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Abstract. Layer-finite groups first appeared in the work by S. N. Chernikov (1945).
Almost layer-finite groups are extensions of layer-finite groups by finite groups. The
author develops the direction of characterizing the well studied classes of groups in
other classes of groups with some additional (rather weak) finiteness conditions. In
this paper, almost layer-finite groups are characterized in the class of periodic Shunkov
groups. Shunkov group is a group G in which for any of its finite subgroup K in the
factor group NG(K)/K any two conjugate elements of prime order generate a finite
subgroup. We study periodic Shunkov groups under the condition that a normalizer of
any finite nontrivial subgroup is almost layer-finite. It is proved that if in such a group
the centralizers of involutions are Chernikov ones, then the group is almost layer-finite.
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1. Introduction

The group is called layer-finite if the set of its elements of any given order
is finite. The class of almost layer-finite groups is wider than the class of
layer-finite groups. Any Chernikov group is almost layer-finite, whereas it is
easy to give examples of Chernikov groups that are not layer-finite. In this
paper almost layer-finite groups are characterized in the class of periodic
Shunkov groups.

Theorem. Let G be a Shunkov periodic group and the centralizer of each
involution in G be a Chernikov one. If the normalizer of any nontrivial
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finite subgroup of the group G is almost layer-finite, then G is an almost
layer-finite group.

The author has previously proved a similar theorem for groups with the
minimality condition for non-almost layer-finite subgroups [15]. Recently,
a number of works have also been devoted to the study of Shunkov groups
[16–18].

2. Proof of the Theorem

Let G be a Shunkov periodic group that is not almost layer-finite. Ad-
ditionally we assume that the centralizers of all involutions in the group G
are Chernikov’s and the normalizer of any nontrivial finite subgroup of the
group G is almost layer-finite.

By S we denote some Sylow 2-subgroup of G, i is the central involu-
tion from S or from the intersection of the center and the complete part
of S if it is infinite (if S is infinite, then it is Chernikov’s by Lemma 1
from [11], by the properties of infinite Chernikov primary groups, in them
the intersection of the complete part with the center is nontrivial), H
is a maximal almost layer-finite subgroup of the group G containing the
infinite centralizer CG(i), which is almost layer-finite by assumption. Such
a maximal subgroup exists by Zorn’s lemma and by theorem 1 from [12].
The centralizer CG(i) is infinite, since otherwise, by Proposition 7 of [21],
the group G would be locally finite and, by theorem 1 from [12], is almost
layer-finite, that contradicts our assumption about the group G.

By the theorem from [14], we can assume that H is a not strongly
embedded subgroup of G. From here, by Lemma 6 from [9] it immediately
follows that H has an almost regular involution. If S be finite, then we can
choose this involution from S due to Lemma 9 from [10], but if S is infinite,
then by Theorem 2 of [11] it contains infinitely many involutions, among
which by Lemma 8 from [10] there is an almost regular in H involution.
Fix for this involution notation j. We denote by R(H) a layer-finite radical
of H.

Let K be a subgroup of H generated by all involutions with infinite
centralizers in H.

Lemma 1. If H \ R(H) does not contain involutions conjugate with i in
G, then H = CG(i) and Sylow 2-subgroups in R(H) are locally cyclic or
generalized quaternion groups.

Proof. If S is a finite group, then repeating the reasoning from the beginning
of the proof of the Theorem from [10] we obtain the assertion of the lemma.

Now suppose that S is infinite. By Theorem 2 of [11] S is an extension of
a quasi-cyclic 2-group by a reversing automorphism. Since R is a layer-finite
group, S ∩R is a quasi-cyclic 2-group.
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Lemma 2. At least one of statements is valid: 1) S is a 8th order dihedral
group, and i, j are conjugate in G; 2) H = CG(i) and Sylow 2-subgroups
from R(H) are locally cyclic or generalized quaternion groups.

Proof. If H \R(H) does not possess involutions, conjugate with i in G, then
by Lemma 1 H = CG(i) and the Sylow 2-subgroups from R(H) are locally
cyclic or generalized quaternion groups. The same is true if |K| = 2.

Let K = 〈i〉 × 〈t〉. By Lemma 8 from [10], the maximal elementary
Abelian subgroup R in S has an order 4, and since |CG(i)| = ∞, then
t 6∈ R (since t 6∈ CG(j)).

Suppose that j = g−1ig and D = H ∩Hg. Let V be a Sylow 2-subgroup
of D and R ≤ V, P,Q are Sylow 2-subgroups from H,Hg, respectively,
and V = P ∩ Q. Obviously R ≤ Z(V ) (since i ∈ Z(V ), so we select
j ∈ Z(V g) also, V, V g are conjugate in D, hence V g = V h, ih 6= j and R
is a maximal subgroup in V ). Since K < P and t 6∈ CG(j), then V 6= P ,
similarly to V 6= Q. Hence from the normalizer condition in nilpotent
groups NG(V ) does not contained in H. Obviously R� L = NG(V ).

If there was no element in L that induces an automorphism of 3-th order
in R, then L = CL(R)(d), where d ∈ P < H and CL(R) < CG(i) ≤ H.
Therefore, L < H, contrary to what was proved above. So in NG(V ) there
is an element that induces an automorphism of order 3 in R. If V had an
element of order 4, then it could be chosen in V so that b2 = j, and since
|K| = 4,K � H, b ∈ H, then b2 = j implies t ∈ K < CG(j) contrary to
what was proved above. This contradiction means that R = V = CP (j).

