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Controllability
of a Singular Hybrid System*

P.S. Petrenko

Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk,
Russian Federation

Abstract. We consider the linear hybrid system with constant coefficients that is not
resolved with respect to the derivative of the continuous component of the unknown
function. In Russian literature such systems are also called discrete-continuous. Hybrid
systems usually appear as mathematical models of a various technical processes. For
example, they describe digital control and switching systems, heating and cooling sys-
tems, the functioning of a automobile transmissions, dynamical systems with collisions
or Coulomb friction, and many others. There are many papers devoted to the qualitative
theory of such systems, but most of them deal with nonsingular cases in various directions.
The analysis of the note is essentially based on the methodology for studying singular
systems of ordinary differential equations and is carried out under the assumptions of
the existence of an equivalent structural form. This structural form is equivalent to
the nominal system in the sense of solutions, and the operator which transformes the
investigated system into the structural form possesses the left inverse operator. The
finding of the structural form is constructive and do not use a change of variables. In
addition the problem of consistency of the initial data is solved automatically. Necessary
and sufficient conditions for R—controllability (controllability in the reachable set) of the
hybrid systems are obtained.

Keywords: hybrid systems, differential-algebraic equations, solvability, controllability.
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1. Introduction

Consider the system with a continuous and discrete-time subsystems

A.%'/(t) = B.%'(t) + Cryr + Ukuk(t), tel, = [tk, tk+1), k=0,m, (1.1)

k—1
Yr = Dp_12(tr—1) + Z Gr—1,i%i + Vimrvp—1, k=1m+1, (12)

i=0
where A, B, Cy, Uy, Dy, Gy i, Vi, are given real matrices of size n x n,n x
n,m X s,n X 1,s X n,s X s, X A respectively, det A = 0; z(t) € C(Tx)
is the continuous and y, € R® is the discrete component of an unknown
function describing the system state; uy(t) and vy (k = 0,m) are [- and
A-dimensional vectors of the continuous and discrete control respectively,
to < t1 < ... < tmg1, T = [to,tm+1]- The system (1.1), (1.2) is called

singular hybrid system.

We introduce the initial-boundary conditions for the system (1.1), (1.2)

yo = by, x(tx +0)=ar, k=0,m, (1.3)

where a, € R" (k=0,m),by € R® are some given vectors.

At present, the term “hybrid systems” is used mainly to describe disc-
rete-continuous systems or systems containing logical variables. Strictly
speaking, hybrid systems include systems that describe processes or objects
with significantly different characteristics, for example, containing in their
dynamics continuous and discrete variables, deterministic and random vari-
ables or influences, which ultimately determines the nature of these systems.
Moreover, in the most nontrivial cases, these aspects of dynamics cannot
be effectively separated and must be analyzed simultaneously. Wherein the
subsystems of a continuous state can be described by systems of ordinary
differential equations (ODE), including singular ones, by partial differential
equations or integro-differential equations.

The problem under consideration is relevant due to numerous applica-
tions, in particular, in review [1], dedicated to modeling and optimization
of hybrid systems, the applied aspect of such research is well presented. It
indicates that a continuous state subsystem can be described using ODEs
that are not resolved with respect to the derivatives. A physical example
that illustrates the usefulness of the problem in the form (1.1), (1.2) is
given. In such a form, a model of two rigid bodies rotating on the same axis
can be presented, which during rotation switch from the sliding connection
mode to the rigid adhesion mode with each other. Also, in the form (1.1),
(1.2) it is possible to write down a dynamic intersectoral system based on
the model of V.V. Leontiev [8]. Wherein z(¢) is the unknown function
of gross output in natural terms; y; is the unknown vector of the total
amount of incoming equipment at the moment ¢;; A is a nonnegative
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matrix of capital intensity ratios (while the lines corresponding to non-
capital intensive industries are zero); B = E,, — B, where B is a productive
direct cost matrix; matrices C}, represent the dependence of production on
the amount of equipment; D;, reflect the relationship between the volume of
products and equipment performance (how much equipment is out of order
and how much is working); Gy, is a coefficient that determines the amount of
equipment required depending on the amount already available at the time
tr; U is a control matrix (the amount of wages, the number of products
produced, various kinds of investments, etc.); Vj is a control matrix (e.g.
investment in equipment). The controllability problem for the system (1.1),
(1.2) can be considered as a profit forecasting problem taking into account
the control functions u(t) and v, and the initial conditions (1.3). Other
classic examples are switching and thermal management systems, described
using a finite number of dynamic models, together with a set of rules for
switching between these models (q.v. [18]).

