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Abstract. We study extremum norm problems for the terminal state of a linear dynam-
ical system using methods of parameterization of admissible controls.

Piecewise continuous controls are approximated in the class of piecewise linear func-
tions on a uniform grid of nodes of the time interval by linear combinations of special
support functions. In this case, the restriction of a control of the original problem to the
interval induces the same restrictions for the variables of the finite-dimensional problems.

The finite-dimensional version of a minimum norm problem can effectively be resolved
with the help of modern convex optimization programs. In the case of two variables, we
propose an analytical method of resolution that uses a one-dimensional minimization
problem for a parabola over a segment.

For a non-convex norm maximization problem, the finite-dimensional version is re-
solved globally by exhaustive search over the vertices of a hypercube. The proposed
approach provides further insights into global resolution of non-convex optimal control
problems and is exemplified by some illustrative problems.

Keywords: linear control system, extremum norm problems for the terminal state,
piecewise linear approximation, finite-dimensional problems.
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1. Introduction

Extremum norm problems for the terminal state of a linear control
system have a long history. On the other hand, they are still actively
investigated in view of their scientific relevance and interest.

There are several effective methods of resolution of a minimum norm
problem which are due to its convex structure. These methods are based
on nonlocal improvements using the matrix conjugate system [1;5;10].

A maximum norm problem for the terminal state is multi-extremal,
which renders its global resolution essentially more difficult. The exist-
ing methods are focused on improving extreme controls and are based on
global optimality conditions [2;7;8]. Since numerical verification of global
optimality conditions is still problematic, these methods provide usually
weakened and incomplete versions of optimality criteria. In this sense, the
global resolution of the problem is, in general, not fully methodological
and as such contains heuristic elements. In other words, a maximum norm
problem is still open for further research.

In the present paper, extremum norm problems for the terminal state
of a linear system are considered in the framework of the control function
parameterization technique [4;6;11]. In this case, the approximation is
done in the class of piecewise linear functions on a given grid of nods of
the time interval, so that the optimal control problem is transformed to
a finite-dimensional version of extremum problem for a quadratic function
over a hypercube.

The resulting problem can be solved in a finite number of iterations [9)].
In order to simplify the resolution procedure, we propose an iteration-free
algorithm for the two-dimensional problem (minimum of a paraboloid over
a square) that uses a geometric interpretation.

The global resolution of the finite-dimensional maximum problem is ele-
mentary implemented through a complete or specialized exhaustive search
over the given set of hypercube vertices. Therefore, in the framework of the
presented approach, the original nonconvex problem is approximated by a
similar finite-dimensional problem of the given dimension. The guaranteed
global resolution of the later is done by an acceptable finite exhaustive
search.

Our resolution technique is tested on two illustrative problems.

2. Statement of the problem. Parametrization of the control

Introduce the following variables: t € [to, 7], the time, u(t) € R, the
control, and z(t) € R", the state, satisfying the linear system

&= At)z + bt)u, z(ty) = 2°, (2.1)

WsBecTus I/IpKyTCKOI‘O TOCyJapCTBEHHOI'O YHUBEPCHUTETA.

2020. T. 34. Cepusa «Maremarura». C. 3-17



ON RESOLUTION OF AN EXTREMUM NORM PROBLEM )

where A(t) € R™™", b(t) € R™ are continuous functions on [tg, 1.
The set V of admissible controls contains piecewise continuous functions
u(t) with the standard constraint

u(t) € [u—,us], t€lto,T). (2.2)
We define on the set V' the terminal functional (the norm of the terminal
state)

P(u) = 5 (x(T),2(T)) (2.3)
and consider the corresponding extremum problems (maximum and mini-
mum).

Transform these variational problems into finite-dimensional problems
using simple parametrizations of admissible controls.

