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Abstract. In the late 1960s and early 1970s, a new class of problems appeared in the
theory of optimal control. It was determined that the structure of a number of systems
or processes is not homogeneous and can change over time. Therefore, new mathematical
models of heterogeneous structure have been developed.

Research methods for this type of system vary widely, reflecting various scientific
schools and thought. One of the proposed options was to develop an approach that retains
the traditional assumptions of optimal control theory. Its basis is Krotov’s sufficient
optimality conditions for discrete systems, formulated in terms of arbitrary sets and
mappings.

One of the classes of heterogeneous systems is considered in this paper: discrete-
continuous systems (DCSs). DCSs are used for case where all the homogeneous subsys-
tems of the lower level are not only connected by a common functional but also have
their own goals.

In this paper a generalization of Krotov’s sufficient optimality conditions is applied.
The foundational theory is the Krotov method of global improvement, which was origi-
nally proposed for discrete processes. The advantage of the proposed method is that its
conjugate system of vector-matrix equations is linear; hence, its solution always exists,
which allows us to find the desired solution in the optimal control problem for DCSs.

Keywords: discrete-continuous systems, sufficient optimality conditions, control im-
provement method.
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1. Introduction

Scientific developments and discoveries lead to both new technologies
and modifications of old ones. Traditionally, mathematical models have
been used to solve optimization problems. Often, these models do not fully
reflect the investigated processes and require completion. For example, the
problem of extending an old investment policy to a new period may require
additional research on a separate mathematical model, not just a change in
some of the parameters. In such situations, the mathematical model used
becomes two-level, and, therefore, a new class of optimization problems
appears.

Such systems with a heterogeneous structure are widespread in prac-
tice and have different names. These include discrete-continuous, logical-
dynamic, impulse, hybrid, and a number of other systems [1;3;7;11;14].
Further examples are given in [2;4]. Such systems continue to attract the
attention of researchers in various scientific areas, which has been reflected
in the subject matter of scientific conferences in recent years.

The approach proposed in [3], based on the interpretation of an abstract
model of a multistep controlled process [8] as a discrete-continuous system
(DCS), made it possible to construct a two-level model by decomposing
an inhomogeneous system into homogeneous subsystems. And then, based
on a generalization of the known optimality conditions, it was possible to
construct optimization algorithms similar to those developed for homoge-
neous systems. Here, by homogeneous systems, we mean systems with
an unchanged structure that are studied in the classical theory of optimal
control. All homogeneous subsystems in such a model are connected by a
common goal, the role of which is played by the functional. This does not
exclude the fact that each homogeneous subsystem can have its own goal.
For such a case, when intermediate criteria for homogeneous lower-level
models are available, a generalization of the previously obtained sufficient
optimality conditions is given in [13]. They are presented in this paper
for a better understanding, and on their basis, a second-order method for
control improvement is constructed. It can be considered as a development
of the Krotov method of global improvement [10], proposed initially for
ordinary discrete processes. The theorem on the improvability of the initial
approximation is formulated and proved here.

The advantage of the proposed method is that its conjugate system
of vector-matrix equations is linear; therefore, its solution always exists.
It does not contain the Riccati matrix equation, as in [12;15]. The pro-
posed method may not have a solution and will require the development
of an additional procedure to eliminate the problem. To demonstrate the
operability of the method, an illustrative example is considered.
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2. Discrete-Continuous System Model

Let us consider abstract controlled system [8], all of its objects of arbi-
trary nature (possibly different):

w(k+1) = fk,x(k),u(k)), keK=T{krkr+1, . ke}y.  (2.1)

where k is the number of the step (stage), x and u are respectively variables
of state and control, f is the operator, U(k, x) is the set given for each k
and z, k;, kp are the initial and final steps, respectively.
On some subset K' € K, kr ¢ K', a continuous low-level system
operates in the role of a control component
_dxf

¢ = & = fC(z,t,2%u), teT(z)=[t;(2),tr(z)], (2.2)

x(k,t) € X(2,t) C Rk, u®(k,t) € U (2,t, 2% C RrF) 5 = (k, z, ud> i

for the system (2.2) an intermediate goal is defined on the interval [¢;(2),
tr(z)] in the form of a functional:

"= / rrt, 2¢(k,t), u¢(k, t))dt — inf .
T(2(k))