Further, P is a dihedral group or a semidihedral group [2] and K � P .
Therefore, P is a dihedral group of order 8. Then, in view of the conjugacy
of Sylow subgroups in H, the same is valid for S.

Remark 1. In view of the structure of a non-Chernikov almost Abelian
almost layer-finite group B we assume that the number p is chosen so that
it does not divide the index |B : L(B)|, where L(B) is a nilpotent radical
of the group B (this index is finite, and the set π(B) is infinite by Theorem
1.1.6 from [15]). In addition to choosing the number p, we can assume
that it does not belongs to the set ∪π(CB(K)), where K runs through all
elementary Abelian subgroups of B having in B finite centralizers (Similar
to the proof of Lemma 11 from [11], it is shown that the set of non-conjugate
elementary Abelian subgroups of almost layer-finite group V with finite
centralizers in V is finite) in the case of Chernikov group H and in the case
of non-Chernikov H the number p 6∈ π(CH(K)) for elementary Abelian
subgroups K of H with finite centralizers in H.

We fix a notation. In the future we will talk about the element a from
B or from H of prime order chosen according to the remark.

Consider groups of the form Ln = 〈a, asn , i〉, where i ∈ Z(S), sn ∈
CG(i), a ∈ G \H is a strictly real element with respect to the involution
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i (if we consider the case of the Chernikov group H, then the element
a is taken from the non-Chernikov group B and the choice of its order
is unlimited; if H is a non-Chernikov group, then the element a can be
chosen from subgroup conjugate to H and again to choose its order there
are infinitely many variants).

Such groups as shown by A.N. Izmailov (see, for example, [19]) are finite,
as soon as the groups 〈a, asn〉 are finite, and the last groups are finite since
G is a Shunkov group. Denote the set of groups Ln by N. The set N is
infinite, otherwise for some sequence of the elements s1, s2, ..., sn, ... from
CG(i) as1 = as2 = ... = asn = ... and hence sns

−1
1 ∈ CG(a), n = 1, 2, ... and

CG(a) ∩ CG(i) is infinite, but then, by Lemma 6 from [9], a ∈ H contrary
to the choice of the element a.

Lemma 3. The subgroups of the set N are almost all semisimple.

Proof. Suppose that Sylow 2-subgroups in G are cyclic or generalized qua-
ternion groups. Then the Sylow 2-subgroup of Ln is, by assumption, cyclic
or a generalized quaternion group for any subgroup Ln of N and according
to the Brauer-Suzuki theorem [3; 6] Ln = O2′(Ln) · CLn(i). If the element
a does not belong to O2′(Ln), then the element a = aO2′(Ln) is strictly
real with respect to the involution i = iO2′(Ln). But the involution i
is contained in the center of the factor group Ln/O2′(Ln). Contradiction
implies the inclusion of the element a in O2′(Ln). Obviously the same is true
for the element asn . Then, in view of generating Ln by elements a, asn , i, it
has the structure O2′(Ln)λ〈i〉, that is, it is solvable by the Feit-Thompson
theorem.

Suppose, that L1, L2, ..., Ln, ... is an infinite sequence of different sub-
groups from N, where Ln = 〈a, asn , i〉 and Ln has a nontrivial elementary
Abelian subgroup Vn, normal in Ln, n = 1, 2, ... We represent Vn as Vn =
Zn × Fn, where Zn = CG(i) ∩ Vn, and if |Fn| are odd, then Fn = 〈h ∈
Vn | hi = h−1〉.

If in the set of subgroups of the form Vn, n = 1, 2, ..., there is only a finite
set of different, it is obvious without breaking the generality of reasoning,
we can assume that V = V1 = V2 = ... = Vn = ...

Consider the maximal almost layer-finite subgroup M in G containing
NG(V ). By assumption, Ln = 〈a, asn , i〉 < M . Consider two cases:

1) CM (i) is infinite. Since M is a maximal almost layer-finite in G
subgroup, then by Lemma 6 from [9] CG(i) contained in M . By Lemma 8
from [10], i is contained in a finite normal subgroup of M , and therefore,
in a layer-finite radical R(M). The element asn is a strictly real relative to
i and contained in M . From here we get

iasni = (asn)−1, (asn)−1iasn ∈ R(M).

Comparing these relations, we note: i(asn)2 ∈ R(M). Then, (asn)2 ∈
R(M) and, taking into account the oddness of the order of the elements
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asn , finally asn ∈ R(M). Due to the infinity of the set {asn}, n = 1, 2, ...,
we get contradiction with the definition of a layer-finite group.

2) CM (i) is finite. In this case, by Lemma 12 from [11] there is a normal
in M subgroup U of finite index in M each whose element is strictly real
with respect to i.

The element a is also strictly real with respect to i. From here following
equality aha−1 = ia−1iih−1iiai = ia−1h−1ai = a−1ha or ha2 = a2h show
that a is permuted with any element of U . So it belongs to a finite normal
subgroup of the group M and belongs to its layer-finite radical R(M).
Similar we show asn ∈ R(M), but this cannot be due to the infinity of the
set {asn} and by the definition of layer-finite radical.