We present the first parametrization scheme in the class of piecewise
constant functions. Introduce on the interval [to, 7] a uniform network A;
of nods t; = tg +th, i = 0, m with the mesh h = %

Set T = (tj—1,t;], j = 1,m and define the characteristic functions

1, teT;,
XJ'(t):{O7 thi

Let y = (y1, ..., Ym) be a collection of parameters. Construct the controls
m
u(t,y) =Y yix;(t), € [to,T]
j=1

and introduce the subset of admissible controls

Vi= {u(’y) "Y€ [u*’UJr]’ J= 1’m}'

Let z(t,y), t € [to,T] be a solution of the phase system (2.1) corre-
sponding to the control u(t,y). Then,

w(ty) = o(t,0) + > yya(t), ¢ € [to,T), (2.4)
j=1
where 27 (t) is a solution of the phase Cauchy problem
i = Ao+ b (1), (te) = 0.

Consider the functional ®(u) on the set of controls V;. Using the repre-
sentation (2.4) we obtain the formula

B1(y) = @(0) + (d,y) + 5(Xy, Xy),
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where

d is the m-vector with entries (z(T,0),2/(T)), j=1,m,

X is the (n x m) - matrix with columns 27(T), j =1,m.

Now, we describe the second parametrization scheme in the class of
piecewise linear functions. Introduce on [ty,T] a uniform network Ag of
nods t; =

=ty + th, i = 0,m + 1 with the mesh h = %ﬁf Denote the intervals

Ty = [to, t1], Ty =[tj-1,tj1], J=1Lm, Tyny1 = [tm, tmy1]
and define the following support functions on [to, 7]

1 1
it =), teT, _ H(t—tw), t € Ty,
vo(t) { 0, t & Ty, Om+1(t) 0, t & T,
(t—tj-1), t € [tj-1,t5],
(tjr1 — 1), t € [ty L,
0, t ¢ Ty,

The values at the nods are given by

TS
<
I
[S—y

p;(t) =

1, j=4, .. -
Let z = (20,...,2m+1) be a collection of parameters. Construct the
controls
m+1
u(t,2) = Y zp;(t), te [to,T].
j=0

They are continuous, piecewise linear functions with the nodes ¢; and the

values u(t;,z) = z;, i = 0,m + 1. In other words, the control u(t, z) is the

linear spline on the network Ay corresponding to the values {zq, ..., Zpmt1}-
Introduce the subset of admissible controls

Vo= {u("z) 125 € [u*aUJr]’ J=0m+ 1}

Let x(t, z), t € [to,T] be a phase trajectory corresponding to the control
u(t, z). We have

m+1
2(t,2) = 2(t,0)+ 3 2 (1), t€ [to, T, (2.5
7=0

where 37 (t) is a solution of the Cauchy problem
= Az + bt (), alto) = 0.

Useectus MpKyTCKOro TOCYJapCTBEHHOTO YHUBEPCUTETA.
2020. T. 34. Cepusa «Maremarura». C. 3-17
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Consider the functional ®(u) on the set of controls Va. Using the repre-
sentation (2.5), we obtain the formula

~ 1, - A
@y(2) = 2(0) + (d,2) + 5(Xz X2,
where '
d € R™*2 is the vector with entries (x(T,0),47(T)), j=0,m + 1,
X € R™(m+2) is the matrix with columns #7(T), j=0,m + 1.
We note that the quadratic functions ®;(y), ®2(z) are convex. This

allows us to qualify the corresponding extreme problems on simple sets:
Z,Y € [u*aUJr]'

3. A minimum norm problem for the terminal state
Consider the problem

B(u) = %@(T, w),2(T,u)) — min, ueV. (3.1)

After the first parameterization, we obtain the special convex program-
ming problem with respect to the vector y = (y1, ..., Ym)

Py (y) = 2(0) + (d, y)+

1
+5 Xy, Xy) = min, y € [u_, uy]. (32)

Such a quadratic problem can be solved in a finite number of iterations [9].
Consider some special cases of the problem (3.2) with respect to the
dimension m, which are solved without an iterative process using explicit
formulas.
Let m = 1, i.e. the problem (3.1) is solved on the set of const-controls
u(t) = y1, t € [to,T]. The corresponding one-dimensional problem (3.2) has
the form (minimum of a convex parabola over an interval)

®1(y1) = ©(0) + 1 (x(T,0), 2" (T))+
1 .
+§y%<$1(T),$1(T)> —min, Y€ [u*’UJr]'
Assuming that z!'(7") # 0 define the stationary point

o (200211
LT T GD), 2 (1)