For each k € K’ the right-hand side operator (2.1) is the following
f(k,x(k), u(k)) = 0 (z,7°) , where

'yc = (tfv x% tr, x%‘) € FC(Z)v

(z) = {7": tr = 7(2), 27 = £(2), (tr,2F) € TR(2)}.
Here, 2z = (k, z, ud) is a set of upper-level variables (parameters at the
lower level), u? is a control variable of arbitrary nature, t; = 7(2), 2§ = £(2)
are given functions of z.
The solution of this two-level system is the set m = (x(k), u(k)) (called
a discrete-continuous process), where for k € K':

u(k) = (u'(k), me(k)) ,me(k) € D° (2(k)).

For the element m m¢(k) is a continuous process (z¢(k,t), u®(k,t)), t €
T(z(k)), and D¢(z) is the set of admissible processes m¢, complying with
the differential system (2.2) with additional restrictions for piecewise con-
tinuous u¢(k, t) and piecewise smooth z¢(k,t) (at each discrete step k). It is
assumed that the functions f* have all properties required for the existence
of the functionals I*. Let us denote the set of elements m satisfying all the
above conditions by D and call it a set of admissible discrete-continuous
processes.
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For the model (2.1), (2.2) we consider the problem of finding the mini-
mum on D of the functional I = F (z (kp)) for fixed initial and final steps
kr =0, krp =K, x (k) and additional constraints

w(k) € X(k), a°€ X (1), (2.3)

where X(k), X¢(z,t) are given sets.

Note that the construction of a discrete top-level model that connects
homogeneous continuous systems operating at different time intervals is a
kind of heuristic method and reflects the researcher’s views on the problem
under consideration. The model may not be the only one possible. The
researcher has decided what information about the end of a stage should
be transmitted to the upper level and what control actions the upper level
passes to the lower level. There are no publications about the choice of a
single top-level model.

The term DCS (or discrete-continuous process) was proposed in [3],
when research on such systems was just beginning. This name is also used
by other authors, for example, in the works of B. M. Miller and E. Ya.
Rubinovich. The more common term is hybrid systems, especially abroad.

DCSs with intermediate criteria are characteristic of astronautics, chem-
ical production, and economics. So, when traveling from one planet to
another at different stages of movement, different systems of equations and
different types of engines are used. For each stage, the task is to minimize
fuel consumption. But in general, a soft fit is required. Other examples
can be found in the works of A.S. Bortakovsky [2] and V.I. Gurman [4].

3. Optimality and Improvement Sufficient Conditions

The sufficient optimality conditions for this model were obtained in [13]
and are as follows.

Theorem 1. [13]. Let there be a sequence of discrete-continuous processes
{ms} C D and functionals ¢, ¢ such that:
1) u®(z,t) is piecewise continuous for each z;
2) R(k7$s (k) y Us (k)) — :U’(k)a k€ K;
3) fT(zs) (R (s, t, S (t) ,ul (t°)) — € (25,t))dt = 0, k e K, t € T (25);
1) G° (50,78) — I (25) = 0, kb € K/;
5) G(zs(tp)) — L.

Then the sequence {ms} is a minimizing sequence for I on D.

The basic constructions of the theorem 1 1, representing a generaliza-
tion of the constructions of sufficient Krotovs optimality conditions for
homogeneous continuous and discrete systems [9], take the form:

G(x)=F(z)+¢(kr,z)— @ (kr,z (kr)),
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R(k,z,u) =9 (k+1, f(k,z,u)) — ¢ (k,x),
G (2,7%) = = (k+1,0(2,7°)) + ¢ (k, z) +
+¢ (2, tp, 2%) — % (2,1, 27) ,

RC (z,t,2° uf) = @58 € (2, t, 2%, uC) — fF (2,1, 25 uC) + ¢S (2,1, 2°).
pl (z,t) =sup {R (z,t,z¢uc) : ¢ € X(2,t),u’ € U (2,t,z},
I°(z) =inf {G°(2,7°) : v* € I'(2), z° € X(z,tp)},

sup{R (k,z,u) : x € X(k),u e U(k,x)}, teK\K/,
Hk) = { —inf{i¢ () e X(k), ul € Ud(k,2)}, keK,
l=inf{G(z): e TNX(K)},

L=G(x(kp)— Y Rk ak)uk)+
K\K'\kp

+ (G R) 2 () - / RE(2(k), b, 2(, ), u (b, 1) dt ),
K’ T(=(k))

where ¢, ¢ are the Krotov functions for the upper and lower levels
respectively , ¢S is the gradient of ¢°, T is the transposition sign.