Thus, both cases are impossible. Therefore not breaking the generality
of reasoning, we can assume that the subgroups of the form Vn, n = 1, 2, ...,
are different. Let Zn 6= 1 for any n. Suppose first that the set of primes p
for p-subgroups Zn is finite.

Without breaking the generality of reasoning, we can assume that all Zn
are p-groups by one prime number p. Due to the properties of almost layer-
finite groups among them only a finite number of subgroups is not conjugate
in CG(i). Therefore, without breaking the generality of reasoning it can be
considered that Z = Zt11 = ... = Ztnn = ..., where tn ∈ CG(i). The set
of {tn | n = 1, 2, ...} can be both finite, and infinite. However, the set
{Ltnn | n = 1, 2, ...} is always infinite due to the choice of the pair (a, i).

Let X be a maximal almost layer-finite subgroup in G containing NG(Z).
First, let the orders of the subgroups Vn, n = 1, 2, ..., be odd.
If CX(i) is infinite, then by Lemma 8 from [10] the involution i belongs

to a finite class of conjugate involutions in X. If there are infinitely many
subgroups F tnn , we find various elements f1, f2, ..., fn, ... such, that f−1

n ifn =
f−1
k ifk. Then from equality f−1

n fk = ifnf
−1
k i = fnf

−1
k followed f2

k = f2
n,

but fi has odd prime orders. Contradiction.
If CX(i) is finite, then as above atn , asntn ∈ R(X), but there are infinitely

many such different elements of the same order. The contradiction with
layer-finiteness of R(X).

Then, in any case, we can assume, without breaking the generality of
reasoning, that F = F t11 = ... = F tnn = ... and that means V = V t1

1 = ... =
V tn
n = ... By including NG(V ) in the maximal almost layer-finite subgroup
W of G, we get that i, Ltnn < W , n = 1, 2, ...

If the involution i belongs to the layer-finite radical R(W ) of the group
W , its centralizer in W is infinite and by Lemma 4 from [11], Lemma 6
from [9] W = H and atn belongs to H together with the element a (tn taken
from H). If i 6∈ R(W ), then by Lemmas 8 from [10] and 12 from [11] in W
there is an infinite Abelian normal subgroup of finite index in W , consisting
of strictly real elements with respect to i. In this case as above, we obtain
in the layer-finite radical R(W ) infinitely many elements atn , asntn of the
same order. A contradiction means that if the orders of subgroups of the
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form Vn are odd, then Zn = 1 for almost all numbers n. But then for these
n subgroups Vn〈a〉λ〈i〉 are Frobenius groups with the complement 〈i〉. In
this case, by the properties of Frobenius groups, Vn〈a〉 are Abelian groups.

Without breaking the generality, we can assume that i, Vn < NG(〈a〉) =
D, n = 1, 2, ... According to the above, all elements of Vn are strictly real
with respect to i, and by the assumption D is an almost layer-finite group.
Since there are infinitely many subgroups Vn which consist of elements
strictly real with respect to i, then there is an infinite subgroup of finite
index in D, which is elementwise permutable with Vn, n = 1, 2, ... Then,
subgroups Vn are contained in the layer-finite radical R(D) of the group
D (Vn have finite index centralizers in D), and this cannot be due to its
layer-finiteness, the infinity of the set {Vn} and finiteness of the set of prime
divisors of |Vn| for all n in the aggregate.

Since Sylow 2-subgroups in G are cyclic or generalized group quater-
nions, then Vn cannot be a 2-group n = 1, 2, .... Because, then in Ln there
would be the only involution i centralizing the element a, and we chose it
to be strictly real with respect to i.

Thus, we have the case: the set of prime numbers p for p-subgroups Zn
is infinite. Then there are infinitely many prime divisors of orders of Vn.

All Zn will be contained in H, and moreover, almost all Zn are contained
in R(H) since we chose them by different p, and π(H \ R(H)) is a finite
set. Then in view of the infinite isolation of H the centralizers CG(Zn) are
contained in H. Then, almost all Fn are contained in H, and therefore Vn
are contained in R(H). Then using Lemma 4 from [11] and the properties
of layer-finite groups we get the inclusion a ∈ H, which is impossible. If in
this case Zn 6= 1 for any n, then again as above we obtain Vn < NG(〈a〉) =
D < U , where U is a maximal almost layer-finite group containing D,
Vn < NG(〈as〉) = Ds < Us, where Us is a maximal almost layer-finite
group containing Ds. Since V has a normal Abelian subgroup of finite
index consisting of strictly real elements with respect to i, then due to the
infinity of π({Vn}) for almost all s U = Us and hence {as} < R(U) for
the infinite set {as}. Contradiction. Now, it is only necessary to consider
the case when Vn is a 2-group.

Recall that we assume that the lemma is false and L1, L2, ..., Ln, ... is
an infinite sequence of subgroups from N and Ln has nontrivial elementary
Abelian subgroup Vn, normal in Ln, n = 1, 2, .... We represent Vn as
Vn = Zn × Fn, where Zn = CG(i) ∩ Vn. Above it is shown that without
breaking the generality of reasoning it can be considered that Z = Zt11 =
Zt22 = ... = Ztnn = ... for some elements tn ∈ CG(i).

