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Endomorphisms of Some Groupoids of Order k+%>*
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Abstract. Automorphisms and endomorphisms are actively used in various theoretical
studies. In particular, the theoretical interest in the study of automorphisms is due to the
possibility of representing elements of a group by automorphisms of a certain algebraic
system. For example, in 1946, G. Birkhoff showed that each group is the group of all
automorphisms of a certain algebra. In 1958, D. Groot published a work in which it was
established that every group is a group of all automorphisms of a certain ring. It was
established by M. M. Glukhov and G. V. Timofeenko: every finite group is isomorphic
to the automorphism group of a suitable finitely defined quasigroup.

In this paper, we study endomorphisms of certain finite groupoids with a generating
set of k elements and order k+ k2, which are not quasigroups and semigroups for k > 1. A
description is given of all endomorphisms of these groupoids as mappings of the support,
and some structural properties of the monoid of all endomorphisms are established. It
was previously established that every finite group embeds isomorphically into the group
of all automorphisms of a certain suitable groupoid of order k + k% and a generating set
of k elements.

It is shown that for any finite monoid G and any positive integer k > |G| there will
be a groupoid S with a generating set of k elements and order k + k2 such that G is
isomorphic to some submonoid of the monoid of all endomorphisms of the groupoid S.

Keywords: endomorphism of the groupoid, endomorphisms, groupoids, magmas, mo-
noids.
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1. Introduction

Let A be some set and (x) be a binary algebraic operation defined on
the set A. Then the pair 20 = (A, ) is called a groupoid (so-called magma).
For each groupoid, endomorphisms and automorphisms are defined (see [8]).
The set of all endomorphisms of a groupoid 2 is denoted as End(2(), and the
set of all automorphisms as Aut(2(). It is well known that with respect to
the composition of two endomorphisms, the set End(2l) generates a monoid
(Aut(2() forms a subgroup in the monoid End(2)).

In [5], groupoids &(k,q) of order k + k? and a generating set of k
elements were introduced. Automorphisms of these groupoids were also
studied there. In particular, it was established that every finite group G
will be isomorphic to some subgroup of the group of all automorphisms of
a suitable groupoid &(|G], q).

Similar results were obtained in [6] for groupoids & = (V, %) generated
by n elements and order |V| satisfying the inequalities n+1 < |V| < n?+n.

In connection with the results of the work [5], [6] on studies of finite
groupoids and works on the description of monoids of endomorphisms (for
example, [9]) of some groupoids, interest in studying the problem arose

Problem 1. To obtain an elementwise description of the monoid of
endomorphisms of the groupoid &(k, q).

As an outcome of scientific work of G. Birkhoff (see [2]), D. Groot (see
[12]) and [11] (M.M. Glukhov and G.V. Timofeenko) has been considerable
interest in studying the problem

Problem 2. To find out if every finite monoid is isomorphic to some
submonoid of the monoid of all endomorphisms of a suitable groupoid
S(k, q).

This paper is devoted to the study of problems 1 and 2. The main
results are stated as Theorems 1 and 2. Theorem 1 gives a description of
the endomorphisms of the groupoid &(k, ¢) and some structural properties
of the monoid End(&(k, q)). The affirmative answer to the question from
Problem 2 follows from Theorem 2.

2. Statement of Theorems 1 and 2

We give the definitions and notation necessary for the statement of
Theorems 1 and 2.

Symbols associated with a symmetric semigroup. By the symbol Z,, we
denote a symmetric semigroup of all mappings of the set {1,...,n} into
itself. As usual, the symbol S,, denotes the symmetric group permutations
of the set of n elements. The composition of two mappings from Z, will
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be denoted by (o). Let = be an arbitrary element from {1,...,n} and o an
arbitrary map from Z,,. Then «(x) is the image of the element x under
the action of the map a. If a,8 € Z, and = € {1,...,n}, then we put

(aoB)(z) = a(f(x)).
We give the definition 1 of groupoid &(k, q) from [5].

Definition 1. For each natural number k, we introduce the following sets:
M :={a1,...,ar}, V:=MU{by|ije{l, .. k}}

St =A{(e1,..,em) | €1 € Sk, i =1,...,m}.