We note that L = I on D. This reflects the principle of the extension [9]
and is one of the foundations for constructing the method.

Theorem 2. [13]. For any element m € D and any ¢, ¢° the estimate is

I(m)—i%fISA:I(m)—l.

Let there be two processes m' € D and m™ € E and functionals p and
¢, such that L (mH) <L (mI) =1 (mI) , and m' € D.
Then I(m") < I(m!).

4. Krotov Method

Suppose that kr,zr, K,t;(k),tr (k) are fixed, X (k) = R™(k),
X< (kyt) = R (k), T(z) = R, T¢(z) = R (k), a5 (k) = € (kya (k).
there are no constraints for state variables of both levels and upper-level
control variables, lowerlevel subsystems do not depend on u¢, and the
used constructions of sufficient optimality conditions are such that all the
following operations are valid.

We will also assume that solutions of homogeneous systems (2.2) exist
for each k € K’. The case of non-existence requires a change in the model
and is not considered.
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When constructing methods the problem of improving the element is
used, which consists, essentially, in constructing some operator w : D — D,
such that I(w(m)) < I(m) [5]. The problem of improving is following: we
have an element m! € D and we need to find an element m!' € D such that
T (m) > I (ml).

We will lead search for an element m!' and corresponding functions
o (k,z (k)), % (2,t,2°) from the fulfillment of the conditions:

R (k,2(k),u’(k)) — min, (4.1)
G (z) — max, (4.2)
R (z,t,2° (k,t) ul (K, t) — min, (4.3)
R (z,t,2° (k,t) ,u! (k,t)) — min, (4.4)
G (z,2%,r7) — max. (4.5)
Let

U (k,z) =arg max R(k,z(k),u(k)), (4.6)

ueU(k,x)
¢ (z,t,z¢) =arg max  R°(z,t,z%u). (4.7)

uceUe(z,t,x°)

Then, from the given discrete-continuous system and the initial condi-
tions for the obtained controls, the functions z'(k), z(k,t) and control
programs are obtained:

u (k) = a (k,2"(k)) ,u™ (k,t) = @° (k, t, 2" (k), 2 (K, 1)),

i.e. an element m!!, such that I (mH) <I (mI) Repeating iteratively these
operations, we obtain an improving sequence {m}.
In this case the following theorem is valid.

Theorem 3. If the element m' is not a solution to the problem, then the
inequality L (ml) > L (mH) is valid.

Proof. Let us show that I (mH) -1 (mI) =L (mH) —L (mI) < 0, following
the paper [6]. We obtain

I, (m117(p17¢d) I (mI’(pI7SOcI) _

=G @M -G @)= Y (R(ka" (k) u" (k) 0")—
K\K'\kp

—R(k,a'(k),u' (k), ) + ) (G° (2" (k) , ¢, 7)) —
%

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
2020. T. 32. Cepust «Maremaruxas. C. 17-32



SECOND ORDER KROTOV METHOD FOR DCSs

~Ge(2(k), o', %)) — /(Rc(zn(k%t>$dl(t),u011(t),wl,wd)—
T(2)
—RE(z (k) t,2l(t), u (1), @', 0))dt = Ap — Dg + Ay — Ay,
where Ay = G (z!) — G (2) < 0 by condition (4.2).

Ay = Z (R(k, xﬂ(k)a ull(k)a 901) — R(k, ml(k)a ul(k)7 (:OI))) =
K\K'\kp

= Y (R(k, 2" (k), u"(k), ") = R(k, 2" (), u' (k), o))+
K\K'\kp

+ Y (Rlk,a" (k) W' (k), ") = R(k, @' (k),u' (k), ")) > 0
K\K'\kp
according to (4.1). Then we obtain
A= (G (2" (k) ¢, ¢7) — G° (2" (k) ,¢", ¢T)) <0,
K/

and

- Rc(zl(k)v 2 xd(t)’ ud(t)’ (PIa @CI))dt =

— / (RC(ZH(]{J), t, xCH(t), UCH(t), SDIa (,OCI)—
T(z)
— RE(Z" (k) t, 2T (1), u (2), @', o)) dt+

+ / (Rc(zll(k}),t, .TCH(t),uCI(t), 9017 (,DCI)—
T(z)

— RO(2'(k), t,2(1), u (), ", o))t > 0

according to the conditions (4.3), (4.4) and (4.5).
Then

L(m") = L(m")=A1—Ay+Az— Ay <O0.