Let Vn be a 2-group. We show that Vn does not contain involutions
with infinite centralizers in H. Indeed, if j ∈ Vn and CH(j) is infinite, then
by Lemma 6 from [9] CG(j) < H and |NG(Vn) : CG(j) ∩ NG(Vn)| < ∞
implies NG(Vn) < H together with Ln, but it is impossible. In this way,

Известия Иркутского государственного университета.
2020. Т. 32. Серия «Математика». С. 101–117



ON PERIODIC GROUPS OF SHUNKOV 107

Vn contains only almost regular involutions in H, and by theorem from [8]
and Lemma 6 from [9] Vn ∩H is a cyclic group, that is, Vn ∩H = 〈j〉).

By Lemma 8 from [10], we have |Vn| ≤ 4. If |Vn| = 2, then Vn =
Zn, n = 1, 2, ..., and this case has already been considered above and we
proved its impossibility. So |Vn| = 4 and V tn

n = 〈j〉 × 〈kn〉, where kn is
an involution for suitable elements tn. As we have shown, the set {kn} is
infinite. Hence, we get the infinity of the set {ikn}. From the structure
of the group Vnλ〈i〉 we conclude that the order of the element ikn may be
equal to only 4 (it cannot be equal to 2 because of Lemma 8 from [10]).

If i is an almost regular involution in X, then by Lemma 12 from [11]
in X there is a normal subgroup L1 of finite index on which i acts strictly
real. By Lemma 8 from [10] almost all involutions tn are almost regular in
X, then we can assume without breaking the generality of reasoning that
they are all almost regular in X. Again, by Lemma 12 from [11], using
the conjugacy of tn in X (see Lemma 10 from [11]), we find the normal
subgroup L2 of finite index in X on which all tn act strictly real. The
intersection L3 = L1 ∩ L2 also normal in X and has finite index in it and
centralizer of L3 contain elements itn. But in the almost layer-finite group
X this situation is impossible (all elements itn have the same order 4)
since this contradicts to Lemma 10 from [11] and to theorem on the power
of classes of conjugate elements. If i has an infinite centralizer in X, then
using Lemma 4 from [11] we get the inclusion X ⊆ H and, therefore, CH(j)
is infinite, this is contrary to the choice of j.

Let L be a semisimple group, that is, does not have a soluble normal
subgroup. Following [19] we denote by F (L) the socle of L, i.e. normal
subgroup of the highest order of L, which is direct product of simple groups.

Lemma 4. Subgroups from the set N have a socle, isomorphic to PSL(2, q),
where q > 3 is odd.

The statement of the lemma is proved in view of Lemma 3 in exactly
the same way as the Theorem in [13].

Lemma 5. Set A = {L ∈ N | all involutions of H ∩ L are contained in
R(H)} is finite.

Proof. Suppose that A is infinite and L1, L2, ..., Ln, ... is an infinite sequence
of different semisimple subgroups of A. Then Hn = Ln ∩ H is a strongly
embedded subgroup in Ln for any n. (If Hn were not strongly embedded,
i.e. Hn∩Hb

n would contain involutions for b ∈ Ln\Hn, then in H∩Hb would
contain the involution k from R(H) the first, since A so defined, secondly,
k is the image of an involution from R(H) in Hb, hence k ∈ R(Hb), and
therefore H = Hb and Ln < H, but it is impossible.)

Let Hn be some Sylow 2-subgroup Qn and i ∈ Z(Qn). If S were not a
dihedral group of order 8, then by Lemma 2 Qn would be a cyclic group or
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generalized quaternion group. It is not difficult to see from the infinite iso-
lation of H and from the properties of subgroups from A that the subgroup
Qn is a Sylow group in Ln.

Then, repeating the reasoning from the beginning of the proof of the
lemma when considering the case when Sylow 2-subgroups in G are cyclic or
generalized groups of quaternions, replacing the conditions imposed on the
Sylow 2-subgroups of the group G on the condition for Sylow 2-subgroups
from Ln, we get the impossibility of this situation.

Consequently S is a dihedral group of order 8 and by Lemma 8 from [10]
Qn is an elementary Abelian group of order 4, moreover Qn � Hn and
Q1 = Q2 = ... = Qn = ....

By Suzuki theorem [24] Ln = 〈a,Qn〉 are isomorphic to SL(2, Q), over
the field Q of characteristics 2, but this contradicts Lemma 4.

Lemma 6. Every involution in a simple non-Abelian subgroup U of G is
contained in a maximal elementary Abelian subgroup of order 4 of U .

Proof. Let U be a simple non-Abelian group. Then, by the Brauer-Suzuki
theorem [3;6], any of its involutions is contained in the elementary Abelian
subgroup of the order not less than four, but by Lemma 8 from [10] the
order of this elementary Abelian subgroup cannot be greater than four.

Lemma 7. Orders of factor groups L/F (L), L ∈ N, limited in aggregate.

Proof. Suppose that the lemma is false. In this case there is a sequence
L1, L2, ..., Ln, ... for which |Ln/F (Ln)| grows with the number n.

