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Abstract. Layer-finite groups first appeared in the work by S. N. Chernikov (1945).
Almost layer-finite groups are extensions of layer-finite groups by finite groups. The
author develops the direction of characterizing the well studied classes of groups in
other classes of groups with some additional (rather weak) finiteness conditions. In
this paper, almost layer-finite groups are characterized in the class of periodic Shunkov
groups. Shunkov group is a group G in which for any of its finite subgroup K in the
factor group Ng(K)/K any two conjugate elements of prime order generate a finite
subgroup. We study periodic Shunkov groups under the condition that a normalizer of
any finite nontrivial subgroup is almost layer-finite. It is proved that if in such a group
the centralizers of involutions are Chernikov ones, then the group is almost layer-finite.

Keywords: infinite group, finitness condition, Shunkov group, Chernikov group.

1. Introduction

The group is called layer-finite if the set of its elements of any given order
is finite. The class of almost layer-finite groups is wider than the class of
layer-finite groups. Any Chernikov group is almost layer-finite, whereas it is
easy to give examples of Chernikov groups that are not layer-finite. In this
paper almost layer-finite groups are characterized in the class of periodic
Shunkov groups.

Theorem. Let G be a Shunkov periodic group and the centralizer of each
involution in G be a Chernikov one. If the normalizer of any nontrivial
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finite subgroup of the group G is almost layer-finite, then G is an almost
layer-finite group.

The author has previously proved a similar theorem for groups with the
minimality condition for non-almost layer-finite subgroups [15]. Recently,
a number of works have also been devoted to the study of Shunkov groups
[16-18].

2. Proof of the Theorem

Let G be a Shunkov periodic group that is not almost layer-finite. Ad-
ditionally we assume that the centralizers of all involutions in the group G
are Chernikov’s and the normalizer of any nontrivial finite subgroup of the
group G is almost layer-finite.

By S we denote some Sylow 2-subgroup of G, ¢ is the central involu-
tion from S or from the intersection of the center and the complete part
of S if it is infinite (if S is infinite, then it is Chernikov’s by Lemma 1
from [11], by the properties of infinite Chernikov primary groups, in them
the intersection of the complete part with the center is nontrivial), H
is a maximal almost layer-finite subgroup of the group G containing the
infinite centralizer C (i), which is almost layer-finite by assumption. Such
a maximal subgroup exists by Zorn’s lemma and by theorem 1 from [12].
The centralizer C (i) is infinite, since otherwise, by Proposition 7 of [21],
the group G would be locally finite and, by theorem 1 from [12], is almost
layer-finite, that contradicts our assumption about the group G.

By the theorem from [14], we can assume that H is a not strongly
embedded subgroup of G. From here, by Lemma 6 from [9] it immediately
follows that H has an almost regular involution. If S be finite, then we can
choose this involution from S due to Lemma 9 from [10], but if S is infinite,
then by Theorem 2 of [11] it contains infinitely many involutions, among
which by Lemma 8 from [10] there is an almost regular in H involution.
Fix for this involution notation j. We denote by R(H) a layer-finite radical
of H.

Let K be a subgroup of H generated by all involutions with infinite
centralizers in H.

Lemma 1. If H\ R(H) does not contain involutions conjugate with i in
G, then H = Cg(i) and Sylow 2-subgroups in R(H) are locally cyclic or
generalized quaternion groups.

Proof. If S is a finite group, then repeating the reasoning from the beginning
of the proof of the Theorem from [10] we obtain the assertion of the lemma.

Now suppose that S is infinite. By Theorem 2 of [11] S is an extension of
a quasi-cyclic 2-group by a reversing automorphism. Since R is a layer-finite
group, S N R is a quasi-cyclic 2-group. ]
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Lemma 2. At least one of statements is valid: 1) S is a 8th order dihedral
group, and i,j are conjugate in G; 2) H = Cg(i) and Sylow 2-subgroups
from R(H) are locally cyclic or generalized quaternion groups.

Proof. If H\ R(H) does not possess involutions, conjugate with ¢ in G, then
by Lemma 1 H = Cg(i) and the Sylow 2-subgroups from R(H) are locally
cyclic or generalized quaternion groups. The same is true if |[K| = 2.

Let K = (i) x (t). By Lemma 8 from [10], the maximal elementary
Abelian subgroup R in S has an order 4, and since |Cg(i)] = oo, then
t &€ R (since t € C(j))-

Suppose that j = g~ lig and D = HNHY. Let V be a Sylow 2-subgroup
of D and R <V, P,Q are Sylow 2-subgroups from H, HY9, respectively,
and V. = PN Q. Obviously R < Z(V) (since i € Z(V), so we select
j € Z(V9) also, V,V9 are conjugate in D, hence V9 = V" i* £ j and R
is a maximal subgroup in V). Since K < P and ¢t € Cg(j), then V # P,
similarly to V # @. Hence from the normalizer condition in nilpotent
groups Ng(V') does not contained in H. Obviously R <« L = Ng(V).

If there was no element in L that induces an automorphism of 3-th order
in R, then L = Cr(R)(d), where d € P < H and CL(R) < Cg(i) < H.
Therefore, L < H, contrary to what was proved above. So in Ng (V') there
is an element that induces an automorphism of order 3 in R. If V' had an
element of order 4, then it could be chosen in V so that b? = j, and since
|K| = 4,K < H,b € H, then b> = j implies t € K < Cg(j) contrary to
what was proved above. This contradiction means that R =V = Cp(j).