Most of the previous works devoted to the controllability issues consid-
ered nonsingular cases in various settings (see for example, [2;9;14;19]).
This work is in line with the topic of discrete-continuous hybrid systems,
but is essentially based on the methodology for studying singular systems
of ODE [3-5;7;10]. In this article, for the hybrid system (1.1), (1.2) based
on the constructed equivalent structural form [12; 13] necessary and suf-
ficient conditions for R-controllability are obtained (controllability in the
reachable set). The results of this article are a continuation of the research
done in the works [12;13;15;16], devoted to the issues of the controllability
and observability for the singular hybrid systems.

2. Equivalent Forms

Consider the system of the ODE that is not resolved with respect to the
derivative

Az'(t) = Ba(t) + f(t), teICR, (2.1)

where A, B are given (nxn)-matrices, det A = 0; f(t) is some n-dimensional
function that is continuous on I; x(t) is n-dimensional unknown function
describing the system state. Such systems are called differential-algebraic
equations (DAE).

The matrix pencil AA — B of the system (2.1) is called regular if there
exists a number A (generally complex) such that det(AA— B) # 0. As shown
in the book [6, p. 313] the regularity of the matrix pencil which describe
the system, ensures the existence of nonsingular (n x n)-matrices P and

S such that by replacing the variable z(t) = Sx(t) = S < ilgg > and left
2
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multiplication by a matrix P the system (2.1) reduced to form

X1(t) = Ixa(t) + fi(t), Nxa(t) = xa(t) + fo(t), t e,

where J is some (n — p) X (n — p)-matrix, at that (n — p) is the dimension
of the solution space of the system (2.1), N is the upper triangular (p x p)-
matrix with the [ (0 <[ < p) square zero blocks on the diagonal such that
N' = O is the null matrix; (f1(t), f2(t)) = Pf(t). In the same place [6, p.
340] an algorithm for finding the transforming matrices P and S is shown.

On the other hand with matrix coefficients of the DAEs (2.1) we asso-
ciate the matrices of size nr x nr, n(r+1) x n(r+1) and n(r+1) X n(r+2)
respectively:

AO ...O A O
B A ...O B

DT‘,Z: T 5 Dr,y: : Dr,z 5 Dr,a::(BT D’r‘,y)v
OO0 .. A O

where B, = (B, O, ...,0).

We assume that for some r (0 < r < n) the matrix D, , contains
nonsingular minor of order n(r + 1) consisting of p = rankD, . columns
of the matrix D, , and the first n columns of the matrix D,.,,. This minor
is said to be resolving.

Definition 1. The smallest integer v for which there is a resolving minor
in the matriz D, , is called index of the DAE (2.1).

Let d = nr — p. Permuting columns of D,.,, we obtain the matrix

' =D,, diag{Q(%),Q,...,Q}, (2.2)

where Ejy is the identity matrix of order d, @ is the permutation (n x
n)-matrix. The matrix @ is constructed by the rule specified in [11, p.
320).

Definition 2. An n-dimensional vector-valued function xz(t) € c*(I) is
called a solution to the DAEs (2.1) if (2.1) becomes an identity on I under
substitution of x.