Let Sn be a Sylow 2-subgroup of Ln and i ∈ Sn. By Lemma 2.15
from [19] Qn = Sn ∩ F (Ln) is a Sylow 2-subgroup in F (Ln) and Ln =
NLn(Qn)F (Ln), n = 1, 2, ... Because Ln = 〈a, asn , i〉, where sn ∈ CG(i),
iai = a−1, then i 6∈ F (Ln). (If i ∈ F (Ln), then a 6∈ F (Ln) otherwise the
order of the group Ln/F (Ln) did not grow. At the same time, from the
normality of F (Ln) in Ln follows a−1ia = a−2i ∈ F (Ln), but a−2 6∈ F (Ln),
since a is an element of odd order and from a−2 ∈ F (Ln) would get a ∈
F (Ln), but it is impossible.)

By Lemma 8 from [10] the lower layer Rn of Z(Qn) is a subgroup of order
≤ 4. If |Rn| = 4, then by Lemma 6 all involutions of Qn are contained in
Rn �NLn(Qn). And since the orders of the factor groups NLn(Qn) grows
by virtue of the isomorphism theorem together with the number n, then Sn
is a dihedral group of order 8 and Qn = Rn, n ≥ q for some number q.
The subgroup NF (Ln)(Rn) is strongly embedded in F (Ln) and according
to Suzuki theorem [24] F (Ln) is isomorphic to SL(2, Q), where Q is a field
of characteristic 2, n ≥ q. But this contradicts Lemma 4.

If |Rn| = 2, then by Lemma 4 the Sylow 2-subgroup of F (Ln) is a
dihedral group of order at least eight. If the orders of these dihedral groups
are not limited in aggregate, then on the properties of linear groups the

Известия Иркутского государственного университета.
2020. Т. 32. Серия «Математика». С. 101–117



ON PERIODIC GROUPS OF SHUNKOV 109

number of prime divisors in the set π(CG(k)) for some involution k is
unlimited. But then CG(k) is not Chernikov and we get a contradiction
with the condition of the theorem. So, the orders of the Sylow 2-subgroups
of F (Ln) are bounded in aggregate. From here according to Brouwer-Feit
Theorem [1], the orders F (Ln) are also limited in aggregate. But due to the
semisimplicity of Ln, this implies that the index |Ln : F (Ln)| is bounded.

Thus, we obtain the boundedness of orders of factor groups of the
form Ln/F (Ln), n = 1, 2, ... Therefore, the orders of the factor groups
L/F (L), L ∈ N, are bounded in aggregate.

Let, for the involution t Rt = 〈t〉 × 〈k〉 be a Klein group of orger 4 and
At be a maximal almost layer-finite subgroup of the group G containing
CG(t). Obviously Rt < At and t belongs to the layer-finite radical R(At)
of the group At. If CAt(k) is finite, then Rt is called highlighted. If the
involution t is unique in R(At), then t ∈ CAt(R(At)).

Lemma 8. The highlighted subgroup is a Chernikov one.

Proof. Let t be an involution, At be a maximal almost layer-finite sub-
group of G containing CG(t) (recall that, by the condition of the theorem,
involutions centralizers in G are Chernikov). As shown earlier, CG(t) is an
infinite group, then At has a nontrivial normal in At subgroup K generated
by all involutions with infinite centralizers in At. Since K is a finite group,
the index |NAt(K) : CAt(K)| is finite. By the inclusion CAt(t) ≤ CAt(K)
we see that the index |NAt(K) : CAt(t) ∩ NAt(K)| is finite. Then At is a
Chernikov group as a finite extension of the Chernikov group (see Lemma
2.3 from [19]).

Let L1, L2, ..., Ln, ... be an infinite sequence of different subgroups from
N (semisimple groups) and Ln ∩ R(H) by Lemma 4 have almost regular
involution jn of CH(i).

There is an infinite set of elements {c1, c2, ..., cn, ...} in R(H) such that
{M1,M2, ...Mn, ...}, where Mn = Lcnn , n = 1, 2, ... consists of various
subgroups and in ∩Mn contains the same highlighted subgroup Rt.

Lemma 9. If Rt is a highlighted subgroup of V = ∩Mn, n = 1, 2, ...,
then 1) the set Bt = {CMn(x) | x ∈ Rt \ 1, n = 1, 2, ...} is finite; 2) the
orders of subgroups of the set N are bounded in aggregate.

Proof. First we prove 1). Let {CMn(t) | n = 1, 2, ...} be infinite. Let us
prove that in this case the orders of the subgroups Mn ∩ R(At) are not
bounded in aggregate.

Suppose that the orders of the subgroups R(At) ∩Mn are bounded in
aggregate. From here and from the inclusion 〈t〉 < CAt(R(At)) obviously
follows boundedness in aggregate of orders |CMn(t)|, n = 1, 2, ..., and since
Rt < CG(t) < At and Rt is a highlighted subgroup, then some involution
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u of Rt induces in a normal subgroup Bt of finite index in R(At) auto-
morphism, which translates any element from Bt to the inverse (Lemma
12 from [11]). We represent At = BtQ, where Q is a finite subgroup
from At and Rt < Q. From here due to the boundedness of the orders
|CMn(t)|, n = 1, 2, ..., infinity of {CMn(t) | n = 1, 2, ...}, layer-finiteness of
R(At) and the finiteness of the index |R(At) : Bt| implies the existence
of such the number q such that CMq(t) has an element d representable as

d = br, where b ∈ Bt, r ∈ Q, |b2|Q|| > |CMq(t)| and bu = b−1.
Based on such a representation of the element d, we write dud−1 =

b−1rur−1b−1. Obviously, rur−1 ∈ CAt(Bt) and b−1 ∈ R(At), r ∈ Q, u ∈
Rt < Q, and therefore dud−1 = b−2rur−1 ∈ CMq(t) and rur−1 ∈ Q ∩
CAt(Bt). Then (dud−1)|Q| = b−2|Q| ∈ CMq(t), but it is impossible.