23

O

From the theorem 3 it follows that if the above conditions are satisfied,
we can construct such an improving sequence mg, that I (mgy1) < I (mg).
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Let us consider the method of finding functions ¢, ¢°. We are using
principle of expansion [9] and the theorem 2. Conditions (4.1)—(4.5) mean,
that the functional L, calculated for controls u!(k), u¢! (k,t), is investigated
to the maximum. We consider the increment of the functional L = I, which
we represent in the form:

~ 1 2 1 2
OL~dG+d*G— ) (dR+2dR>+
K\K'\kp

c 1 2mve c 1 2 pe
+ ) dG* + S d°G /(dR+2dR>dt

or

AL~ GITAz + %AxTGmAx - > <Rf Az + ;AxTRmAx> +
K\K'\kp

+ ) (G Axh
K/\kp

1 1 .
+ 5 AT Goe e + G Az + iAxTngAx + AzrT GF Az ) —

- / ( REEAz® 4+ RT Ax+

T(z)
1 1
+ iA:UCTRg%cA:UC + Azt RS . Ax€ + §AZL'TR;xA33 ) dt.

Here, the first and second derivatives of the functions R, G, R, G¢ are
calculated for v = u!, u® = ul, a Az = x — 2'(k), Az® = 2¢ — 2 (K, 1),
AzG = 2% — xf}

To fulfill the conditions (4.1)—(4.5) just assume:

Gy =0, Ry =0, Rpe =0, GS =0, G5 =0, RS =0. (4.8)

Guy = =AY, Ry = A%, Ricpe = A%, RGe =0, Ge e = =AY, (4.9)
Gope =0, G5y = —A°, Rg, = —A°, (4.10)

where —A, A%, A3, —A% —A5, —AS are positive definite diagonal matrices.
It is easy to see, that conditions (4.8)—(4.10) are sufficient conditions for the
extrema of the functions G, G¢, R, R°. We supplement the conditions (4.8)
- (4.10) with the conditions of the first and second orders of level joining:

d
@(@(k; + 1) Q(ka x7x%‘7$§)) - Soc(ka-r'thch)) = 07 (411)
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d2
%(ap(k: +1,0(k, z, 2%, 2%)) — ¢ (k, z.tp,2%)) = AT, (4.12)
A7 is a positive definite diagonal matrix

We define the functions ¢ and ¢° in the following form:

o (k) = 7 () a5 AT (K) A, 0° (2, ,2%) = XT (k) a0 (O, )+

1 1
+§A$CTUC (k,t) Az + §A$T0d (k,t) Az + AzTA (k,t) Az©,

where 9 (k), X (k,t),9° (k,t) are vector functions of dimensions m,n,n,
and o¢(k,t), o (k,t), A(k,t) are matrices of dimensions n X n, m X m,
m X n, respectively. Then ¢, = ¢ (k), @zx = 0 (k), ¢5 = A(k, ), ¢S =
Ve (kyt), ¢S = ab(k,t), ocpe = 0 (kyt), @Sy = A (k,t). In addition,
we introduce the functions

H (k,x(k), ¢ (k + 1), u(k)) = " (k + 1) f (k, z(k), u(k)) , k € K\K'\kr,

H (k, w(k), Y (k+1), x(kr), 2(kp)) =" (k1)8 (k, 2(k), 2(kr), z(kr)) , k€K,

HC (k,z(k),v(k,t),x°(k, t),u(k,t)) =
= Tk, ) € (ky 2 (k), 2¢(k, 1), uC(k, t)) — fE(t, x(k, t), u¢(k,t)).