Next, fix the tuple ¢ = (B1,.... Bk, B1, -, B1,) € SZ’“. On the set V, we
define a binary algebraic operation (%) such that the following equalities are
satisfied
a; * aj = bij, Qg * bij = bﬁs(i),ﬁs(j)v (2.1)
bij * Qg = bﬁfg(i),ﬂ;(j% b * bij = bmj (m, v,8,1,] € {1, e k‘})
Then
S(k,q) = (V. %)

we denote the groupoid & with the set support V' and the binary algebraic
operation (x) defined by the equalities (2.1).

Note that for £ > 1 the groupoids &(k,q) will be non-associative. In
fact, it suffices to calculate the elements (a1 * ag) * ba; and aq * (ag * bay).

We assume that the groupoid &(k,q) is given; therefore, the tuple is
given

q = (Blv ceey 5’65 Bi? 3181/4;)

In the set Zj, select a subset of A.(q) transformations of v such that for
any s,i € {1,...,k} the equalities hold

By (7(@) = v(Bs(8)), By (v(9)) = ¥(B5(3))- (2.2)
For each v € A.(q) we introduce the mapping

(257 DA =7 Oey(4)s (ai S M); bij — b’y(z) (bl‘j € M % M) (23)

7 (9)

For each element by, from M % M mapping is introduced ([by,], maps
all elements of the set—carrier V' in by,:

C[buv] Loa; —~ buv; (ai S M); bij — bum (bij e M % M) (2.4)

Let as € M such that Bs(s) = B.L(s) = s and M’ is an arbitrary non-
empty subset of M other than M. Then introduced the mapping

plas, M']: a; — a5 (a; € M), a, — bss (r € M\ M'); (2.5)
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bij — bss, (bij S M*M)

It is proved (see in this article lemmas 1, 5 and 6), what mappings
®~, C[buw) and plas, M'] are endomorphisms of a groupoid &(k, q).

In the set End(S&(k, q)) select the subsets:

1. E1(6&(k,q)), consisting of all kinds of endomorphisms ¢.;

2. FE3(6(k,q)), consisting of all kinds of endomorphisms ([b,,] and
identical endomorphism

3. E3(S(k,q)), consisting of all kinds of endomorphisms plas, M’] and
identical endomorphism.

By I we denote the identity transformation of the set V. Easy to verify
conditions

Ei(&(k,q) N Ej(6(k,q)) ={I} (i#j, i,j=1,2,3).

Wherein E1(&(k, q)) and E2(S(k, ¢)) are submonoids in a monoid of all
endomorphisms End(S(k, ¢)) (proved in the lemma 8), but set E3(&(k, q))
not closed.

Symbols associated with the action of endomorphisms. Let x € V and
¢ € End (&(k,q)). Then z? is the image of an element x under the influ-
ence of endomorphism ¢. The composition of two endomorphisms will be
denoted by (-). If ¢1,¢2 € End (&(k,q)) and z € V, then 29192 := (292)%1.

Semigroup definitions. A semigroup 2 = (A, *) will be called singular
in the first argument if, for any z,y € A equality holds z xy = x. If B is
subset of the set A then through (B) denote the set containing B and all
kinds of products of some finite number of elements from B. If B, D are
some subsets of the set A, then in the standard way we define the set

BxD:={bxd|be B, de D}.
The main result of this work is

Theorem 1. For any groupoid &(k,q) statements are true
1. the equality is true

2. the inclusion is true
Aut(&(k,q)) C E1(6(k,q));

3. the set E5(S(k,q)) \ {I} is a singular semigroup relative to the first
argument and a two-sided ideal in the monoid End(&(k,q));
4. the following inclusions are valid

(E3(6(k,q))) € E3(6(k,q)) - E2(S(,q)),
Ev(&(k,q)) - E3(&(k, q)) € E3(6(, q))-
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By | X| we denote the cardinality of the set X.

Theorem 2. For every finite monoid G and any natural number k > |G|
there is a groupoid &(k,q) such that the monoid G isomorphic to some
submonoid of a monoid F1(S(k,q)).

Theorem 2 is proved constructively. In the proof, for each finite monoid,
an infinite series of groupoids is constructed &(k, q), realizing the statement
of the theorem (the tuple ¢ in these groupoids may include non-identical
permutations, in contrast to a similar result for automorphisms from [5]).

3. Proof of Theorems 1 and 2

To prove Theorems 1 and 2, we state and prove Lemmas 1, 2, 3, 4, 5, 6,
7, and 8.