Lemma 1. We assume that the matriz D, , contains a resolving minor
and condition rank D, 1, = rank D, , +n is satisfied. Then there exists an
inwvertible operator on I

d d\"
—Ry+Ri—+... 4R [—]) , 2.3
R o+ R+t (dt> (2.3)
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that reduces (2.1) to the structural form
21 (t) = iz (t) + fu(t), (2.4)
xo(t) = Jox1(t) + fat), tel, (2.5)

that is equivalent in the sense of coincidence of the sets of solutions.
Herein (x1(t), 22(t)) = Q7 1x(t), Q is the permutation matriz from (2.2),
-1 J2 Ed
(Ro Rt ... R.)=(E, O...0)r/ (I,I)) ,<J1 O ) = RyBQ,
(fa(t), f1(t)) = RIf(E)].

Lemma 2. Let the matriz pencil AA — B is reqular. Then the systems
(2.1) and (2.4), (2.5) are equivalent in the sense of coincidence of the sets
of solutions with r =1.

Definition 3. The system (2.4), (2.5) is called the equivalent form of the
DAFEs (2.1).

The proofs of the lemmas 1 and 2 are given in [17, p. 62], [11, p. 325-326].

3. Solvability

We define the vectors y1,ya, ..., Ym+1 from the system (1.1), (1.2)

k-1 k-1
Yk = Sy + Y Praw(ti) + Y Ligvi, k=Tm+1, (3.1)
=0 =0

where the coefficients are determined from the recurrence relations

k—1
So=FE,, Sp= ZGk—Lij, Pip—1=Dy_1, Lyp—1=Vi_1, k=1,m;
=0
k-1 k—1
Poi= Y Gr1jP, Lii= Y, Groajlji, k=2m, i=0k—1
Jj=i+1 Jj=i+1

Let zi(t) = =(t), t € Ty (k = 0,m). Then after substituting the
expressions (3.1) into the equation (1.1) we obtain a family of the systems
of DAE

Az (t) = Bao(t) + Coyo + Uouo(t), t € To; (3.2)
k—1 k-1
Azl (t) = Bag(t) + Cr(Seyo + Y Prami(ti) + Y Ly ivi) (3.3)
i=0 i=0 '

—i—Ukuk(t), tely, k=1,m.



40 P.S. PETRENKO

After using the operator (2.3) on the DAE (3.2), (3.3) we obtain a system
of 2(m + 1) equations

xf)’l(t) = J1x0,1(t) + Co,1y0 + Hod, [u()(t)], (3.4)
x0,2(t) = Joxo,1(t) + Cooyo + Kody[uo(t)], t € To; (3.5)
k—1 k-1
2h 1 (t) = Jiwg 1 (t) + Cra(Skyo + Z Py ixi(t;) + Z Ly, ivi) + Hid, [ug(t)],
=0 =0
(3.6)
k—1 k—1
Tra(t) = Jowk1(t) + Cra(Skvo + Y Prawi(ti) + > Liivi) (3.7)
=0 =0 :

+kd [ug(t)], t €Ty, k=1,m;

QO] = GOS0, SO = @ (210 ) (G

)

ICk; Kk‘o Kk'l Kk?r
- 0 Lk, ") = (RoUy RUy ... RU, ), k=0,m.
(%k> (Hk:,o Hypqi ... Hy, (RoUy R1Uy k) m

Here and below the functions ug(t) are assumed to be sufficiently smooth
on the intervals Ty, (k = 0,m).

) = ROCk‘)

Definition 4. The systems (3.4), (3.5) and (3.6), (3.7) is called the
equivalent forms of the DAFEs (3.2) and (3.3) respectively.

Definition 5. The set of vectors yi,...,Ym+1 and the function z(t) €
CYH(Ty) (k = 0,m) is called a solution to the system (1.1), (1.2) if (1.1),
(1.2) becomes an identity on T under corresponding substitutions.

Lemma 3. Let the matrixz pencil NA — B is reqular or all the assumptions
of the lemma 1 hold. The systems (1.1), (1.2) and (3.4)-(3.7) have the
same set of solutions on T.

The proof of this lemma can be carried out according to the scheme
from [11, p. 325-326] based on the fact that the system (3.4)-(3.7) and the
DAEs (3.2), (3.3) are equivalent in the sense of coincidence of the sets of
solutions [17, p. 62].