Then the solution of the one-dimensional problem is obvious:

) yT’ yT € [u*’UJr]’
y71nzn = U—, ?Jf <u—,
Ug, Y] > uge
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Next, let m = 2, i.e. the problem (3.1) is solved on the set of controls

Sy, tefto, tl,
U(t) N { Y2, te (tl)T]a

with the fixed switching point ¢; = %
The corresponding two-dimensional problem (3.2) is:
to minimize the function of two variables ®1(y1,y2) over the square

Y = {(y17y2) ‘Y € [u_,u+], 1= 172}

Suppose that the matrix X € R"*? is full rank, i.e. the Gram matrix
XTX is positive definite. Then, the unique stationary point y* = (yI,y5)
of the function ®(y) is determined from the linear system

Vei(y) =d+ X Xy =0.

This is a minimum point of the function ®(y) on R2. In this case, the
level curves of the function ®1(y) are ellipses centered at the point y*.
Next, we solve analytically the minimization problem for the paraboloid
®4 (y) over the square Y, using the information on the location of the point
y* and the geometric interpretation of the problem based on the level curves
of the objective function.
If y* € Y, then we obtain the solution of the two-dimensional minimiza-
tion problem: y™" = y*.
We consider the general case y* ¢ Y.
Possible situations when the constraint is violated for one variable:
1) yi <wu_, y3 € [u_,uq] = solve the one-dimensional problem
(I)l(u—ayZ) — min, Y2 € [u_,u+] = y2_7
set y7"" =, g5 =y,
2) yi > uy, ys € [u—,us] = solve the one-dimensional problem
(I)l(u+7y2) — min7 Y2 € [u_,u+] = y;_v
set y"" =uy y§ = yy;
3) yi € [u—,uy|, y5 <u— = solve the one-dimensional problem
(I)l(ylvu—) — min, Y1 € [u_,u+] = y1_7
set yi"" =yp, Y =u;
4) yi € [u—,uy], y5 >usy = solve the one-dimensional problem
Ql(ylaluur) — min) Y1 € [u*afu”r] = yfa
set yin = yf, Yo =y
Possible situations when the constraint is violated for two variables v}, v3 :

Useectuss pKyTCKOro TOCYJapCTBEHHOTO YHUBEPCUTETA..
2020. T. 34. Cepusa «Maremarura». C. 3-17
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5) yf <u_, ys <u_ = solve two one-dimensional problems
Py(u_,y2) = min, y2 € [u_,uy] = y5,
i (y1,u—) = min, 1 € [u—,uq] = yi,
set

(y?un ygmn) — { (u:7y2_)7 (I)l(u—ay2:) S (I)l(ylivu—)a
’ (Y s u-), @1(u—,yy) > ®1(yy ,u-),

6) yi > us, ys >wuy = solve two one-dimensional problems
(I)l(u+7y2) — min7 Y2 € [u_,u+] = y;v
@y (y1,uy) — min, y1 € [u_,uy] = vy,

set

(ymin ymzn) _ { (U+7y;)7 (I)l(u—i—ay;_) S ‘1)1(yf7u+)7
Lo ( (g, ) > @1(y,ug),

7)Yy <wu_, ys >uy = solve two one-dimensional problems
(I)l(u—ayQ) — man, Y2 € [u_,u+] = y57
Oy (y1,uy) — min, y1 € [u_,uy] = yf,

set

(y?un ygmn) — { (U_‘__,yg), (I)l(u—ay2:) S (I)l(yivu-l—)’
’ (yl 7u+)7 (I)l(u—7y2 ) Z ¢1(y1 7u+)7

8) yf > u4, Y3 <u_ = solve two one-dimensional problems
Py (uy,y2) — min, Yo € [u_,uy] = vy,
1 (y1,u) = min, y1 € [u—,uy] = yi,

set

(ymin ymzn) — { (u+ay;)a (bl(UJr’y;r) S (I)l(y;auf)’
! s (yl_vu—)v (I)l(u-l-’y;_) Z @1(yf7u—)a

This procedure provides an exact solution of a two-dimensional minimum
problem avoiding the use of iterative algorithms.