Let 20 = (A,*) is some groupoid. Mapping ¢ : A — A is an en-
domorphism of a groupoid 2 if and only if for any z,y € A equality
holds

(zxy)? =z % 2. (3.1)

Lemma 1. Let v € Ac(q). Then the mapping ¢, specified by rule (2.3),
is an endomorphism of a groupoid S(k,q).

Proof. The proof is based on the verification of equalities (3.1). The scheme
of the proof coincides with the scheme of the proof of Lemma 3 from [5]. [

Lemma 2. Let v is some mapping from Iy, and ¢ is endomorphism of a
groupoid &(k,q) such that the equalities hold

af’:a i=1,..k.

V(@)
Then v € Ae(q).

Proof. The proof carries over verbatim from the proof of Lemma 4 from
[5]. O

Lemma 3. For any endomorphism ¢ of groupoid &(k,q) the inclusion is
fulfilled (M % M)?® C M % M.

Proof. Let b;; is an arbitrary element of M * M. Then the equalities and
inclusion
b?}z(ai*aj)¢:a?*a?€M*M

are true. We took advantage of the fact that elements from M cannot be
obtained, like the products of some elements from V' (this follows from the
definition of the operation ). O

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2020. T. 32. Cepust «Maremaruxas. C. 64-78



ENDOMORPHISMS OF SOME FINITE GROUPOIDS 69

Lemma 4. Let k > 1. We assume that ¢ is some transformation of the set
V. If intersection M?® and M % M not empty then ¢ was an endomorphism
of a groupoid &(k,q), it is necessary that (M x M)? consisted of only one
element.

Proof. Assume that ¢ is transformation of the set V, satisfying the con-
ditions of the lemma, and (a;)® = by, for some suitable b,, € M * M.
Suppose that ¢ is endomorphism of a groupoid&(k,q). By lemma 3 we
have (M x M)? C M % M therefore there are transformations d; and & of
the set {1,...,k} such that for any bsq € M * M equalities are fulfilled

bl = bsy(s),82(0)

For any s,d € {1, ..., k} equality must be fulfilled
(a; * bsd)d’ = af’ * bfd.

We calculate the right and left sides of this equality

a? * bfd = byy * b51(s),52(d) = bu,&z(d)a (a; * bsd)d) =
= (b3,(5),8:(2)® = s, (8:(5)).02(8: ()

From here we get
D51 (84(5)),02(Bi(d)) = bu,ds(d)-

The last equality holds for all s,d € {1,...,k} . Note that f; is permu-
tation, therefore,

{Bi(s) | s €{1,....k}} ={1,..., k}.

So 01(s) =u for any s € {1,...,k}.
On the other hand, for any s,d € {1, ..., k} equality must be fulfilled

(boa * a;)® = bfd * af.

Calculate the right and left sides of the last equality

(bsa * ai)® = (bg(s),3:(a))” =
= Doy (B1() 02 (B())> Vo * @F = b5, (5) 5a(a) * buw = by (5) v+
Hence, the equality
D5y (8)(s)).02(8;(d)) = sy (s).0
is true.

The last equality holds for all s,d € {1,..., k}, hence, d3(d) = v for any
de{l,.. k}.



70 A. V. LITAVRIN
So for any s,d € {1, ..., k} equality is fulfield
(bsa)® = s, (s).62(d) = buos
where b, is some fixed element, therefore
(M * M)® = {buy}-
The lemma is proved. t

Lemma 5. Let a groupoid be given S(k,q) = (V,*). Then for every
element by, € M x M the mapping ([byy|, specified by rule (2.4), is an
endomorphism of a groupoid &(k,q).

Proof. Mapping ¢ := ([byy] converts any element from V in element by,.
We verify that { preserves multiplication. Let x,y € V. For any z,y € V
equalities are justified

(2% Y)¢ = buy, 2° % YS = byy * byy = byy.
From here for any x,y € V the equality is true
(z*y)¢ = xb * 9.
So ( is endomorphism of a groupoid &(k, ¢). The lemma is proved. ]

Lemma 6. Let a groupoid be given &(k,q) = (V,x) and some element
as such that Bs(s) = BL(s) = s. We assume that M’ is an arbitrary non-
empty subset M other than M. Then the mapping plas, M'], specified by
rule (2.5), is an endomorphism of a groupoid S(k,q).