Hence |R(At) ∩ Mn| are not limited in aggregate. Choose in R(At)
Abelian normal subgroup Ct of finite index, moreover, t ∈ Ct (such exists
by Lemma 12 from [11]). It is obvious that |Ct ∩Mn| are also not limited
in aggregate.

Since At by Lemma 8 is a Chernikov group, then Ct satisfies the minimal
condition and {Mn} has an infinite subset C1, and At has such a subgroup
X1, that for any subgroup L ∈ C1 X1 coincides with the subgroup from
Ct ∩L generated by all elements of prime order from Ct ∩L. For the same
reasons C1 has such an infinite subset C2, and Ct such a subgroup X2 > X1,
that for any subgroup L ∈ C2 the factor group X2/X1 coincides with the
subgroup generated by all elements of prime orders from (Ct∩L)/X1. Thus
we build a chain C1 ≥ C2 ≥ ... and accordingly a chain X1 < X2 < ...

Let k be an involution from Rt \ 〈t〉. By the condition Ak 6= At and t is
an almost regular in Ak. Then, by Lemma 12 from [11], t induces in some
normal subgroup Ck of finite index from Ak an automorphism, translates
all elements into inverse (we can assume that Ck is chosen from R(Ak)).

Let’s assume that the set {CL(k) | L ∈ Cn} is infinite for any n. Then
the orders of the subgroups Ck∩L as we showed in the case of t and Bt not
limited in aggregate. Since Ak is Chernikov there is a finite subgroup in Ct
of odd order W 6= 1, which starting with some number q is contained in a
some subgroup from Cn for any n. Obviously the subgroup T = (X,Rt,W )
is locally finite. In particular, we have tct = c−1 for any element c ∈ W <
Ck. Since 〈X,Rt〉 < At∩T , then by Lemma 4 from [11] T < At and, hence
W < At. Since any element c from W has an odd order and is strictly real
with respect to t, then taking into account the normality of the layer-finite
radical R(At) of the group At and the uniqueness of the involution t in
R(At) we get for any element a from R(At): c

−1ac = t−1ctac = t−1cac−1t
or c−2ac = a, which implies (the order of the element c is odd) that c ∈
CG(R(At)) and it means c ∈ R(At). Then W < R(At) ∩ R(Ak) and by
Lemma 4 from [11] we get At = Ak. The contradiction means that for an
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involution k starting from some number q set {CL(k) | L ∈ Cn, n ≥ q} is
finite.

Let E1 be some subgroup from Cq, E2 be some subgroup from Cq+1 etc.
such that Xn < En. By the above, {CEn(x) | x ∈ Rt \ 〈t〉, n = 1, 2, ...} is
finite. It can be considered without breaking the generality of reasoning,
that En = Mn, i.e. B = {CMn(x) | x ∈ Rt\〈t〉} is finite, moreover Rt < Mn

by assumption, Xt < Mn by the construction of the chain {Mn}.
Let F (Mn) be a socle of Mn. By Lemma 12 all F (Mn) contain invo-

lutions. In addition, F (Mn) ∩ Rt 6= 1. If not, and if there is a q such
that F (Mq) ∩ Rt = 1, then due to the properties of primary groups and
normality of F (Mq) in Mq, the subgroup F (Mq) is nontrivial intersects
with the center of a Sylow 2-subgroup that contains Rt, in particular, there
is an involution z centralizing Rt. But then Rt < CG(z), r 6∈ Rt means
that in CG(z) there is an elementary Abelian subgroup of order 8, one of
the involutions of which is almost regular in a maximal almost layer-finite
subgroup in G, containing CG(z) (Rt is chosen so), and this contradicts to
Lemma 8 from [10].

Thus, F (Mn) ∩ Rt 6= 1. Since F (Mn) is simple and the orders of
the factor groups Mn/F (Mn) are limited in aggregate (Lemmas 4, 7),
then we can assume that Xn < F (Mn) and |F (Mn)| grow with n. If
the set {F (Mn) | M ∈ N, t 6∈ F (M)} is infinite, then F (M) ∩ Rt 6= 1
implies unboundedness in the aggregate of orders of subgroups of the set
Bk = {F (M) |M ∈ N, t 6∈ F (M), k ∈ F (M)}, where k is an involution
from Rt \ 〈t〉. And since B is a finite set, then |CF (M)(k)| for F (M) ∈ Bk

are limited in aggregate. But then |F (M)| are also limited in aggregate
by Brouwer-Fowler Theorem [2] and by Lemma 4. Contradiction. There-
fore, without breaking the generality of reasoning, we can assume that
t ∈ F (Mn), and the rest involutions of Rt are not contained in F (Mn).

