(p, %+(507 t)a y(t), a? t)

, Ay(t))+on(|Ay(t)]).
Transform the term

ah(p, §E+(307 t)a y(t)> 777 t) _

Ay =4 Ay
ah(pa ?LH_(SOa t)7 y(t)7 u, t)
+ )
dy
where
8h(p7 %+(507 t)? y(t>7 u, t) 8h(p7 x—‘r(SO? t)? y(t)7 u, t)

e AE+

Ay Ay
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ah(pv CE+(S(), t)’ y(t)7 u, t)
+ .
y

Then, we obtain

/<ah(p,$+(3(g;)v y(t)v uat) , Ay> dit =
T

_ /<8h(p(t),x+(50,t),g;_(50,t —h),u(t),t) ,Axt(so,t — h))dt =
T

:7<6h(p(9+h),$+(30, 0+ h),z"(s0,0),u(0+ h),0 + h) , Azt (s, 0)) do+
to—h o
ti—h
+/ (3h(p(0 + ), 2 (s0,6 + hg)’yf(so’ P , Az (s0,0)) do.
to

Here we have used the following designation: § =t—h, 0 € [to—h,t; — h].
Then, reverting to a variable ¢, we get

ti—h
/ <8h(p(t +h),xt(so,t + h),zT (s, t),u(t + h),t + h)

ay , Azt (sg,1)) dt.

to

Let functions (s, t), p(t) be the solutions of the following adjoint problem

(?ﬁ) + Agp = —H,(V,x,8,t), (s, t1) = —p(x(s,t1),8), (3.2)
A

¥ (s1,t) =0; ¥ (s0,t) =0, teT;

| =ha[t] = byt + h) — AT (s0, 1) T (s0,t), t € [to;ts — hl,
PEZN Chalt] = A (s0, )0 (s0, 1), telt—hiti].
p(tl) = 0; p(t) =0, t>1. (3.3)

Here
h:v[t] = hl‘(p<t)7 .’E+(80, t)? y(t)7 U(t), t),

Bylt 4+ 1] = hy(p(t + ), 2™ (s0,1 + h), 2 (s0,8),ult + h), t + ).

Then, the increment formula for the functional takes the following form:

AJ(u) = — / Ach(p(t), (s, 1), y(t), u(t), ) dt + 1, (34)
T
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where

n= /0¢(]Ax(s,t1)|)ds+//(OH(|Ax(S,t)|)dsdt+
I

S

+/[Oh(’Ax+(307t)’)"—<Aﬁhx+(p(t)7x+(507t))y(t)7u(t)7t)7Aw+(307t)>] dt+
T

+ /[Oh(!Ay(t)!) + (Aghy (p(t), 77 (s0, 1), y(t), u(t), 1), Ay(t))] di+
T

+/<Az+hy(p(t)vw+(80,t)>y(t),U(t),t),Ay(t)>]dt-
T

Lemma 1. Under the condition (3.1) the estimation of a state increment
(analogously to [1]) takes the form

t

t) = max |Axz(&,T SL/AUT dr, 3.5

1) = e 180671 < o [ 18000 (35)
0

II(t) = {(& 1) e I: 7 < t}.

Proof. Consider the following system:
¢
Buifs,t) = Aai(gir) + [ Afial&r)endr (30

where (&;, ;) is the initial point of i-th characteristic curve passing through
(s,t). Denote
T (t) = max |AxT(s0,7)]. (3.7)

to<t<t

Under assumption of the problem
|Af($,5,t)| = |f(§,8,t) - f(x,s,t)| < L|Zi_ l’|,

[Ag(z,y, u, )| = |g(2,y,u,t) — g(z, y,u, )| < Lo (|7 — 2| +[§ =yl + [ — ul),

where L is a Lipschitz constant for the function f, L1 is a Lipschitz con-
stant for the function g. Taking into account (3.6), (3.7) and conditions
Az~ (s1,t) =0, Az(s,tg) =0, we get

t
Ai(s,1)] <4 (0) +L/7(7) dr. i—=1.2.....my:
to
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t
Azi(s, 1) gL/fy(T)dT, i—mat Ly 42 m
to

The right sides of the inequalities do not depend on 7 and s, then the
following inequalities is valid

2(t) < vyt (t) + Ly / 2(7) dr. (3.8)

Further, from (3.1),we get

t
| Az (s0, 1) < / [Ag(z™,y,u,7)|dr < Ll/(!5+(80,7) — 2™ (s0,7)[+

to to

+1y(7) —y(n)| + [u(r) — u(r)]) dr.