Proof. We introduce the notation ¢ := plas, M']. We verify that ¢ preserves
multiplication (equality holds 3.1).
Let bgs is an arbitrary element from M « M and a; € M’. The relation

are valid
@

(a; % bgy)? = a? * bif, (bay * a;)® = bgf *a .
In fact, these relations follow from the equalities

? = bas, (bay *ai)” = (bgy(a)p1()” = bss:

(ai * bar)® = (bg,(a).8,(r))
(I? * bfl)f = Gs * bss - bﬂs(s)vﬂs(s) = b887
bl * 0 = bas * 05 = gy (), 54(5) = bss:
In the last two chains of equalities, we used the condition

Bs(s) = B(s) = s.

Verification of the remaining relations is similar. The lemma is proved.
O
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Lemma 7. Let k > 1 and ¢ is endomorphism of a groupoid &(k,q) such
that the intersection of sets M?® and M x M not empty. Then ¢ is an
endomorphism ([by,| either endomorphism plas, M'].

Proof. 1. Since the intersection M? and M % M not empty then by lemma
4 set (M * M)® must contain only one element. Denote this element by by,.

2. Since the intersection of sets M?® and M % M not empty then exists
aq such that (a,)® = b;j. Further, the equalities

(bgg)? = buv, (bgg)? = (aq * ag)® = ag * ag = by » bi; = by;

show that b;; = by,.

Thus, we have shown that if ¢ is image of the element aq lies in M x M,
then (ag)? = buy.

3. Suppose that in the set M there is no empty subset M’ := {aq,, ..., aq, }
such that (M’)? C M. Let as is an arbitrary element of M’ and (as)? = ay.

Then the equalities

by = (bss)¢ = (as * as)¢ = Qg * Qg = bs’s’

show that ' = u = v. Since u = v, we denote them by the index f. Due
to the arbitrariness of the element as from M’ we get that for any element
as € M’ equality (as)?® = ay is true.

Equalities

buv = by = (as *by)® = af « b7, = ayxbyr = b, ()8,(s);

show that 8;(f) = 8}(f) = /.
We have shown that if ¢ is image of the element as lies in M, then
(as)® = af, where ay is estsblished element independent of s, and equalities

b = buv, /Bf(f) = 5}(f) =f

are true.

Given the second task, we obtain that ¢ is an endomorphism plas, M']
of kind (2.5).

4. Supposing that M?® C M % M. Then, as proved in the second
paragraph, we obtain that the endomorphism ¢ is an endomorphism ¢[by, |
of kind (2.4).

5. Since endomorphism ¢ will satisfy the premises of the third or
fourth paragraph and these premises are mutually exclusive, then ¢ this
is endomorphism plas, M'] or [byy]. The lemma is proved. O

Lemma 8. The following statements are true:
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1. sets E1(6(k,q)) and E2(S(k,q)) closed relative to the composition of
two endomorphisms;

2. the set Eo(S(k,q))\{I} is the singular semigroup relative to the first
argument and a two-sided ideal in the monoid End(S(k, q));

3. the inclusions are true

(E3(6(k,q))) € E3(6(k,q)) - E2(S(,q)), (3-2)
Ev(&(k,q)) - E3(&(k,q)) € E3(S(k, q))- (3-3)

Proof. 1. Let us prove the first statement. Let be v1,72 € Ac(q). Direct
calculations show that
QbaOB = ¢o¢ ' ¢5 .
Next, we show that v; o0 72 € Ac(q). Equalities (and similar equalities for
B%)
B (r2(5) (11 (12(2))) = 11 (Bys () (12(2))) = 11(72(Bs(2)))
show that 71 0 72 € Ac(q). Thus E1(S(k,q)) is closed under composition.

Let ([bap], C[buy] are two arbitrary non-identical endomorphisms from

E>(S(k,q)) and z is an arbitrary element of V. Then the equalities
xc[bab}([buv] — (buv)c[bab] — bab

show that endomorphism ([byp] - ([byy] coincides with endomorphism ([bgp).

Thus, we showed closure F2(&(k, ¢)) and showed the singularity in the first

argument of the semigroup Eo(S(k,q)) \ {I}.

2. We show that E3(S(k,q)) \ {I} is two-sided ideal in a monoid
End(&(k,q)). Let ¢ is an arbitrary endomorphism from End(&(%,q)),
C[buy] is an arbitrary endomorphism from FE3(&(k,q)) \ {I} and z is an
arbitrary element of V. We carry out calculations

$¢'C[bu1)} — (buv)d) .