Further, P is a dihedral group or a semidihedral group [2] and K < P.
Therefore, P is a dihedral group of order 8. Then, in view of the conjugacy
of Sylow subgroups in H, the same is valid for S. 0

Remark 1. In view of the structure of a non-Chernikov almost Abelian
almost layer-finite group B we assume that the number p is chosen so that
it does not divide the index |B : L(B)|, where L(B) is a nilpotent radical
of the group B (this index is finite, and the set 7(B) is infinite by Theorem
1.1.6 from [15]). In addition to choosing the number p, we can assume
that it does not belongs to the set Un(Cp(K)), where K runs through all
elementary Abelian subgroups of B having in B finite centralizers (Similar
to the proof of Lemma 11 from [11], it is shown that the set of non-conjugate
elementary Abelian subgroups of almost layer-finite group V with finite
centralizers in V' is finite) in the case of Chernikov group H and in the case
of non-Chernikov H the number p ¢ 7w(Cy(K)) for elementary Abelian
subgroups K of H with finite centralizers in H.

We fix a notation. In the future we will talk about the element a from
B or from H of prime order chosen according to the remark.

Consider groups of the form L, = (a,a®",i), where i € Z(S), s, €
Ca(i), a€ G\ H is a strictly real element with respect to the involution
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i (if we consider the case of the Chernikov group H, then the element
a is taken from the non-Chernikov group B and the choice of its order
is unlimited; if H is a non-Chernikov group, then the element a can be
chosen from subgroup conjugate to H and again to choose its order there
are infinitely many variants).

Such groups as shown by A.N. Izmailov (see, for example, [19]) are finite,
as soon as the groups (a, a®) are finite, and the last groups are finite since
G is a Shunkov group. Denote the set of groups L, by 91. The set 9 is
infinite, otherwise for some sequence of the elements s1, s9, ..., Sp, ... from
Cg(i) a® = a® = ... = a¢® = ... and hence s,57" € Cg(a),n = 1,2,... and
Ca(a) N Cq(i) is infinite, but then, by Lemma 6 from [9], a € H contrary
to the choice of the element a.

Lemma 3. The subgroups of the set M are almost all semisimple.

Proof. Suppose that Sylow 2-subgroups in G are cyclic or generalized qua-
ternion groups. Then the Sylow 2-subgroup of L,, is, by assumption, cyclic
or a generalized quaternion group for any subgroup L, of 91 and according
to the Brauer-Suzuki theorem [3;6] L, = Oo/(Ly,) - Cr, (7). If the element
a does not belong to Oy (Ly), then the element @ = aOq (L) is strictly
real with respect to the involution i = iO/(L,). But the involution
is contained in the center of the factor group L, /O (L,). Contradiction
implies the inclusion of the element a in Oy/(L,,). Obviously the same is true
for the element a®*. Then, in view of generating L, by elements a, a’",1, it
has the structure Oy (L, )A(i), that is, it is solvable by the Feit-Thompson
theorem.

Suppose, that Ly, Lo, ..., Ly, ... is an infinite sequence of different sub-
groups from N, where L,, = (a,a®",i) and L, has a nontrivial elementary
Abelian subgroup V,,, normal in L,, n = 1,2,... We represent V,, as V,, =
Zy, X Fy, where Z, = Cg(i) NV, and if |F,| are odd, then F,, = (h €
Vi | kP = h71h).

If in the set of subgroups of the form V,,, n = 1,2, ..., there is only a finite
set of different, it is obvious without breaking the generality of reasoning,
we can assume that V=V, =V, =... =V, = ...

Consider the maximal almost layer-finite subgroup M in G containing
N¢g(V). By assumption, L, = (a,a®",i) < M. Consider two cases:

1) Cp(7) is infinite. Since M is a maximal almost layer-finite in G
subgroup, then by Lemma 6 from [9] C(i) contained in M. By Lemma 8
from [10], 7 is contained in a finite normal subgroup of M, and therefore,
in a layer-finite radical R(M). The element a®" is a strictly real relative to
¢ and contained in M. From here we get

ia*i = (a*) 7', (a*) "lia® € R(M).

Comparing these relations, we note: i(a**)? € R(M). Then, (a*)? €
R(M) and, taking into account the oddness of the order of the elements
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a®v, finally a®» € R(M). Due to the infinity of the set {a*"}, n = 1,2, ...,
we get contradiction with the definition of a layer-finite group.

2) Cpr(7) is finite. In this case, by Lemma 12 from [11] there is a normal
in M subgroup U of finite index in M each whose element is strictly real
with respect to i.

The element a is also strictly real with respect to ¢. From here following
equality aha™' = ia 'iih~Yiiai = ia~"h~lai = a'ha or ha® = a®h show
that a is permuted with any element of U. So it belongs to a finite normal
subgroup of the group M and belongs to its layer-finite radical R(M).
Similar we show a®* € R(M ), but this cannot be due to the infinity of the
set {a®} and by the definition of layer-finite radical.

Thus, both cases are impossible. Therefore not breaking the generality
of reasoning, we can assume that the subgroups of the form V,,, n = 1,2, ...,
are different. Let Z,, # 1 for any n. Suppose first that the set of primes p
for p-subgroups Z,, is finite.