/my \df—/w ldr =

= / 1T (50,7 — h) — T (50,7 — h)|dr =

to

Consider

/ T+ (50,0) — * (50,0 rd9+/r:c 50,0) — 2+ (s0,0)| dO =

to—h
/‘ 307 (807 )’dT

Here we have used that
T—h=80, 0¢€ [to—h,tl—h].
Then

|Az™ (s0,1)] S2L1/|AJJ+(80,T)’CZT+L1/‘Au(T)‘dT.
to to

From the inequality, we get

yH(t) < 2L1/’7+(7') dT—I—L1/|Au(T)|dT.

to to
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Using Gronwall-Bellman inequality, we obtain
¢
7H(t) < Lo / |Au(r)|dr, Ly =Ly -e*f1(ti—to),
to

Take the inequality in (3.8) and reuse Gronwall-Bellman inequality. Then,
we get estimation (3.5), where Ly = \/nLy - eVE(ti—to), O

4. Optimality condition

Apply the idea of the general approach [1] based on using a special vari-
ation that provides smoothness of control and satisfaction the constraint.
The varied control takes the form

Ues(t) = u(t +ed(t), teT,

where € € [0, 1] is a parameter of variation, d(¢) is a continuously differen-
tiable function and satisfies the following conditions tg < t+0(t) <t1, t €
T. Since admissible controls belong to the class of smooth functions, the
increment formula for the control function takes the form

Au = u(t)ed(t) 4 o(e).
Using (3.5), we get
AJ(u) = —e / (hu, 1)6(¢) dt + o(c). (4.1)
T
Formulate a necessary optimality condition (analogously to results obtained

in [1]).

Theorem 1. If {u,x} is the optimal process in the problem, there is valid
the following condition

w(t) = (hu(p(t), =" (s0,1),y(t), u(t),t),u(t)) =0, teT,
where p(t) is a solution to the adjoint problem (3.2), (3.3).

The convergence result is given in [1].
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5. Iterative method

Describe the general scheme of the method (analogously to [1]).

1) Let u*(t) be an admissible control calculated on the k-th iteration.
2) For the control u*(t) solve problems (2.1), (3.2) and (3.3) to get functions
xF(s,t) and ¥ (s, t), p*(t) respectively.
3) Calculate the value of the functional J* = J(u*) and construct the
function

wk(t) = <hu(pk(t)7 xk(‘SO? t)v uk(t)v t)? i (t»
The function wg(t) consideres as a discrepancy of the fulfillment of the
optimality condition. If wy(t) = 0, then the control function u”* satisfies
the optimality condition and the iteration process finishes.
4) If wy(t) # 0, then consider a smooth variation of u*(t)

ul, (t) = u®(t + ex (1)),

(t —to)(t1 — t)wr(t)
|

or(t) = (t1 — to) r{lea:,g( | (t)

)

where €f, is a solution of the minimization problem

er s J(uF) — min, e€]0,1].

5) The next approximation is given by the formula

uF () =k (1).

€k

One of the following conditions can be considered as the stop criterion on
some k-th iteration of the method.

a) The function u*(t) satisfies (with a given accuracy) the necessary opti-
mality condition. For example, by the condition max |k ()] < 1075,

b) The value of the functional calculated on the previous iteration (that
with the number k£ — 1) is not improved, for example, J* — J¥=1 > 1076,
c) €k is closed to zero. This case is considered as no improvement of the
functional on the method step.

6. Illustrative example

Consider the application of the described method to one test example.
The algorithm was coded in Matlab 7.0. In the square [0,4] x [0,4] we
consider the optimal control problem

1t + 215 = 1 + 22 + f1(8, 1),

Top — Tos = T2 — fa(s, 1),
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x1¢(0,t) = u-x1(0,t — 0.5), wu(t) €[0,3]; z1(0,¢) =0.3-¢, t € [—0.5;0];
z2(4,t) =0.1-¢, 21(s,0) =0, z2(s,0) =s—4.
The cost functional takes the form

J(u) = ;/(xl(s,ll) —71(5))% + (22(s,4) — Ta(s))? ds — min, u € U,

S
where T (s) = T1(s,4), T2(s) = Ta(s,4) are evaluated for the control

t t
u(t) = 20051—6 — sin 7

The auxiliary functions and the adjoint problem:
H(,w,8,t) = Y1 - (x1 + 22 + fi(s, 1) + b2 - (22 — fa(s, 1)),
V1o + s = —P1, Yar — Yos = =1 — o,
Vi(s,4) =Ti(s) — xi(s,4), i=1,2;
V1(4,t) = 0; 2(0,t) = 0;

h(P,%%Uat) =p-u-y,
where z1(0,t — 0.5) = y(t); p(4) =0,

) =p-u—11(0,t), te€l0;3.5),
P = 0,8), t € [3.5:4].

We solve the problem under following functions: fi(s,t) = e®cost and
fa(s,t) = sint. The initial control is

u?(t) = 1+ cos 1.2t.