By the lemma 3 we have the inclusion (b, )? € M * M. Since by, indepen-

dent of x, we get that

for a suitable element bsy € M * M independent of = (element by is deter-
mined by ¢ on by,). Thus, the equality ¢ - ([byy] = ([bsq]. We have shown
that Eo(S(k,q)) \ {1} is left ideal.

Semigroup E2(S(k,q)) \ {I} is a right ideal. In fact, equality

2S[buwlé (xab)é[buv] = by,

show that ([byy] - ¢ = ([bus]-
3. Let us prove the third statement. Let pla;, M'] and plaj, M"] are
two arbitrary endomorphisms from E3(&(k,q)), an, is an arbitrary element
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from M and by, is an arbitrary element of M % M. We carry out the
calculations

plai,M']-pla;,M"] pla;, M"]\ pla;, M) ai, aj € M" and an, € M",
Am = (am ) v = / "
bii’ CL]’¢MOI‘CLm¢M,
il M helea M (byj)PleMT = by
Hence, the equality
plai, M"], a; € M’,
C[bll]7 aj; ¢ M,a
which gives inclusion pla;, M'] - pla;, M"] € Es3(&(k,q)) - E2(S(k,q)
t

fulfield. Since E2(&(k,q)) \ {I} is two-sided ideal in End(&(k,q)),
folows

(E3(&(k,q)) - E2(S(k,q))) - E3(S(k,q)) C E3(6(k,q)) - E2(&(k, q)),
E3(6(k,q)) - (E3(6(k,q)) - E2(S(k,q))) C E3(&(k,q)) - E2(&(k, q)),

therefore (3.2) is true.
Next let ¢, € Ei1(6(k,q)) and pla;, M'] € E3(S(k,q)). Then the
equalities

plai, M'] - plaj, M"] = {

) is
hen

d~-plai,M'] CL;%, am € M’ Ay (4) Ay € M’
o —{% = , (3.4)
bi's am € M' by vy, am M
Py [aivM/] —
bud " = by i) )
are fulfield.
Since pla;, M'] € E3(&(k,q)) and ¢ € E1(S(k,q)), then v € Ac(q) and
Bi(i) = Bi(1) = i. Then the equalities

By (7(@) = v(Bi(0)) = (1), B (v(8) = v(Bi(i)) = 7(4)

are fulfield. Hence, the inclusion pla, ), M'] € E3(&(k,q)) is fulfield. And
by (3.4) equality ¢, - pla;, M'] = pla. )y, M'] is true.

Thus, we have shown that the inclusion (3.3) is fulfield. The lemma is
proved. ]

Remark 1. In general case, the inclusion

not fulfield. Next, we give a simple example illustrating Remark 1. Let gqg
is a tuple of permutations from S,ffo, made up of identical permutations.



74 A. V. LITAVRIN

Let M’ is a subset of the set M and v is mapping of the set {1,...,ko}
in element jo, which satisfies the condition aj, ¢ M’. Then in the monoid
End(&(ko, qo)) equality will be fulfilled pla;, M']-¢, = ([b;], for any a; € M.
The last equality proves the statement from Remark 1.

Proof of the theorem 1. 1. Let ¢ is arbitrary endomorphism of
a groupoid &(k,q). Consider the case when k& = 1. The monoid of
endomorphisms consists of the identity transformation of the set V and
([b11] endomorphism. The last statement can easily be verified by simply
enumerating the mappings of V' into itself.

2. We suppose that k& > 1. In this case M? N (M x M) # @ or M® N
(M % M) = @. By the Lemma 1, 5 and 6, we obtain the inclusion

E(6(k,q)) UEy(S(k,q)) UE3(S(k,q)) C End(S(k,q)). (3.5)

We assume that the intersection M? and M s M empty. So M?® C M,
hence, ¢ defines some mapping of the set {1,...,k} into itself. Denote
this mapping by ~. Equality holds af = a,(;- Lemma 2 gives inclusion
v € Ac(q). Next, restoring the steps ¢ on whole set V', we get that ¢ is a
mapping ¢, specified by rule (2.3).