Without breaking the generality of reasoning, we can assume that all Z,
are p-groups by one prime number p. Due to the properties of almost layer-
finite groups among them only a finite number of subgroups is not conjugate
in C(i). Therefore, without breaking the generality of reasoning it can be
considered that Z = ZI' = ... = Z» = ..., where t, € Cg(i). The set
of {t, | » = 1,2,...} can be both finite, and infinite. However, the set
{Ll | n=1,2,...} is always infinite due to the choice of the pair (a,i).

Let X be a maximal almost layer-finite subgroup in G containing Ng (7).

First, let the orders of the subgroups V,,, n = 1,2, ..., be odd.

If Cx (i) is infinite, then by Lemma 8 from [10] the involution i belongs
to a finite class of conjugate involutions in X. If there are infinitely many
subgroups F», we find various elements f1, fa, ..., fn, ... such, that f,, Yif, =
£ tif. Then from equality f,'fx = ifufy i = fafy * followed f7 = f2,
but f; has odd prime orders. Contradiction.

If Cx (7) is finite, then as above a'", a*»'» € R(X), but there are infinitely
many such different elements of the same order. The contradiction with
layer-finiteness of R(X).

Then, in any case, we can assume, without breaking the generality of
reasoning, that F = F{* = ... = F» = ... and that means V = V]! = ... =
Vin = ... By including Ng(V) in the maximal almost layer-finite subgroup
W of G, we get that i, Lir < W, n=1,2,...

If the involution i belongs to the layer-finite radical R(W') of the group
W, its centralizer in W is infinite and by Lemma 4 from [11], Lemma 6
from [9] W = H and a'" belongs to H together with the element a (¢, taken
from H). If i ¢ R(W), then by Lemmas 8 from [10] and 12 from [11] in W
there is an infinite Abelian normal subgroup of finite index in W, consisting
of strictly real elements with respect to . In this case as above, we obtain
in the layer-finite radical R(W) infinitely many elements a'",a’"'" of the
same order. A contradiction means that if the orders of subgroups of the
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form V,, are odd, then Z,, = 1 for almost all numbers n. But then for these
n subgroups V;,(a)A(i) are Frobenius groups with the complement (7). In
this case, by the properties of Frobenius groups, V,,{(a) are Abelian groups.

Without breaking the generality, we can assume that i, V,, < Ng({a)) =
D, n=1,2,... According to the above, all elements of V,, are strictly real
with respect to i, and by the assumption D is an almost layer-finite group.
Since there are infinitely many subgroups V,, which consist of elements
strictly real with respect to ¢, then there is an infinite subgroup of finite
index in D, which is elementwise permutable with V,,, n = 1,2, ... Then,
subgroups V,, are contained in the layer-finite radical R(D) of the group
D (V,, have finite index centralizers in D), and this cannot be due to its
layer-finiteness, the infinity of the set {V},} and finiteness of the set of prime
divisors of |V, | for all n in the aggregate.

Since Sylow 2-subgroups in G are cyclic or generalized group quater-
nions, then V,, cannot be a 2-group n = 1, 2, .... Because, then in L, there
would be the only involution ¢ centralizing the element a, and we chose it
to be strictly real with respect to 1.

Thus, we have the case: the set of prime numbers p for p-subgroups Z,
is infinite. Then there are infinitely many prime divisors of orders of V,.

All Z,, will be contained in H, and moreover, almost all Z,, are contained
in R(H) since we chose them by different p, and 7(H \ R(H)) is a finite
set. Then in view of the infinite isolation of H the centralizers Cg(Z,,) are
contained in H. Then, almost all F;, are contained in H, and therefore V,,
are contained in R(H). Then using Lemma 4 from [11] and the properties
of layer-finite groups we get the inclusion a € H, which is impossible. If in
this case Z,, # 1 for any n, then again as above we obtain V,, < Ng((a)) =
D < U, where U is a maximal almost layer-finite group containing D,
Vi < Ng((a®)) = Ds < Us, where U is a maximal almost layer-finite
group containing D,. Since V has a normal Abelian subgroup of finite
index consisting of strictly real elements with respect to ¢, then due to the
infinity of w({V,,}) for almost all s U = Us and hence {a°} < R(U) for
the infinite set {a®}. Contradiction. Now, it is only necessary to consider
the case when V,, is a 2-group.

Recall that we assume that the lemma is false and Lq, Lo, ..., Ly, ... is
an infinite sequence of subgroups from 9 and L,, has nontrivial elementary
Abelian subgroup V,,, normal in L,, n = 1,2,.... We represent V,, as
Vi = Zp x Fy, where Z, = Cg(i) N V,,. Above it is shown that without
breaking the generality of reasoning it can be considered that Z = Z{l =
78 = ... = Z!" = ... for some elements t,, € Cg(i).

Let Vi, be a 2-group. We show that V,, does not contain involutions
with infinite centralizers in H. Indeed, if j € V;, and Cy(j) is infinite, then
by Lemma 6 from [9] Cq(j) < H and |Ng(V,,) : Ca(j) N Na(V,)| < oo
implies Ng(V,,) < H together with L,, but it is impossible. In this way,
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V,, contains only almost regular involutions in H, and by theorem from [§]
and Lemma 6 from [9] V,, N H is a cyclic group, that is, V,, N H = (j)).