The value of the functional is J(u") = 7.61749. We solved the problem by
the described method. Results of calculation are presented at the Table 1.
We have obtained: J(u¥) = 0.03854, I}laTx|wk(t)\ = 0.02791, the total

€

number of iteration equals 48. The stop criterion is e < 1075 (there is no
improvement of the functional on the method step).

7. Conclusion

In this paper we considered the optimal control problem by hyperbolic
system with a special type of boundary delay. The optimality condition
in a class of smooth control is proved. We applied approach [1] which is
based on using a special variation that provides smoothness of control and
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Table 1

t u(t) ul(2) u®(t)
0 2 2 2

0.3 1.850 1.935 1.631
1.075 1.483 1.277 1.526
1.65 1.254 0.602 1.372
2.1 1.115 0.187 0.989
2.975 0.968 0.090 0.843
3.3 0.960 0.316 0.875
4 1.028 1.087 1.032

satisfaction the constraint in each point. We consider the application of
the iterative method to solving the optimal control problem with boundary
delay. Numerical experiment showed the efficiency and applicability of the
method.
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3agada onTUMAJIBLHOTO yNPaBJIEHUS TAIIEPOOJIMYIECKON
CHUCTEMOH C 3ana3JibIBAHUEM Ha I'PaHUIE

A. B. Apryunnnes!, B. I1. ITomeBko

L Hpxymeruti 2ocydapcmeennoiti ynusepcumem, Hpxymex, Poccutickan Pedepa-
YUA

Amnnoranus. B crarbe paccmarpuBaercs 3a/1a4a ONTUMAIBLHOIO YIPABIIEHUS CHCTE-
MOH TOJTYJIMHEHHBIX THIEPOOTUIECCKUX YPABHEHNUH, B KOTOPOIl TPAHUYIHBIE YCIOBUS OIIPEe-
JeJISTFOTCST U3 CUCTEMBI OOBIKHOBEHHBIX JIudpepeHInaabHbIX YpaBHEHMI C 3ala3/blBa-
HreM. 3ajada pacCMaTPUBAETCH B KJIACCe TVIAJKUX YIPABJSIONMX Bo3aeiicTBuii. B cumy
JIAHHOT'O YCJIOBUST HEBO3MOXKHO JIOKA3ATh YCJIOBHE ONMTUMAJILHOCTH TUTIA TIPUHITUATIA MAKCH-
myMma JI. C. TlonTpsiruna n Kjaccuieckue ycjioBUus ONTUMAJIBLHOCTU TPAJUEHTHOrO TUIIA.
3a/laun TaKOro POJia BO3HUKAIOT MPHU MOJETUPOBAHUU JIMHAMUKN HEB3aWMOJEHCTBYIO-
IMUX MEXK/JIy COOOM IOIyJISIIAi ¢ yYeTOM BO3PaCTHOIO pacipeiesieHusi ocobeii. Hezapu-
CAMBIMU TIEPEMEHHBIMUA B 9TOM CJIy9ae sIBJISIOTCS BO3PACT 0CODeil W BpeMsi, B T€UEHUE
KOTOPOI'o paccMarpuBaeTcs nporiecc. OyHKINNA COCTOSHUS IIPOIECCA OIKCHIBAIOT BO3-
pactable mnoTHOCTH Tomyssuii. [lembro 3amadn ynpaBieHnss MOXKeET ObITh JIOCTUZKEHUE
3aJaHHBIX TJIOTHOCTEH MOIyJsIUil B KOHEYHBI MOMEHT BpeMeHu. [Ipobiema wmaeHTH-
bukanyus QYHKIINOHAIBHBIX TAPAMETPOB MOJIEENl MOXKET TAKXKe PACCMATPUBATHCS KaK
3a7a49a ONTHUMAJIBLHOTO YIPABJIEHUs C KBaJPATUYHBIM II€JIEBBIM (GyHKIMoHAIOM. st
YKa3aHHOW 3aJa4ud IMOJIYYEHO HEKJIACCUIECKOe HEeOOXOMMMOE YCJIOBHE OIMTHUMAJIHLHOCTH,
KOTOPOE OCHOBAHO Ha MPUMEHEHUU CIENUATbHOW BapHAIMM yIPABIEHUs, 0DeCrednBa-
foIIel IVIaIKOCTDh yupaBisonux dyHkiunit. [Ipengoken MeTon yaydineHns: OMYyCTUMBIX
yrpasiieHnit. DHHEKTUBHOCTD MPEIAraeMoro MoIX01a MPOUJITIOCTPUPOBAHA TIPUMEPOM.

KuroyeBbie ciioBa: runepbosimieckasi CUCTeMa, I'PaHUYHbIe uddepeHInaaIbHbe
YCJIOBHS C 3alla3bIBaHNEM, HEOOXOINMOE YCJIOBUE ONMITUMAIHLHOCTH, ONTUMAJILHOE YIIPaB-
JIEHUE.

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2021. T. 35. Cepust «Maremaruras. C. 3-17
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