Taking into account the introduced notation from the conditions (4.8)-
(4.10) and conditions of levels joining (4.11)—(4.12) we obtain:

¥ (kp) = —Fy, ¥ (k) = Hy, k € K\K'\kp,
¥ (k) = Hy + (Hypels)" + Ak, tr) — Mk, 1) + £, 0(tr), k € K'\kr,
y c _ T e c c _
A= _Hxa )‘(katF) - Hx +£$H£B(j7¢) - —ch, 7/’ (kvtF) - Hxiw
0 (k,tp) = 0L (tp)o (k + 1) Ope(tp) + Hyege + A%,
¢ = —0° ;c _ £CT c_ chxc + A3, gC(tF) = HE%U(k + 1)9$%,
1 1 1 1
- d c c \T c c\T c 5
— _7A cp T A c - 7A - = A - H A
o 2 fmm 2( fxw) 2 fx 2( fx) oz T )
O'd(k,tp) = 950’ (k’ + 1) egc + Hg: + Hmm§§x+
+9:%10'<k + 1)0$C§m + gngﬁxfx + fx:vHac

iz

1 1 1 1
A=_—_ZA CC—*ACCT—*CT c_ _gCfc _ HE
A = ST = STt = o

A(k,tp) =070 (k+1)0sc(tr) + Hyge
o (k)= fro(k+1) fo+ Hew + A% k € K\K'\kr,
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g (k) = Hy, + Hxxe(tl)fx + 930' (k + 1) 0, + §T ¢ (tl) Eat
+H£§ (tl)fm + 597;997;0( ) (k + 1) z° (tl)grr + éTH:BCw‘ (tl)‘fz‘i'

+H Eu0(tr) + A%, k € K'\kp, o(kp) = —Fp + A",

5. The Algorithm of the Method

1. We define arbitrary functions ¢! (k,z (k)) and ¢ (2,t, 2°).

2. We calculate controls @ (k, x) , uc (k, t,z¢) usmg (4. ) (4.7).

3. We define trajectories 2!, 2 and controls u! (k),u (k,t) (element
m!) using equations of a dlscrete continuous process (2.1), (2.2). We cal-
culate the value of the functional I'.

4. We resolve the DCS from right to left with respect to functions
P, 1° A and matrices o, o€ , A. For definiteness, we can put all the
/\V are equal to constant §° < 0 i=2,3,5,0>0,i=1,4. Then we define

new functions ' (k, z(k)) and ¢“(2,t,2¢). We back to the step 2.

Remark 1. If the functional has not improved, then the values \’, playing
the role of regulators of the proximity of neighboring approximations must
be increased.

Remark 2. The system of vector-matrix equations with respect to vector
functions 1, ¢, A and matrices o, 0¢, 0%, A is linear and therefore always has
a solution.

Example 1. The following 2-stage problem is considered.
Ist stage t € [0,1] : 2! = (22)2, 22 =, |ut| < 1,

.CUCI(O) = 0,$62(0) =1, fl =z

2nd stage t € [1,2] : ! = u? — (z1)2, |u?| <2, [ = 2(2) — inf.

Let us consider this system as discrete-continuous. We obtain k£ =
0,1,2,3. Since the role of the connecting variable in the two stages under
consideration is played by z¢!, it is easy to write the upper level process in
terms of this variable. We establish the correlation between the variables.
At the beginning of the process k = 0,t = 0,2(0) = 2¢'(0) = 0. Further,
x(1) = 2¢(0,1),2°(1,1) = 2(1). Then I = x(2). The last instant 3rd stage
plays the role of a transmitter of information about the end of the whole
process. Then I = x'(3) = z1(2).

So, the DCS model has the form:

k=0, 2°10,t) = (z°%(0,1))%, #°(0,t) = u(0,t), |u(0,t)| <1,
1(0,0)=0,2%(0,0) =1, £1(0,t) = *(0, ), z(0) = z*(0,0) = 0, € [0, 1].
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SECOND ORDER KROTOV METHOD FOR DCSs 27
E=1, 8010 = u?(1L,1) — @182, [uP(1,)] <2
z(1) = 2°1(0, 1), te[l1,2],
k=2, x(2)=21,2), k=3, I=2z'(3)=22).
Obviously, the set K’ = {1,2} and functions (1) = 2¢(0,1),£(1) =
z(1), 0(2) = z°1(1,2), ( ) x(2). We obtain the necessary constructions:
R (O,t,LE $2 .I ) (70;01 (:ECQ)Q + @;CQUCI - xCI + 301?’
RE(1,t, 21, 2 u?) = o (u? — (2°1)2) + 5.
It is easy to see, that