Remark 1. The finite-dimensional problem after the second parame-
terization is solved similarly. In this case, the two-dimensional problem
corresponds to the case when m = 0 with the variables zgy, z7.
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4. A maximum norm problem for the terminal state

Consider a norm maximization problem typical in nonconvex optimiza-
tion. After the first parameterization, the problem can be stated as follows:

o(y) = maz, yevY. (4.1)
Here,
1
ply) = {d.y) + 5 (Xy, Xy),

Y={y= 1 ¥Ym): ¥i € [u_,uql], i=1,m}.

Suppose that the matrix X € R™ ™ has maximal rank, i.e. ¢(y) is a
strictly convex function.
Consider the set of corner points of the hypercube Y (2" vertices)

Yi={yeY: yi=u_Vuy, i=1m}.

We will use the following known result: if 4" is a global solution of the
problem(4.1), then y° € Y,.
State the problem on the set of corner points

p(y) — maz, yE€ Y. (4.2)

According to the previous statement, the problems (4.1) and (4.2) are
equaivalent.

The resolution of the problem (4.2) in the simplest case is implemented
by the complete exhaustive search of 2™ corner points and corresponding
values of the function . If this procedure is not admissible in view of
computational costs, then one can apply an exhaustive search of corner
points with a monotone increase of the values of ¢(y). The conditional
gradient method on the set Y, is particulary suitable in this case. We
describe now an iteration of the method.

Let y* € Y. Then,

y* = argmaz(ve(y*),y)

er*

yit = argmaz (7i0(y"), yi), i =T,m.
Yi=u—_Vuy
Hence, for i = 1,m

" u-,  vie(y*) <0,
yi = up,  Vipy*) >0,
u_Vuy, Vipy*) =0.

It is clear that
e, (velh), st —yF) >o0.

Useectus MpKyTCKOro ToCyJapCTBEHHOTO YHUBEPCUTETA.
2020. T. 34. Cepusa «Maremarura». C. 3-17
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If y*+1 £ 4% then the function ¢ is strictly increasing:

(") — o) > (Ve "),y — k).

Let 7;0(y*) = 0 for some index i € {1,...,m}. Then, yf“ =u_Vug,
i.e. one can always guarantee the condition yf“
increasing property: ¢(y*T1) > ¢(y*).

Therefore, the stopping condition of the iterative search is the equality
k+1 — oF which implies that 7;p(y*) # 0, i = 1, m.

We indicate one version for testing a point y* for optimality in the case
when the improvement method stops: y*T! = ¢*. Check if the values of the
function ¢ at the corner points y*7, j = 1, m adjacent to y* have increased
as compared to p(y").

If at some point the function ¢ has increased, then the corresponding
vertex y*7 is selected as the initial approximation for the next iteration
cycle of the conditional gradient method. Otherwise, the vertex y* ia a
local maximum of the problem (4.2).

We note that the adjacent corner point y*7 is obtained from y* by
switching j-th coordinate yf between two values u_, uy : if yf =u_(uy),

=+ yf , which implies the

Y

then y;” = uy(u_).

Remark 2. The maximum norm problem in the framework of second
parametrization with the vector of variables z =
= (20, .., Zm+1) and the objective function

is solved similarly.

5. Illustrative problems

Example 1. Optimal energy control of the harmonic oscillator [3]:
Ty =xg, d2=-x1+u, 71(0)=-1, 12(0) =1;

lu(t)| <1, telo,n];

B(u) = 5 (a(r) + 7B(m).

We give formulas for solving the phase system

t
x1(t,u) = sint — cost + / sin(t — 7)u(r)dr,
0
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t
xo(t,u) = sint + cost + / cos(t — T)u(T)dr.
0

Implement the first parameterization for m = 2, y = (y1,y2), t1 = 3.
After simple calculations we obtain

B(0) = 1, X:<_11 1) d:<(2)>,

O (y) =1+ 2y1 + 9} +v3.

The variables y;, yo in the expression for ®;(y) are separated, i.e. the
problems ®;(y) — z, |y| < 1 are solved elementary.