Let Qn be a k-invariant Sylow 2-subgroup of F (Mn) containing t (such
can be found due to conjugacy of primary Sylow subgroups in Mn and
Frattini lemma [4]). In the center ofQnλ(k) obviously there is an involution.
It cannot be different from t, since this would contradict to Lemma 8 from
[10]. Consequently, t ∈ Z(Qn). At the same time, in view of Lemma 6, t
contains in Pn = 〈t〉×〈vn〉 < Qn, where vn is an involution, n = 1, 2, .... If in
{Pn} exists infinitely many non-highlighted subgroups, it would be possible
to consider that Pn is non-highlighted for any n. Then, by Lemma 2, the
Sylow 2-subgroups from Mn are a dihedral groups of order 8 and Qn = Pn,
moreover, the subgroups NF (Mn)(Pn) are strongly embedded respectively
in F (Mn). Hence by Suzuki theorem [24] we obtain a contradiction with
Lemma 4. We assume that Pn is a highlighted subgroup for any n. Since
vn ∈ CG(t) ≤ At, then by Lemma 10 from [11] we will assume that v =

vb11 = ... = vbnn = ..., where bn ∈ Ct < CG(t). However, Xn < Ct, which
means Xn < M bn

n = Un. In view of the choice of {Mn} the orders of these
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subgroups grow infinitely. Therefore {Un} consists of various subgroups
and their intersection contains a highlighted subgroup P = 〈v〉 × 〈t〉.

Repeat for P and for {Un} the same reasoning with respect to Rt and
to the set N. Based on this reasoning, let us prove the existence in {Un} of
an infinite subset K such that the set {CU (v) | U ∈ K} is finite. And since
v ∈ F (U), and F (U) is a simple group by Lemma 4, then, by Brouwer-
Fowler Theorem [2] and Lemma 7, the orders of the subgroups from K are
bounded in aggregate. But then, given the equalities |Un| = |Mn|, n =
1, 2, ..., we obtain a contradiction with unboundedness in aggregate of orders
of subgroups from the set {Mn}. This contradiction means that the set
{CMn(x) | x ∈ Rt \ {1}, n = 1, 2, ...} is finite and assertion 1 is proved.

Let us prove 2. Let the orders of subgroups from Mn be unbounded in
aggregate. As elements of the set L we choose subgroups of N for whose
orders the equality holds |M1| < |M2| < ... and the intersection ∩Mn has
the highlighted subgroup R = 〈i〉 × 〈j〉.

By 1 Bi = {CMn(x) | x ∈ Rt \{1}, n = 1, 2, ...} is finite and, as shown
above, FMn∩R 6= 1, n = 1, 2, ... But then without breaking the generality
of reasoning, we will assume that the same involution k from R belongs to
all Mn. Since Bi is a finite set, then by Brouwer-Fowler Theorem [2] and
Lemma 7 imply limitation of orders of subgroups from N contrary to the
choice of the set L from N. Thus 2 is proved.

Proof of the theorem. We first prove that the set N has so infinite subset
L such that V = ∩M, M ∈ L, is a strongly embedded subgroup in
each subgroup of L. Let A1 be an arbitrary infinite subset of N, V1 =
∩B1, T1 = NB1(V1), B1 ∈ A1, Q1 be a Sylow 2-subgroup of V1 containing
R = 〈i〉 × 〈j〉. By Lemma 8 from [10] the intersection R ∩ Z(Q1) has
the involution t1. Let A1 be a maximal almost layer-finite subgroup of G
containing CG(t1), Y1 = A1 ∩B1, B1 ∈ A1, P1 = 〈t1〉 × 〈z1〉 is a subgroup
of order 4 from Q1. Since R is a highlighted subgroup by Lemma 9 the set

{CB1(x) | x ∈ R \ 1, B1 ∈ A1} (2.1)

is finite. Based on Lemma 12 from [11] and Lemma 2 it is easy to get an idea
to represent the subgroup A1 in the following form A1 = CA1(t1)CA1(k),
where k is an involution from R \ 〈t1〉. From here and from finiteness of
the set 2.1 implies the finiteness of the set

{Y1 | B1 ∈ A1}. (2.2)

If P1 is a non-highlighted subgroup, then by Lemma 2 CB1 ≤ Y1, x ∈
P1 \1. If P1 is a highlighted subgroup, then, by Lemma 9, the set {CB1(x) |
x ∈ P1 \ 1, B1 ∈ A1} is finite. From here and from the finiteness of the
set 2.2 it follows finiteness of a set

{CB1(x) | x ∈ P1 \ 1, B1 ∈ A1} (2.3)
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for any subgroup of the form P1 from Q1. On the Frattini lemma T1 =
NT1(Q1)V1, and since R ≤ Q1, then by Lemma 5 NG(Q1) is finite. Hence
the set is finite:

{NB1(Q1), TB1 | B1 ∈ A1} (2.4)

If at least one of the subgroups belonging to finite sets 2.1–2.4 not
contained in any subgroup of some infinite subset of A1, then obviously
in A1 exists such an infinite subset of A2 that V2 = ∩B2 6= V1, B2 ∈
A2, V1 < V2.