The conditions (1.3) can be written as

Yo = bo, xp(tr +0)=ar, k=0,m. (3.8)

Lemma 4. Let all the assumptions of the lemma 8 hold. Then the problem
(8.4)-(3.8) has a solution on T if and only if

ag,2 = Joag,1 + Co2bo + Kod, [uo(to)], (3.9)
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k1 k=1
ak2 = Jaar1+Cra(Skbo+ Y Priait | Liivi) +Kipdo[ug(t)], k=T,m,

(3.10)
where ap, = Q (ag 1, ar2) (k= 0,m). Moreover, if a solution to the problem
(3.4)—(3.8) exists, then it is unique.

In view of the above, the proof of this lemma is similar to the proof of
corollary 2 from [17, p. 9].

Definition 6. The conditions (3.8) that satisfy the relations (3.9), (3.10)
are called consistent with the system (3.4)—(3.7).

4. Controllability

Definition 7. The system (3.2), (3.3) is called R-controllable on T if
for any consistent vectors ar € R™ (k = 0,m),bp € R® and any vectors
ar € R" (k= 0,m),3 € R® from the reachable set M (q.v. [5, p. 24])
there exist vectors vy and sufficiently smooth on Ty l-dimensional vector-
functions ug(t) (k = 0,m) such that there exists a solution to the system
(3.2), (3.3) that satisfies the relations x(ty+0) = ag, x(tx41—0) = oy (k =
0,m), Yms1 = B.

Theorem 1. Let all the assumptions of the lemma 3 hold. The system
(3.2), (3.3) is R-controllable on T if and only if

q'Q#0, (4.1)
where Q = (@Cﬁlﬁ @O ), 0 = dlag{f (7)dr, .. fttm+1 X~(r)dr},
O1 = diag{ [, X~'(7) Ho dy[uo(r)]dr, .., [i7*" X7HT) Hom dyum (7))},
C1 = diag{Co,..., ml} X(t) is (n - d) (n — d)-matricant (i.e., a

solution to the system X'(t) = J1 X (t), X(t) = E,—q); q € RsH(m+1)(n—d)
s an arbitrary nonzero vector;

o o ... 0 o Lio O .. O
L170 (@) . 0] 0] _ Lgyo Lg,l e (@)

L= . . : ], L= . . . :
Lm,O Lm,l e Lm,mfl O Lm+1,0 Lm+1,1 e Lm+1,m

Proof. Necessity. Let the DAEs (3.2), (3.3), and hence the system (3.4)—
(3.7), are R-controllable on T. By integrating (3.4), (3.6) from ¢y to tp41
for each k = 0,m, given the fact that X (tx) = E,_q4, we get that

t1

20,1 (t1) — zoa(te) = | X(7)7" (Coyo + Hodyuo(7)]) dr,

to
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tk:+1 k—1
Tr1(tk1) — Tra(te) = X () M (Cha(Skyo + Y Pugwilts)+
b i=0
k—1
+ 3 Ligvi) Hd, [ug(7)))dr, k = T,m.
i=0
Let
(0] o ... O O Pio 0] .. O
Pio O ... o o — Py Py ... o]
P = : o : : , P = : . . : ;
Pm,O Pm,l PN Pm,m—l O Pm+1,o Pm+1,1 . Pm+17m

Xfi):(xo,l(ti)v'--vxm,l( z+m)) X() (.%'02( ) xm2 H_m))’
XO = (wo(t). b)) UL = (@ fuot)]- [ (b)) = DT
Y:(yl,,_,,merl),VZ(UO,---,'Um)aS (50"" ) (81’“ Serl)

Then we have

xW - xO _oc; 5y, — 00, PXO = 0C,LV + 0. (4.2)
We get the relation from the equations (3.5), (3.7)
xX{) = diag{ ..., o}X(" +Cs (Syo + PXD + £V ) + KU,

whence it follows that

X(Z) ((E CQPQ) ((diag{Jg, ce JQ}) + C2P1)X£Z)
+CySyo + CoLV + KUY, i=0,1,

where Cy = diag{Cp2,...,Cn 2}, K = diag{Ko,.... Ky}, PQ = (P1 P2).
We get a representation for ¥ from (3.1)

(4.3)

Y —Syy—PX© =ZV. (4.4)

We combine (4.2) and (4.4) into one system

L O 1%
_ 45
(9015 91> (erl(m+1> ) (45)

where ¢ is the vector consisting of the left-hand sides of the equations (4.2),
(4.4) and e,, is the unit vector of dimension n.