We assume that the intersection M? and M % M not empty. Then by
the lemma 7 we get that ¢ is an endomorphism ([b,,] either endomorphism
plas, M']. Thus, due to randomness ¢ we get the inclusion

End(&(k,q)) C E1(&(k, q)) U Ex(&(k, q)) U E3(S(k, q)). (3.6)

Since the sets E;(S(k,q)), at ¢ = 1,2,3, contain the identical endo-
morphism and the inclusions are valid (3.5) and (3.6), then helds the
equality

End(&(k, q)) = E1(S(k,q)) - E2(S(k, q)) - E3(S(k, q))-

3. We prove the second statement of Theorem. In [5] among the permu-
tations from Sy stood out a lot of permutations A(q) (see (1.3) in [5]). It is
not difficult to verify the equality S N Ac(q) = A(g). Theorem 2 from [5],
in particular, parametrizes automorphisms Aut(&(k, ¢)) permutations from
A(q) and gives a general view of automorphism. At v from A(q) mapping
¢y € E1(6(k,q)) is an automorphism. Thus, we obtain the inclusion

Aut(&(k,q)) € E1(S(k,q)).

4. The third and fourth points of the theorem follow from the lemma 8.
Theorem 1 is proved. g

Proof of the theorem 2. 1. Let GG is an arbitrary finite monoid,
|G| = m, t > 0 is some integer and k = m + ¢t. Next, for the monoid
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G build a groupoid &(k,q) such that G is isomorphically embedded in a
monoid End(&(k, q)).

Choose a tuple ¢ € S,%k such that the following conditions are fulfield:

A. for any i € {1,...,m} equalities are fulfield 5; = 3, = I is identity
transformation of the set {1,...,k};

B. for any i € {m + 1,...,k} permutations (; and [, operate on set
{1,...,m} as the identity permutation, and the set mapping of {m+1, ..., k}
into itself.

2. Let ~y is arbitrary mapping from Z,, and 4’ is mapping from Z,which
acts on {1,...,m} like mapping v, on set {m + 1,...,k} acts as an identity
map. Note that for each fixed v mapping v/ defined uniquely. We show
that ¢,/ is endomorphism of a groupoid &(k,¢q) from monoid E(&(k, q)).

Let s € {1,...,m}. Then 8, = B, =1, 7/(s) = v(s) € {1, ..,m}, therefore
By(s) = 5/7/(3) = I and equalities

Byris) (V' (8)) = 2 (1), 7 (Bs(2)) = 7'(0), By (7' (8)) = (4), 7' (BL(4)) = +' ()

for any i € {1,...,k} are true.
Let s € {m+1,...,k}. Then the equalities

ey roan @), ie{l,...,m}
By (V' (8) = Bs('(8)) = {Bs(i), Pefmt 1, k),

/ W )@, de{l,...,m}
V(A1) = {Bs(z‘), ie{m+1,..k}

are true. Hence and from similar equalities for 3. we get that 7/ satisfies
the conditions (2.2), hence, ¢, € E1(&(k,q)).

3. Theorem 1’ from [4, p. 419] states: every finite semigroup with unity
G embeds isomorphically into a symmetric semigroup on the set G.

By this theorem G = H, where H is a submonoid of a symmetric
semigroup Z,,, (a-priory |G| = m). As proved in paragraph 2, any mapping
7y € I, endomorphism will correspond ¢, € E1(&(k,q)). Denote by E(H)
- a set of all kinds of endomorphisms ¢,/, where v € H.

It can be shown that for any mappings v1,v2 € Z,, equalities

¢('ylo'yg)’ = ¢'yio'yéa (b'yioyé = ¢'yi ¢'yé (37)

are fulfield. In fact, the first equality (3.7) follows from equality of permu-
tations (71 0 y2)" = 74 0 74, which give equality

(1 072) (1) = (71 072)(s1) = 11 (12(51)) = 11 (12(51)) = (V1 ©72)(51);

(11072)/(52) = s2 =71(7a(52)) = (71 072)(s2) (s1 <m5 m+1<sy).
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Second equality from (3.7) follows from the equalities

¢/O/ o AN, G 1D
(as) M°72 = Ayiorh)(s) = Gl (r(s)) = (a’Yé(S)) N o= ((ag) 2)™M = a;t 2

(s€ {1, ... k}).

So E(H) is closed relative to the composition of endomorphisms and
G=H=E(H), E(H) C E1(6(k,q)). Theorem 2 is proved. O

4. Conclusion

It is important to study the automorphisms of groupoids that are not
semigroups and quasigroups because of potential applications in the cryp-
tography. Problems of application of some non-associative groupoids in
cryptography were considered in [3] and other publications.