Let T2 = NB2(V2), B2 ∈ A2, Q2 be a Sylow 2-subgroup of V2 and
Q1 ≤ Q2. According to Lemma 8 from [10] the intersection of R ∩ Z(Q2)
has an involution t2. Let also A2 be a maximal almost layer-finite subgroup
of G, containing CG(t2), Y2 = A2 ∩B2, B2 ∈ A2, P2 = (t2)× (z2) is a
subgroup of order 4 from Q2. Using the same arguments used in justifying
of the finiteness of sets 2.1–2.4, we prove the finiteness of the sets

{CB2(x) | x ∈ R \ 1, B2 ∈ A2} (2.5)

{Y2 | B2 ∈ A2} (2.6)

{CB2(x) | x ∈ P2 \ 1, B2 ∈ A2} (2.7)

{NB2(Q2), TB2 | B2 ∈ A2} (2.8)

Regarding the set of A2 and subsets 2.5–2.8 reason like the previous case,
etc. As a result, we get in G a strictly increasing chain of subgroups V1 <
V2 < ... < Vr < ... and, accordingly, the chain Q1 ≤ Q2 ≤ ... ≤ Qr ≤ ...

Since, by Lemma 9, the orders of subgroups from N are bounded in
aggregate then the specified chains will terminate at the finite number
r, that is, the set Ar is the last member of a strictly decreasing series
A1 ⊃ A2 ⊃ ... ⊃ Ar has such an infinite subset of L, that:

1) V = ∩M, M ∈ L and NM (V ) = V, M ∈ L;
2) if Q is a Sylow 2-subgroup of V , then NV (Q) = NM (Q), M ∈ L;
3) if P is a Klein subgroup of orger 4 from V , in particular, P = R, then

CV (x) = CM (x), x ∈ P \ {1}, M ∈ L.
Now, based on assertions 1–3, we prove that V is a strongly embedded

subgroup in any subgroup of L. Let E be some subgroup from L. By
assertion 1 NE(V ) = V and assume that for some element g of E \ V the
intersection of V ∩V g has an involution z. Let Q be a Sylow 2-subgroup of
V g and z ∈ Q. As Chernikov p-group is ZA-group and satisfies normalizer
condition [7] by assertion 3 it is easy to prove the inclusion Q < V ∩ V g.
Since by the Sylow’s theorem [5] Sylow 2-subgroups are conjugate in V ,
then in V there exists the element h such that Qhg = Q, and, therefore,
hg ∈ NE(Q). But on to assertion 2 hg ∈ NE(Q) = NV (Q) ≤ V and g ∈ V
contrary to the assumption g ∈ E \V . Therefore, V is a strongly embedded
subgroup in any subgroup of L and existence of the sets L is proved.

Let the set L consist of subgroups C1, C2, ..., Cn, ... such that Cn =
〈atn , arn , i〉, tn, rn ∈ CG(i).
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By the definition of the set N, we can assume that all at1 , ..., atn , ... are
different. As in the group G with its strongly embedded subgroup H and
some involution i from H with the condition 〈i, ig〉, g ∈ G \ H is finite
any element g of G\H has a representation g = hj, where h ∈ H, j is an
involution of G \H [23], atn = hnin, where hn ∈ V, in, n = 1, 2, ... are
involutions from Cn\V, Dn = V ∩V in is a group of odd order. Since V is a
finite group, then we assume that h = h1 = h2 = ..., D = D1 = D2 = ....

Consider the group U = NG(D). As proven above, in ∈ U and the set
{in | n = 1, 2, ...} is infinite. By the conditions of the theorem the group U is
almost layer-finite. Involutions i1, i2, ..., in, ... in view of Lemma 8 from [10]
can be considered not belonging to R(U). Further, R(U) has a finite index
in U , and the set {in | n = 1, 2, ...} is infinite, then we can assume that all
this set is selected from one adjacent class R(U)i1. Then from i1 = rnin
follows i1in = rninin = rn ∈ R(U). This means in view of the layer-
finiteness of R(U) unboundedness in aggregate of the orders of the elements
i1in. Then the orders of the elements a−t11 atnn = i1h

−1hin = i1in is also
unlimited in aggregate. Hence the orders of the groups 〈at1 , atn , i〉 is also
unbounded in aggregate contrary Lemma 9. The obtained contradiction
proves the theorem. The theorem is proved.

3. Conclusion

The main result of the work involves characterizing almost layer-finite
groups in the class of periodic Shunkov groups. It is proved that if in
Shunkov periodic group the centralizer of every involution is a Chernikov
one and the normalizer of any nontrivial finite subgroup of the group is
almost layer-finite, then the group is an almost layer-finite group.
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О периодических группах Шункова с черниковским
централизатором инволюции
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Аннотация. Слойно конечные группы впервые появились без названия в статье
С.Н.Черникова (1945). Почти слойно конечные группы являются расширениями
слойно конечных групп при помощи конечных групп. Класс почти слойно конечных
групп шире, чем класс слойно конечных групп, он включает в себя все группы
Черникова, в то время как легко привести примеры групп Черникова, которые не
являются слойно конечно. Автор развивает направление характеризации известных
хорошо изученных классов групп в других классах групп с некоторыми дополни-
тельными (довольно слабыми) условиями конечности. В данной работе почти слойно
конечные группы получают характеризацию в классе периодических групп Шунко-
ва. Группа Шункова — это группа G, в которой для любой ее конечной подгруппы K
в фактор-группе NG(K)/K любые два сопряженных элемента простого порядка
порождают конечную подгруппу. Мы изучаем периодические группы Шункова с
условием: нормализатор любой конечной неединичной подгруппы почти слойно-
конечен. Доказано, что если в такой группе централизаторами инволюций являются
черниковскими, то группа почти слойно конечна.

Ключевые слова: бесконечная группа, условие конечности, группа Шункова,
группа Черникова.
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