Thus, as the R-controllability of the system (3.4)—(3.7) we can under-
stood the existence such vy and ug(t) € C"(Tx) (k = 0,m) (for any value
of the vector g with corresponding dimension) that ensure equality (4.5) ,
since XQ(O) and Xél) are uniquely determined from the equation (4.3) for

(0)

known values X, Xfl).
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Let us show that if in this case the relation
q Q(Tg,’]‘l,..., )—O VTkGTk,k—Om

holds, then it follows that ¢ = 0, where ¢ € RsT(m+tD(—d) ~SQuppose the
opposite, that there exists ¢, # 0 such that

a) Q(10,T1, -+, Tm) =0 V1 € Ty, k =0, m. (4.6)

Since equality (4.5) should be performed for any g, then suppose that g =
¢« (¢« # 0) and scalar multiply on the left (4.5) by the vector g..Taking
into account (4.6) we get

0#¢ ¢ =a.9=a QV,eqme1) =0.

We got a contradiction. Therefore, from the R-controllability of the system
(3.4)—(3.7) follows that the condition (4.1) holds for any nonzero vector
ge Rs-{—(m—l—l)(n—d).

Sufficiency. Let the condition (4.1) holds. In order to prove the suffi-
ciency, it is necessary to show that in this case there exist vectors vy, uy (k =
0,m) such that the system (4.5) solvable for any value of the left side.

We take the integrals from ©1 r 4+ 1 times by parts

tk+1

() He dpfug ()] dt = Ti Dy (trir)

+(~1 /tk+1 (/tk /tk “Yro)drodry ... dr, Hk> AUV [y ()] dt;

(4.7)
Dy (tpy1) = (dr[uk(tk+1)]ad/r [k (tpgr)); - Al [Uk(tk+1)]) ;
tpa1 tet+1 1 1
Ik,r = ( X~ (TO)dTOHk- / X~ (T())d’l’()d’i'l?-[k
Tt
/ / “Yrp)drodry ... drHy), k=0,m.
tr tr

The control functions ug(t ) W111 be sought in the form of polynomials of
degree r

.
t)=> bpjt!, teTy, k=0m.

It is easy to see that in this case d£r+1)[uk(t)] = 0 on T}, as a result, in
(4.7) the last term becomes zero.
Let’s use the representation

dr[uk(t)] = Ar(t)(bkp, bk:,l, - ,bk’r), t e Tk, k= 0,m,
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O/ E (L/INEE ... () E
A(t) = (:) (1!/0!:)t0El (rl/(rlz)!)trqu
0 0 e (r!/Oi)tOEl

Therefore we have

dDfur(t)] = AP (Db, t € Ty, k=0omm,

T

where bk = (bk,07 bk71, ey bkvgfl), k= O,m.
Then the equality (4.5) takes the form
_ L O v
9= (901 c IA> (diag{bo,...,bm} > : (48)
where
Vo Vg ... Vo Ar(t)
— 0 v1T ... V1 A;n(t)
V=1 . .. A= : , I =diag{lo,, L1, I;myr}-
00 ... vy A" @)

The system (4.8) is obviously solvable on T}, with respect to the vectors
vk, b (k = 0,m) and hence the equation (4.5) is also solvable for any value
g O

The R-controllability condition can be formulated in terms of the cont-
rollability matrix. Let H = diag{Ho, H1,...,Hm}. Then the controllabil-
ity matrix of the system (3.4), (3.6) has the form