The first problem ®(y) — min, |y| < 1 has a unique solution y*" =
—1, y5" =0, and ®1(y™") = 0. Hence, the control

Umin(t) =
min{) { 0, te (5]
is optimal for the original problem

®(u) - min, uweV.

The second problem ®;(y) — maz, |y| <1 has two solutions y]"** =
max

=1, yI'* = £1, and ®;(y"™*") = 5. The corresponding controls are
Umaz (t) =1, t € [0,7],

1, telo, 3],
“mam(t):{q te([g ?]].

It is worth noting that the optimal control in the problem ®(u) —
mazr, u€eV
1, telo,2r
t — b b 4 })
qut( ) { _17 le (%Tﬂ-’ﬂ-]’

with the values ®(ugpt) = 3 + 2v2 ~ 5,82 is known.

This control is derived in [2; 8] as a result of a non-trivial numerical
implementation based on the global maximum condition. The controls
Umaz (t) constructed analytically have simple structure and provide a good
approximation to the optimal value of the functional (with the deviation
14%). In this case, the exact optimal control is obtained from the pa-
rameterization procedure for m = 4 by the exhaustive search of 2* corner
points.

Example 2. The extremum norm problem for the terminal state for the
two-stage system

T =x9, @2=u, x1(0)= :c?, x2(0) = acg;

Useectus MpKyTCKOro TOCYJapCTBEHHOTO YHUBEPCUTETA.
2020. T. 34. Cepusa «Maremaruxa». C. 3-17
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lu(t)] <1, te][0,T];
1
®(u) = 5 (@1(T) + 23(T)).

The terminal state of a phase trajectory z(t,u) is given by the formulas

T
z1(T,u) = 29 + 257 + / (T — t)u(t)dt,
0

T
zo(T,u) = 29 +/ u(t)dt.
0

For approximate resolution of the problem ®(u) — min with the nu-
merical data T = 2, ¥ = 2, 2y = —1 we apply both parameterization
procedures.

Implement the first parametrization for m = 2. In this case,

R E)!

21(y) = 2(0) + (d,y) + 5(Xy, Xy).

DO |

The stationary point of the paraboloid ®;(y) is defined from the linear
system
d+XTXy =0,

which takes the form

13y1 + Tya =4, Ty1 +5y2 =4

with the solution yj = —%, y3 = 3.

The point y5 = % violates the constraint |y2| < 1. Hence, in accordance
with the resolution scheme from Section 3 we assume that y; = 1 and solve
the first equation

3
Consequently, the minimum point is
min min
= —— = 1
A0 13 y Y2 )
with the corresponding control
3
; —=, t€]0,1]
miny _ 137 s Ly
ult,y™™) { 1, te(1,2]

and the value of the functional ®;(y™") = k.
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Next, consider the second parametrization in the class of linear controls
when m = 0.
In this case,

z=(20,21), u(l,2)=zo0po(t) +211(t), t€0,2],

eo(t) = %(2 —1), @i(t) = %t.

In the corresponding formula for the functional

Ba(2) = B(0) + (d, ) + 5 (X5, X2)

R -1 . 4 2
= =( 3 3

Therefore, we arrive at the linear system for determining the stationary
point

we have

2620+ 1721 =9, 172 + 1321 = 9.

The solution: z;5 = —1, 2] = 2. The point 2] = 2 violates the constraint
|z1] < 1. Hence, we assume that z;” = 1 and solve the first equation:
+ + 8
2520+ 1727 =9 = z5 = ——.
25
Finally, we obtain the minimum point
Zmin — 7§ Zmin -1
0 25’ ’
with the corresponding control
; 33 8
u(t,z2™") = —t——, te€l0,2
( ) 50 25 0,2]
and the value of the functional ®o(2™") = Z.

Comparing two parametrizations by the values of the functional, we
conclude that the first parametrization is better than the second one:

4 1 4 2
d miny _ Po(Min) — =
() = g < Bz = 2
For the maximum norm problem (®(u) — max, u € V) the optimal
control is known [8]:
uopt(t) = —1, t e [0, 2]

In the framework of the considered parameterizations, it is obtained by
the exhaustive search over four vertices of the square which leads to the
optimal result:

maxr __ maxr __ maxr __ maxr __
yl = y2 = *1, ZO = Zl = —1.