By Lemma 8 from [10], we have |V,| < 4. If |V,| = 2, then V,, =
Zn, mn=1,2 ..., and this case has already been considered above and we
proved its impossibility. So |V,| = 4 and Vi» = (j) x (k,), where k, is
an involution for suitable elements t,. As we have shown, the set {k,} is
infinite. Hence, we get the infinity of the set {ik,}. From the structure
of the group V,A(i) we conclude that the order of the element ik, may be
equal to only 4 (it cannot be equal to 2 because of Lemma 8 from [10]).

If 4 is an almost regular involution in X, then by Lemma 12 from [11]
in X there is a normal subgroup L; of finite index on which i acts strictly
real. By Lemma 8 from [10] almost all involutions ¢,, are almost regular in
X, then we can assume without breaking the generality of reasoning that
they are all almost regular in X. Again, by Lemma 12 from [11], using
the conjugacy of ¢, in X (see Lemma 10 from [11]), we find the normal
subgroup Lg of finite index in X on which all ¢, act strictly real. The
intersection L3 = L1 N L9 also normal in X and has finite index in it and
centralizer of Lz contain elements it,. But in the almost layer-finite group
X this situation is impossible (all elements it, have the same order 4)
since this contradicts to Lemma 10 from [11] and to theorem on the power
of classes of conjugate elements. If ¢ has an infinite centralizer in X, then
using Lemma 4 from [11] we get the inclusion X C H and, therefore, C(j)
is infinite, this is contrary to the choice of j. ]

Let L be a semisimple group, that is, does not have a soluble normal
subgroup. Following [19] we denote by F(L) the socle of L, i.e. normal
subgroup of the highest order of L, which is direct product of simple groups.

Lemma 4. Subgroups from the set N have a socle, isomorphic to PSL(2,q),
where ¢ > 3 s odd.

The statement of the lemma is proved in view of Lemma 3 in exactly
the same way as the Theorem in [13].

Lemma 5. Set 2 = {L € M | all involutions of H N L are contained in
R(H)} is finite.

Proof. Suppose that 2 is infinite and Ly, Lo, ..., Ly, ... is an infinite sequence
of different semisimple subgroups of A. Then H, = L, N H is a strongly
embedded subgroup in L, for any n. (If H, were not strongly embedded,
i.e. HnﬂH,’; would contain involutions for b € L, \ H,, then in HNH® would
contain the involution k from R(H) the first, since 2 so defined, secondly,
k is the image of an involution from R(H) in H®, hence k € R(H’), and
therefore H = H® and L,, < H, but it is impossible.)

Let H,, be some Sylow 2-subgroup @, and i € Z(Q,). If S were not a
dihedral group of order 8, then by Lemma 2 @Q),, would be a cyclic group or
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generalized quaternion group. It is not difficult to see from the infinite iso-
lation of H and from the properties of subgroups from 2 that the subgroup
@y is a Sylow group in L,.

Then, repeating the reasoning from the beginning of the proof of the
lemma when considering the case when Sylow 2-subgroups in G are cyclic or
generalized groups of quaternions, replacing the conditions imposed on the
Sylow 2-subgroups of the group G on the condition for Sylow 2-subgroups
from L,,, we get the impossibility of this situation.

Consequently S is a dihedral group of order 8 and by Lemma 8 from [10]
Q) is an elementary Abelian group of order 4, moreover @, < H, and
Qr=Qa=..=Q,=...

By Suzuki theorem [24] L,, = (a,Q,) are isomorphic to SL(2,Q), over
the field Q of characteristics 2, but this contradicts Lemma 4. O

Lemma 6. Every involution in a simple non-Abelian subgroup U of G is
contained in a mazximal elementary Abelian subgroup of order 4 of U.

Proof. Let U be a simple non-Abelian group. Then, by the Brauer-Suzuki
theorem [3;6], any of its involutions is contained in the elementary Abelian
subgroup of the order not less than four, but by Lemma 8 from [10] the
order of this elementary Abelian subgroup cannot be greater than four. [

Lemma 7. Orders of factor groups L/F (L), L € R, limited in aggregate.

Proof. Suppose that the lemma is false. In this case there is a sequence
Ly, Lo, ..., Ly, ... for which |L,/F(Ly)| grows with the number n.

Let S, be a Sylow 2-subgroup of L, and i € S,. By Lemma 2.15
from [19] @, = S, N F(L,) is a Sylow 2-subgroup in F(L,) and L, =
Np, (Qn)F(Ly), n=1,2, .. Because L,, = (a,a®,1), where s, € Cq(i),
iai = a~', then i &€ F(L,). (If i € F(L,), then a ¢ F(L,) otherwise the
order of the group L, /F(L;) did not grow. At the same time, from the
normality of F(L,) in Ly, follows a=Yia = a=2i € F(L,), but a=2 & F(Ly),
since @ is an element of odd order and from a=2 € F(L,) would get a €
F(Ly), but it is impossible.)