Q= (Py 1 ... Pp_g_1), (4.9)
where @ = (C1L H ), ®; = diag{J}, ... ,Ji}®y, i=1,n—d— L

Theorem 2. Let all the assumptions of the lemma 3 hold. The system
(3.2), (3.3) is R-controllable on T if

rank ® = (n — d)(m + 1). (4.10)

Proof. Suppose the opposite. Let the assumption (4.10) holds but the sys-
tem (3.4)—(3.7) and, respectively, DAEs (3.2), (3.3) are not R-controllable
on T'. Then, according to the theorem 1 there exists a nonzero vector
pe € R=Dm+D) guch that p, ( 0C.L 6, ) = 0, whence it follows that
pI@Clﬁ == 0, p*T@l =0.
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It is easy to see that from the singularity of ©; follows singularity of the
matrix diag{X~1(t) Ho d,[uo(t)],- .., X 1(t) Hm dr[um(t)]}. In turn, the
fundamental matrix X (¢) cannot be singular in its structure, which means
the fact that expressions

piCiL =0, p) diag{Ho dr[uo(t)], .., Hm dr[um(t)]} = 0

hold for arbitrary control functions ux(t) (k = 0,m).
Thus, the matrix ( CiL H ) = 0, and from the construction of the matrix
® follows that rank ® < (n — d)(m + 1). We got a contradiction. O

Example 1. Consider the hybrid system

Ax'(t) = Bx(t) + Cryg + Ugug(t), t € Tp = [tg,tpr1), k=0,1,2; (4.11)
y1 = Dox(to) + Go0yo + Vovo, (4.12)
y2 = Dix(t1) + G1,0y0 + G111 + Vivi, (4.13)
ys = Dax(t2) + Gaoyo + G2.1y1 + G22y2 + Vovs, (4.14)
where
201 -1 2 0 10 1 0
A=|o010],B= 1 10, o1 |, o=10 |,
00O 1 00 O -1
00 2
Uy=110],Cy= , Ci=101], Cy= ,
0 2 0
Vo = 2 — 1) , V1 =
Goo=1 Gio=0, Gi1=2, Gao=2, G21=-1, Gap2=1, (4.15)

Do=(101), Dy=(-120), Dy=(0 1 1).

up(t) € U (k = 0,1,2), where U is the set of all piecewise continuous
functions from R?2, vy (k= 0,1,2) are scalar control functions.

Let us investigate the system (4.11)—(4.15) for the R-controllability on
the interval T = [to, t3]. To do this, check the fulfillment of the assumptions
of the theorem 2. Let us construct the matrix from the lemma 1:

-1 2 02 0100]0
1 -1 00 1000]0

b | L1 10 0000/|0
- 0 0 0120201
0 0 01 -1001/0

0 0 01 1100]0

The frame in the matrix D;, marks the columns that are included in
the resolving minor. It is easy to verify that the condition rankDg, =
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rank Dy, + 3 holds. Thus, according to the lemma 1 there exists the
operator

110 00 — d
R=[(010]+([00 0 a7 (4.16)
001 00 o0 )
Let’s construct the controllability matrix ® from (4.9) using the operator
(4.16)
O O OM OO OOOO OO0OMOO OO0 O
= O O O O OM;, 0O O O O OO O OMO O O],
Ms Mg O O O O O M; O Ms Mg O O O O O M; O
where

—4 2 0 —1 10
ve=(T00) mem (57 ) = 63)

It is easy to verify that the condition (4.10) from the theorem 2 is sat-
isfied. Thus, the system (4.11)—(4.15) is R-controllable for any consistent
initial-boundary conditions on the interval [t,t3].