The results of this paper (Theorem 2) allow us to represent arbitrary
finite monoids as some submonoids of a monoid of endomorphisms of a
groupoid &(k,q). In addition, the solution of Problem 1, formulated as
Theorem 1, gives an example of the study of the monoid of endomorphisms
of a groupoid, which is not a semigroup or quasigroup.

Moreover, it should be noted that studies of endomorphisms of semi-
groups and quasigroups are of interest to modern researchers. The G,,(K)
semigroups’ endomorphisms of invertible non-negative matrices over or-
dered rings with invertible 2 were studied in [9]. Earlier, in [1;7] automor-
phisms G,,(K) over various ordered rings were studied. An example of the
study of endomorphisms of linear and alinear quasigroups can be found
in [10].
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DHa0oMOpPU3MbI HEKOTOPBIX I'PYIIIOUI0B Hopaaka k + k2
A. B. Jlurappun

Cubupcruti gedeparvroili yrusepcumem, Kpacnosapck, Poccutickan @edeparus

Awnnoraiusi. ABTOMOPQU3MBI 1 SHIOMOP(MU3MBI AKTHBHO UCIIOJIB3YIOTCS B PA3JIMI-
HBIX TEOPETUIECKUX MCCIETOBAHUAX. B 9acTHOCTH, TeopeTudIecKuit MHTEpeC K U3y YEHUIO
aBTOMOP(U3MOB 06YCIOBJIEH BO3MOXKHOCTBIO MIPEICTABIIEHUS 9JIEMEHTOB (DUKCUPOBAHHO
rpymInbl aBTOMOPGU3MaMH HEKOTOPOI MOIAXOAsIel anredbpandeckoii cucreMbl. Hampu-
mep, B 1946 roxy I'. Bupkrod mokasas, 9To KaxKjgasi TpyNIa sIBIASETCS TPYIINONR BCEX
aBTOMOPGU3MOB HeKOTOpO#l anredbpnl. B 1958 romy /I. I'poor omybaukoBas paboTy, B
KOTOPOU OBLIO YCTAHOBJIEHO, YTO BCSIKAsl TPYIIIA €CTh TPYIIa BCEX aBTOMOPMU3MOB HEKO-
Toporo koJbia. M. M. I'myxoseim u I'. B. Tumodeenko Ob17I0 yCTAHOBJIEHO: BCsiKast KOHEY-
Has Tpynna m3oMopdHa Tpyme aBTOMOPMU3IMOB MOAXOAAINIEH KOHETHO-OMPEIeTIEHHOMN
KBA3UTPYIIIHL.

Uccnenyrorcsa sH10MOpOU3IMBI HEKOTOPBHIX KOHEUHBIX TPYIIIOUIOB C TTOPOXKIAIOIHM
MHOYKECTBOM 13 k SJIEMEHTOB ¥ TOPsIKOM k + k2, He SIBJISIONMXCS KBA3UTPYIIAMU U
nonyrpynnavmu npu k > 1. IlpuBoaurcs onucanme Bcex SHAOMOPGMU3IMOB ITUX I'PYIION-
JIOB KaK O0TOOpaKeHU HOCUTE TSI U YCTAHABIUBAIOTCSI HEKOTOPhIE CTPYKTYPHBIE CBOHCTBA
MOHOHJA BCeX SHAOMOPGU3MOB. Pamnee 66110 yCTaHOBIIEHO, YTO BCAKAs KOHEYHAS I'PYIIIA
M30MOP(MHO BKJIAJBIBAETCS B TPYIIY BCEX aBTOMOP(MU3MOB HEKOTOPOTO IOXOISIIETO
IpyIIona mopsiaka k + k2 U MOpOXKIAIOIAM MHOMKECTBOM U3 k 3JIEMEHTOB.

[Tokazano, uro mjs 060r0 KOHEIHOro MOHOWAA (G U JiF0OOTO HATYPAIBLHOTO YUCTIA
k > |G| 6yzner cymecrBoBaTh Irpymnons S ¢ MOPOXKJAIOIIIM MHOXKECTBOM U3 k 3JIEMEHTOB
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u nopsiakoM k + k% rakoit, uro G u30MOphEH HEKOTOPOMY IIOIMOHOMY MOHOMA BCEX
9HI0MOPdU3MOB rpymnonia S.

KuroyeBbie ciioBa: 3HI0OMOPGU3M T'PYIIIONIA, SHIOMOPMU3MBI, I'PYIIIOAIHI, MAaT-

MbI, MOHOHU/IbI.
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