By Lemma 8 from [10] the lower layer R,, of Z(Q,,) is a subgroup of order
< 4. If |R,| = 4, then by Lemma 6 all involutions of @,, are contained in
R, < N, (Qr). And since the orders of the factor groups Ny, (Qr) grows
by virtue of the isomorphism theorem together with the number n, then S,
is a dihedral group of order 8 and @, = R,, n > ¢ for some number q.
The subgroup Np(r,)(Ry) is strongly embedded in F'(Ly) and according
to Suzuki theorem [24] F(L,,) is isomorphic to SL(2,Q), where () is a field
of characteristic 2, n > ¢. But this contradicts Lemma 4.

If |R,| = 2, then by Lemma 4 the Sylow 2-subgroup of F(L,) is a
dihedral group of order at least eight. If the orders of these dihedral groups
are not limited in aggregate, then on the properties of linear groups the
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number of prime divisors in the set m(Cg(k)) for some involution £ is
unlimited. But then Cg(k) is not Chernikov and we get a contradiction
with the condition of the theorem. So, the orders of the Sylow 2-subgroups
of F(L,) are bounded in aggregate. From here according to Brouwer-Feit
Theorem [1], the orders F'(Ly,) are also limited in aggregate. But due to the
semisimplicity of Ly, this implies that the index |L,, : F'(Ly)| is bounded.
Thus, we obtain the boundedness of orders of factor groups of the
form L, /F(L,), n = 1,2,... Therefore, the orders of the factor groups
L/F(L), L € 9N, are bounded in aggregate. O

Let, for the involution t R, = (t) x (k) be a Klein group of orger 4 and
A; be a maximal almost layer-finite subgroup of the group G containing
Ca(t). Obviously R; < A; and t belongs to the layer-finite radical R(A;)
of the group A;. If C4,(k) is finite, then R; is called highlighted. If the
involution ¢ is unique in R(A;), then t € Cy,(R(Ay)).

Lemma 8. The highlighted subgroup is a Chernikov one.

Proof. Let t be an involution, A; be a maximal almost layer-finite sub-
group of G containing Cg(t) (recall that, by the condition of the theorem,
involutions centralizers in G are Chernikov). As shown earlier, C(t) is an
infinite group, then A; has a nontrivial normal in A; subgroup K generated
by all involutions with infinite centralizers in A;. Since K is a finite group,
the index |Ng4,(K) : Cya,(K)| is finite. By the inclusion Cy,(t) < Cy,(K)
we see that the index |Nga,(K) : Cya,(t) N Ny, (K)| is finite. Then A, is a
Chernikov group as a finite extension of the Chernikov group (see Lemma
2.3 from [19]). O

Let L1, Lo, ..., Ly, ... be an infinite sequence of different subgroups from
N (semisimple groups) and L, N R(H) by Lemma 4 have almost regular
involution j, of C (7).

There is an infinite set of elements {ci, cg, ..., ¢y, ...} in R(H) such that
{My, My, ...M,, ...}, where M,, = L n = 1,2,... consists of various
subgroups and in NM,, contains the same highlighted subgroup R;.

Lemma 9. If R; is a highlighted subgroup of V.= NM,, n = 1,2, ...,
then 1) the set By = {C,(z) | x € R\ 1, n=1,2,...} is finite; 2) the
orders of subgroups of the set M are bounded in aggregate.

Proof. First we prove 1). Let {Ch,(t) | » = 1,2,...} be infinite. Let us
prove that in this case the orders of the subgroups M, N R(A;) are not
bounded in aggregate.

Suppose that the orders of the subgroups R(A;) N M,, are bounded in
aggregate. From here and from the inclusion () < Cy,(R(A¢)) obviously
follows boundedness in aggregate of orders |Cyy, (t)|,n = 1,2, ..., and since
Ry < Cq(t) < Ay and Ry is a highlighted subgroup, then some involution
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u of Ry induces in a normal subgroup B; of finite index in R(A;) auto-
morphism, which translates any element from B; to the inverse (Lemma
12 from [11]). We represent A; = B;Q, where @ is a finite subgroup
from A; and R; < ). From here due to the boundedness of the orders
|Chr, (£)],m = 1,2, ..., infinity of {Ch, () | n = 1,2, ...}, layer-finiteness of
R(A:) and the finiteness of the index |R(A;) : By implies the existence
of such the number ¢ such that Cjy, (¢) has an element d representable as
d = br, where b € By, r € @, |b49l| > |Cyy, ()] and b* = b~ L.

Based on such a representation of the element d, we write dd~! =
b=lrer=1p=1. Obviously, rUr=! € Ca,(B;) and b~! € R(A),7 € Q,u €
R, < @, and therefore d“d=! = b=2r¥r—1 ¢ Ch,(t) and rr~t e Qn
Ca,(By). Then (d*d1)I@l = v=2I9 € Cyy, (t), but it is impossible.

Hence |R(A:) N M,| are not limited in aggregate. Choose in R(A¢)
Abelian normal subgroup C} of finite index, moreover, ¢ € C; (such exists
by Lemma 12 from [11]). It is obvious that |Cy N M,,| are also not limited
in aggregate.

Since A; by Lemma 8 is a Chernikov group, then C} satisfies the minimal
condition and {M,,} has an infinite subset €1, and A; has such a subgroup
X, that for any subgroup L € €; X; coincides with the subgroup from
Cy N L generated by all elements of prime order from C; N L. For the same
reasons €; has such an infinite subset €5, and C} such a subgroup Xo > X7,
that for any subgroup L € €5 the factor group Xo/X; coincides with the
subgroup generated by all elements of prime orders from (C;NL)/X;. Thus
we build a chain €; > €5 > ... and accordingly a chain X; < Xy < ...