5. Conclusion

In this paper a class of hybrid stationary systems under the assumptions
that ensure the existence of an equivalent structural form is considered. The
advantage of this approach is due to the fact that this structural form is
equivalent to the nominal system in the sense of the coincidence of the
sets of solutions. In addition, the problem of consistent initial data is
automatically solved. Moreover, in the construction of an equivalent form
the variable substitution is not used. In the future, this methodology can
be extended to hybrid systems with variable coefficients. The presented
example is only illustrative. Generally, instead of the set U we can consider
a smaller class of continuous functions with a finite-dimensional parame-
ter depending on the physical or economic considerations of a particular
problem.
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YnpaBigeMOCTb OTHOI BbIPOXKI€HHON rMOPUTHOI CUCTEMBI
I1. C. Ilerpenko

Hrnemumym dunamuru cucmem u meopuu ynpasaerus um. B. M. Mampocosa CO
PAH, Hpxymcxk, Poccutickas Pedepayus

AnHorauusa. PaccmarpuBaercs JimHeiHas ruOpUHAs CUCTEMA C IIOCTOSTHHBIMUA KO-
addureHTaMu, Hepa3pelleHHass OTHOCUTEIBHO TPOU3BOIHON HEITPEPBIBHONW COCTABJISIIO-
et uckoMoit pyukimu. B siureparype 1mogo0HbIe CUCTEMBI YaCTO HA3BIBAIOT JUCKPETHO-
HeNpepbIBHBIMU. TaKue CUCTEMBI BOSHUKAIOT IIPU MATEMATHIECKOM MOJIETUPOBAHUN PSIIA
TexHu4YecKux nporeccoB. C IOMONIbI0 TUOPUIHBIX CUCTEM, K [IPUMEPY, MOYXKHO OIIUCATH
crucTeMbl IU(POBOrO YIIPABIEHNUST U KOMMYTAIMH, CUCTEMBbI HATPEBAHUST U OXJIAYKIEHUSI,
(OYHKIIMOHUPOBAHUE KOPOOKU Itepead aBTOMOOMIIS, JUHAMUYECKHE CHCTEMBI C COydape-
HMEM W KYJIOHOBCKUM TPEHHEM, a TaK>Ke MHOTHe Apyrue. KadecTBEHHOW TEOPUH TAKOTO
poJia CHCTEM ITOCBSIIIEHO MHOYKECTBO paboT, OHAKO B OOJIBIIMHCTBE U3 HUX PacCMaTpUBa-
IOTCsl HEBBIPOXKJIEHHBIE CIIyYau B PA3JIUYHBIX IIOCTAHOBKAX. AHajM3 paboThI CyIIEeCTBEH-
HBIM OOpPa30M ONHMPAETCS] HA METOIWKY WCCJIEIOBAHUS BBIPOXKJIEHHBIX CUCTEM OOBIKHO-
BeHHBIX AuddepeHInalbHbIX YPABHEHUH U TPOBOAUTCS B MIPE/INOIOKEHUN CYIIIECTBOBA-
HUSI 9KBUBAJIEHTHOI CTPYKTYpHOII dpopMmbl. JlaHHAsT CTpYKTypHasi opMa KBUBaJIEHTHA
HWCXOJIHOM CHUCTEMEe B CMBIC/IE PEIIeHuil, a Ipeobpa3yromnmii K Heil omeparop obJiajaer
JIeBBIM 0OpaTHBIM. [TocTpoeHre CTpyKTYpHOM POPMBI HOCUT KOHCTPYKTUBHBIM XapaKTep
U HE UCIOJb3yeT 3aMeHy MEPEMEHHBIX, IPU 9TOM ABTOMATHUYUECKHU PEIaeTcs pobyiema
COTJIaCOBaHUsT HAYaJbHBIX JAHHBIX. B pabore moJiydeHBl HEOOXOAMMbBIE U JOCTATOYHBIE
ycnoBus R-ynpasisiemocTu (yIpPaBisieMOCTH B IPEJEax MHOXKECTBA JTOCTUZKUMOCTH)
HUCCIeLyeMOl CUCTEMBI.

KuroueBsbie ciioBa: rubpuaHbIe CUCTEMBI, Tu(dEpEeHINATbHO-AITeOpanIecKre ypa-
BHEHUsI, PA3PEIINMOCTD, YIIPABJISAEMOCTbD.
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