Useectuss MpKyTCKOro TOCYJapCTBEHHOTO YHUBEPCUTETA..
2020. T. 34. Cepusa «Maremarura». C. 3-17
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6. Conclusion

Extremum norm problems for the terminal state of a linear system
are considered over the set of piecewise constant or piecewise linear con-
trols on a given grid of approximation nodes. The corresponding finite-
dimensional minimum problem is convex and is efficiently resolved by stan-
dard quadratic programming algorithms. The specific character of the
nonconvex maximum problem allows to obtain a global solution by means of
finite exhaustive search over the collection of corner points of an admissible
set.
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K pemenwnio 3aa4 Ha 3KCTpEMYM HOPMbI KOHEYHOT'O COCTO-
AHUA JIMHEMHOU CUCTEMBI

B. A. Cpouko!, E. B. Akcenonkuna?

L Hpkymexuti 2ocydapcmeenmnwiti ynusepcumem, Hpxymex, Poccuitickas Dedepa-
YUA
2 Batikaavcruti eocydapemeenmnidi ynusepcumem, Mpxymces, Poccutickas DPedepa-
YUA

Awnnoramusi.  3a1adyM Ha SKCTPEMYM HOPMBI KOHEYHOI'O COCTOSTHUSI JIMHEHHOM Tu-
HAMUYECKON CHCTEMBbI U3YyYalOTCS C IMO3UIANA METOJOB MapaMeTPHU3AINH JOIYCTUMBIX
yIpaBJjieHr#. ATIPOKCUMAINS KYCOYHO-HEITPEPBIBHBIX YIIPABIECHUN TPOBOIUTCS B KJ1ACCe
KYCOYHO-TUHENHBIX DYHKIINI HA PABHOMEPHOM CETKe y3JI0B OTPE3Ka BPEMEHU U 0POpPM-
JISIeTCsT KaK JIMHeWHasT KOMOWHAIUsI CIIeNnaIbHOro Habopa ornmopHbIX dyHKIwmit. [Ipu sTom
WHTEPBaJbHOE OrPpAHUYEHNE Ha YIIPABJIEHNE B UCXOIHON 33ajlade MEPEXOAUT B AHAJIOTUY-
Hble OTPDAHUYEHUST HA TEPEMEHHBIE KOHEYHOMEPHBIX 3a/1a4.

KoneunoMmepHblii BapuaHT 3aJa9¥ HA MUHUMYM HOPMBI JIONyCKaeT 3hHEeKTUBHOE pe-
[IIEHUE C TTOMOIIBIO COBPEMEHHBIX MPOrPaMM BBITYKJIOM onTuMusanuu. JIist cirydast 1ByX
MIEPEMEHHBIX PE/JIAraeTCs AHAJTUTUIECKUN METOJ, PENIeHNs, UCIOIb3YIOIINi OIHOMED-
HYIO 33/1a4y MUHUMHU3aIUU TapabosIbl Ha OTPE3Ke.

JIJ1sT HEBBIMTYKJION 3a/1a9i MAKCUMU3AIMH HOPMbI KOHEYHOMEPHASI BEPCHUST PEIIAETCsI
B 17100 IbHOM CMBICJIE Ha OCHOBE Ilepebopa BepIiwH rurepkyoa. [IpemiaraemMbrii moaxosr,
OTKPBIBAET JIOMOJTHUTEBHBIE BO3MOXKHOCTH TJIODAIBHOIO PEIEHUs] HEBBIMTYKJIbIX 3329
ONTUMAJILHOTO YIIPABJICHUS.

IIpoBoauTcst ampobartust MpeICTaBIEHHON TEXHOJIOTUN PEIeHNsT Ha MILTIOCTPATUBHBIX
3a/1a9ax.

KuroueBbie ciioBa: JMHEHAsI CUCTeMa YIPaBJIEHUs, 33149l HA SKCTPEMYM HOPMBI
KOHEYHOT'O COCTOSIHUS, KyCOYHO-JIMHEHAS AMIPOKCUMAIINS, KOHEIHOMEPHBIE 33/ 1a9N.
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