Let k be an involution from R; \ (t). By the condition Ay # A; and t is
an almost regular in Ay. Then, by Lemma 12 from [11], ¢ induces in some
normal subgroup C} of finite index from A an automorphism, translates
all elements into inverse (we can assume that Cj is chosen from R(Ay)).

Let’s assume that the set {Cp(k) | L € €,} is infinite for any n. Then
the orders of the subgroups Ci N L as we showed in the case of ¢t and By not
limited in aggregate. Since Ay is Chernikov there is a finite subgroup in C}
of odd order W # 1, which starting with some number ¢ is contained in a
some subgroup from €, for any n. Obviously the subgroup 7' = (X, Ry, W)
is locally finite. In particular, we have tct = ¢! for any element ¢ € W <
C. Since (X, R;) < A¢NT, then by Lemma 4 from [11] 7' < A; and, hence
W < A;. Since any element ¢ from W has an odd order and is strictly real
with respect to ¢, then taking into account the normality of the layer-finite
radical R(A;) of the group A; and the uniqueness of the involution ¢ in
R(A;) we get for any element a from R(A;): ¢ tac =t~ lctac =t Lcac™'t
or ¢ 2ac = a, which implies (the order of the element c is odd) that ¢ €
Cc(R(At)) and it means ¢ € R(A;). Then W < R(A:) N R(Aj) and by
Lemma 4 from [11] we get A; = Ai. The contradiction means that for an
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involution k starting from some number ¢ set {Cp(k) | L € €,,n > ¢} is
finite.

Let Ey be some subgroup from €,, E2 be some subgroup from €, etc.
such that X, < E,. By the above, {Cg,(z) | z € R\ (t),n =1,2,...} is
finite. It can be considered without breaking the generality of reasoning,
that E,, = My, ie. B ={Cuy,(z) |z € R\ (t)} is finite, moreover Ry < M,
by assumption, X; < M, by the construction of the chain {M,}.

Let F(M,) be a socle of M,. By Lemma 12 all F(M,,) contain invo-
lutions. In addition, F'(M,) N R; # 1. If not, and if there is a g such
that F(My) N Ry = 1, then due to the properties of primary groups and
normality of F'(M,) in Mg, the subgroup F(M,) is nontrivial intersects
with the center of a Sylow 2-subgroup that contains Ry, in particular, there
is an involution z centralizing R;. But then R; < Ci(z), r ¢ R; means
that in C(z) there is an elementary Abelian subgroup of order 8, one of
the involutions of which is almost regular in a maximal almost layer-finite
subgroup in G, containing C¢(z) (R is chosen so), and this contradicts to
Lemma 8 from [10].

Thus, F(M,) N Ry # 1. Since F(M,) is simple and the orders of
the factor groups M, /F(M,) are limited in aggregate (Lemmas 4, 7),
then we can assume that X,, < F(M,) and |F(M,)| grow with n. If
the set {F(M,,) | M € M,t ¢ F(M)} is infinite, then F(M)N R, # 1
implies unboundedness in the aggregate of orders of subgroups of the set
B, ={F(M)|MecN, t¢ZF(M), keF(M)}, wherek isan involution
from R; \ (t). And since B is a finite set, then |Cpyp (k)| for F'(M) € By
are limited in aggregate. But then |F(M)| are also limited in aggregate
by Brouwer-Fowler Theorem [2] and by Lemma 4. Contradiction. There-
fore, without breaking the generality of reasoning, we can assume that
t € F(M,), and the rest involutions of R; are not contained in F(M,,).

Let @, be a k-invariant Sylow 2-subgroup of F'(M,,) containing ¢ (such
can be found due to conjugacy of primary Sylow subgroups in M, and
Frattini lemma [4]). In the center of @, A(k) obviously there is an involution.
It cannot be different from ¢, since this would contradict to Lemma 8 from
[10]. Consequently, t € Z(Qy). At the same time, in view of Lemma 6, ¢
contains in P, = (t) X (v,) < Qpn, where v, is an involution, n = 1,2, .... Ifin
{P,} exists infinitely many non-highlighted subgroups, it would be possible
to consider that P, is non-highlighted for any n. Then, by Lemma 2, the
Sylow 2-subgroups from M, are a dihedral groups of order 8 and Q,, = P,
moreover, the subgroups Np(y,)(FP) are strongly embedded respectively
in F(M,). Hence by Suzuki theorem [24] we obtain a contradiction with
Lemma 4. We assume that P, is a highlighted subgroup for any n. Since
v, € Cg(t) < Ay, then by Lemma 10 from [11] we will assume that v =
vll’l = .= = .. where b, € C; < Cg(t). However, X,, < C}, which
means X,, < MY = U,. In view of the choice of {M,,} the orders of these
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subgroups grow infinitely. Therefore {U,} consists of various subgroups
and their intersection contains a highlighted subgroup P = (v) x (t).

Repeat for P and for {U,} the same reasoning with respect to R; and
to the set 91. Based on this reasoning, let us prove the existence in {U,,} of
an infinite subset R such that the set {Cy(v) | U € K} is finite. And since
v € F(U), and F(U) is a simple group by Lemma 4, then, by Brouwer-
Fowler Theorem [2] and Lemma 7, the orders of the subgroups from R are
bounded in aggregate. But then, given the equalities |U,| = |M,|, n =
1,2, ..., we obtain a contradiction with unboundedness in aggregate of orders
of subgroups from the set {M,}. This contradiction means that the set
{Cwr, (z) | 2 € R\ {1}, m=1,2,...} is finite and assertion 1 is proved.

Let us prove 2. Let the orders of subgroups from 9%, be unbounded in
aggregate. As elements of the set £ we choose subgroups of 91 for whose
orders the equality holds |M;| < |Ma| < ... and the intersection NM,, has
the highlighted subgroup R = (i) x (j).

By 19B; ={Ch,(z) | z € Re\ {1}, n=1,2,...}is finite and, as shown
above, Fpy NR # 1, n =1,2,... But then without breaking the generality
of reasoning, we will assume that the same involution k from R belongs to
all M,,. Since ®B; is a finite set, then by Brouwer-Fowler Theorem [2] and
Lemma 7 imply limitation of orders of subgroups from 91 contrary to the
choice of the set £ from 91. Thus 2 is proved. O

Proof of the theorem. We first prove that the set 91 has so infinite subset
£ such that V. = NM, M € £ is a strongly embedded subgroup in
each subgroup of £. Let 21 be an arbitrary infinite subset of 91, V} =
NB1, Ty = N, (V1), By € A1, Q1 be a Sylow 2-subgroup of Vi containing
R = (i) x (j). By Lemma 8 from [10] the intersection R N Z(Q1) has
the involution ¢;. Let A; be a maximal almost layer-finite subgroup of G
containing Ci(t1), Y1 = A1 N By, By € A1, P = (t1) X (21) is a subgroup
of order 4 from Q1. Since R is a highlighted subgroup by Lemma 9 the set

{CBl(.%') ‘ T € R\ 1, Bje€ 2[1} (2.1)

is finite. Based on Lemma 12 from [11] and Lemma 2 it is easy to get an idea
to represent the subgroup A; in the following form A; = Cy, (t1)Ca, (k),
where k is an involution from R\ (¢1). From here and from finiteness of
the set 2.1 implies the finiteness of the set

{Y1 | By € 9[1}. (2.2)

If P, is a non-highlighted subgroup, then by Lemma 2 Cp, <Y1, =z €
P\ 1. If P, is a highlighted subgroup, then, by Lemma 9, the set {Cp, (x) |
x € Pp\1, Bj € 2} is finite. From here and from the finiteness of the
set 2.2 it follows finiteness of a set

{C’Bl(x) ‘ ze P \ 1, B;€ Qll} (23)
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for any subgroup of the form P; from @;. On the Frattini lemma 77 =
N7, (Q1)V1, and since R < @1, then by Lemma 5 N¢(Q1) is finite. Hence
the set is finite:

{NB1 (Ql)’TBl ‘ B € Qll} (2.4)

If at least one of the subgroups belonging to finite sets 2.1-2.4 not
contained in any subgroup of some infinite subset of 2(;, then obviously
in 2y exists such an infinite subset of 2y that Vo = NBy # Vi, By €
912, ‘/l < ‘/2

Let Ty = Np,(Va), Bz € 23, Q2 be a Sylow 2-subgroup of V5 and
Q1 < Q2. According to Lemma 8 from [10] the intersection of R N Z(Q2)
has an involution t5. Let also As be a maximal almost layer-finite subgroup
of G, containing C(t2), Yo = AsN By, By €™Us, Py = (t2)x (22)isa
subgroup of order 4 from (3. Using the same arguments used in justifying
of the finiteness of sets 2.1-2.4, we prove the finiteness of the sets

{Cp,(z) |z € R\1, B;e€As} (2.5)
{Y2 | By € As} (2.6)

{Cp,(2) |z € P2\1, By€eA} (2.7)
{NB,(Q2),Tp, | B2 € As} (2.8)

Regarding the set of 2y and subsets 2.5-2.8 reason like the previous case,
etc. As a result, we get in GG a strictly increasing chain of subgroups V; <
Vo < ... <V, < ... and, accordingly, the chain Q; < Q2 < ... < Q, < ...

Since, by Lemma 9, the orders of subgroups from 91 are bounded in
aggregate then the specified chains will terminate at the finite number
r, that is, the set 2. is the last member of a strictly decreasing series
A1 DAy D ... DA, has such an infinite subset of £, that:

HV=nM, MeLand Ny(V)=V, MEeg;

2) if @ is a Sylow 2-subgroup of V, then Ny (Q) = Ny (Q), M € £,

3) if P is a Klein subgroup of orger 4 from V', in particular, P = R, then
Cy(z)=Cny(z), xze€P\{l}, MekL

Now, based on assertions 1-3, we prove that V is a strongly embedded
subgroup in any subgroup of £. Let E be some subgroup from £. By
assertion 1 Ng(V) =V and assume that for some element g of £\ V the
intersection of V' NVY has an involution z. Let @ be a Sylow 2-subgroup of
V9 and z € . As Chernikov p-group is Z A-group and satisfies normalizer
condition [7] by assertion 3 it is easy to prove the inclusion Q < V N V9.
Since by the Sylow’s theorem [5] Sylow 2-subgroups are conjugate in V,
then in V there exists the element h such that Q" = @, and, therefore,
hg € Ng(Q). But on to assertion 2 hg € Ng(Q) = Ny(Q) <V andgeV
contrary to the assumption g € E'\ V. Therefore, V is a strongly embedded
subgroup in any subgroup of £ and existence of the sets £ is proved.

Let the set £ consist of subgroups Ci,Cs,...,Cy, ... such that C,, =
{al™ a™ ), tn,mn € Cg(i).
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By the definition of the set M, we can assume that all a'*, ..., a'", ... are

different. As in the group G with its strongly embedded subgroup H and
some involution 4 from H with the condition (i,i9), ¢ € G\ H is finite
any element g of G\ H has a representation g = hj, where h € H, jisan
involution of G \ H [23], at» = hyi,, where h,, €V, i,, n=1,2,... are
involutions from C,\V, D, = VNV is a group of odd order. Since V is a
finite group, then we assume that h=hy =ho=..., D=D; =Dy =....

Consider the group U = Ng(D). As proven above, i,, € U and the set
{in, | n =1,2,...} is infinite. By the conditions of the theorem the group U is
almost layer-finite. Involutions i1, 2, ..., in, ... in view of Lemma 8 from [10]
can be considered not belonging to R(U). Further, R(U) has a finite index
in U, and the set {i,, | n =1,2,...} is infinite, then we can assume that all
this set is selected from one adjacent class R(U)i;. Then from i1 = iy,
follows @14, = rpini, = r, € R(U). This means in view of the layer-
finiteness of R(U) unboundedness in aggregate of the orders of the elements
11tn. Then the orders of the elements al_tla%” = i1h~1hi, = i1, is also
unlimited in aggregate. Hence the orders of the groups (a'!, a'",i) is also
unbounded in aggregate contrary Lemma 9. The obtained contradiction
proves the theorem. The theorem is proved.

3. Conclusion

The main result of the work involves characterizing almost layer-finite
groups in the class of periodic Shunkov groups. It is proved that if in
Shunkov periodic group the centralizer of every involution is a Chernikov
one and the normalizer of any nontrivial finite subgroup of the group is
almost layer-finite, then the group is an almost layer-finite group.
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O nepuoaumveckux rpynnax IIlyHKoBa ¢ YepHUKOBCKUM
IEHTPAJIN3aTOPOM NHBOJIIOIT

B. . Cenammos!»?
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L Cubupcruti dedepanvront yrusepcumem, Kpacroapek, Poccutickan Pedepayus;
2 Huemumym evuciumensviozo modeauposanus CO PAH, Kpacrospesk, Poccuti-
ckan Dedepavus

Awnnorarusi. CJI0iiHO KOHEUHbBIE I'PYIIIBI BIIEPBbIE MOSIBUJINCH O€3 HA3BAHUSI B CTATHE
C.H. Yepuukona (1945). IToutn cI0#HO KOHEYHDBIE IPYNINBI SABJIAIOTCA PACIIMPEHUSIMA
CJIOTHO KOHEYHBIX T'PYIII MPU MOMOIIY KOHEUHBIX IpyIil. Kjacc mouru cjoiHO KOHEUYHBIX
TPYII IIUpPe, 9eM KJIACC CJIOWHO KOHEYHBIX TPYII, OH BKJIIOYAET B cebsi BCe T'PYIIIbI
YepHUKOBa, B TO BpeMsi KaK JIETKO MPUBECTU MPUMEPHI IPynn UepHUKOBa, KOTOPbIE HE
SIBJISIIOTCSI CJIOWHO KOHEYHO. ABTOD Pa3BUBAET HAIIPABJIEHUE XaPaKTEPU3AIUU U3BECTHBIX
XOPOITIO M3YYEHHBIX KJACCOB I'PYII B JAPYTUX KJIACCAX T'PYII C HEKOTOPBIMU JOTIOJIHU-
TeJIbHBIME (JOBOJILHO CJIA0bIME) YCJIOBUSMU KOHEYHOCTH. B JanHoi paboTe ouTH CI0iHo
KOHEYHBIe TPYIIBI TOIYyYal0T XapaKTEPU3AIUIO B Kitacce mepuoandeckux rpymm Llyako-
Ba. I'pynna [IlyrnkoBa — st0 rpynmna (G, B KOTOpPOIi Jij1st 110001 ee KOHEYHON HoArpy bl K
B dakrop-rpynne Ng(K)/K mobble 1Ba CONPIKEHHBIX JEMEHTa IIPOCTOrO IOPSIKA
MMOPOK/IAIOT KOHEUYHYIO moArpytmmy. Mbl usydyaem nepuojmdeckue rpymnmbl [IlyHkoBa ¢
YCJIOBHEM: HOPMAJIM3ATOP 000N KOHEYHON HEeAWHHUYIHOW MOATPYIIBI MOYTH CJIOHHO-
KoHedeH. J[oKa3aHO, YTO €C/IU B TAKOU IPYIITe EHTPATU3ATOPAMI WHBOJIIOIINIA SIBJISTFOTCST
YEePHUKOBCKUMH, TO IPYIIIA IIOYTH CJIOIHO KOHEYHA.

KuaroueBsbie ciioBa: GeckoHedHas TpyIa, yCaoBue Koneuynoctu, rpymma Illyuakosa,
rpynna YepHukosa.
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