~cl : c ~c2 : c
U = SIgnY. e, U = 231gn<pxcl,

HC(O t wcl ch .’BCl .1‘02 ucl) — ¢C1(x62)2 —Hﬂdud _ xcl
Hc(l,t, ’l]Z)CI,CL'Cl,UCQ) _ 1/)61(1182 o ($61)2),
H(1,2,9(2)) = $(2)2(0,1), H(2,2,9(3)) = ¢(3)z°(1,2).
Since the lower level process is independent of z, then A = 0, ¢ =0, A = 0.

Let 019 = 021 = 092 = 0 and define the functions ¢ and ¢ in the following
form:

o= (V) + Jo()e — @)k =0,
wzw@m+§dm@—u¥ﬁk=L

@C(O’t) _ 1/101.%‘01 + ¢02$c2 + Ull(xcl o (xcl)I)Q’ k= 07

1
S00(1’1‘5) — ¢c1xcl + 5O_fl(xcl _ (xcl)l)ka -1

Then the equations of the method will take the following form.
At the first stage for k=0

¢cl _ 171/'102 _ —21/1019362,1&61(1) _ ¢1(2),w02(1) _ w(1>70€1 _ 0’
o1(1) = 7(2) + 64(2), (1) = ¥ (1, 1), r11(1) = (1),
At the second stage for kK =1
¢cl _ QQ/JCIJ’CI,wCI(Q) —_ 1/}(2) 6¢ = 4o cl + chl’

0°(2) = 0(3) +64(3),¥(3) = —1,0(3) = 6:1(3).
We set the initial approximation u¢!(0,t) = u?(1,) = 0. Then z¢! = ¢,k =
0and 2 = 3,k =1,1°=0.5
The solution to the example was obtained in one iteration and the
functionality changed from 0.5 to —3.44. Control variables and trajectories
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Figure

1. Trajectory change.

-1.5

2

0.2 0.4 0.6

0.8

Figure 2. Control change.
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are shown in Fig. 1 and Fig. 2. At the beginning of the calculations,
the parameters 01, 04 were assumed to be equal to zero at both stages.
Then they were changed over the interval [0;0.3], which did not affect the
calculation results. So the functional at §; = d4 = 0.3 at both stages
changed from the value 0.5 to the previous value —3.44.

6. Conclusion

Thus, an analog of the well-known Krotov global improvement method
is obtained. A second order method of improving for DCS with interme-
diate criteria is constructed, its algorithm is formulated and tested on an
illustrative example. The calculation results confirm the efficiency of the
method.
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Metoa KporoBa BTOpOro mnopsigka AJjs JIUCKPETHO-HeIpe-
PBIBHBIX CHUCTEM

1. B. Pacuna', O. B. JJanunenxo?

L Hnemumym npozpammmoiz cucmem PAH, Ilepecaasav-3areccrut, Poccutickasn
Dedepavu,
2 Hncmumym npobaem ynpasaernus PAH, Mocksa, Poccutickas Pedepayus

Anvporanusi. B konre 60-x u Havasie 70-X I'T. IPOILJIOTO BEKAa B TEOPUM OITHMAJIb-
HOTO YIIPaBJIEHUS TIOSIBUJICST HOBBIN Kjacc 3amad. OKa3aioch, 9TO CTPYKTYPa OMMCAHUS
psiJla CHCTEM WJIM pacCMaTpPUBAaEMbIX ITPOIIECCOB HE OJHOPOJIHA M MOYKET M3MEHSTHCS C
TeyeHneM BpeMeHu. VITor: mosiBeHIe HOBBIX MATEMATHYECKUX MOJEsell CHCTeM U IPO-
IIECCOB YIIPABJIEHUSI HEOJHOPOJHON CTPYKTYpbl. MeToabl MCcCIeIoBaHus TAKUX CHUCTEM
0YeHDb PA3HOOOPA3HBI U OTPAXKAIOT PA3IMIHBIE HAYYHBIE IIIKOJbI U HAIIPABJICHUS.

OuH U3 BApMAHTOB COCTOUT B PA3BUTUU MOIXO/A, MO3BOJISIIONIETO OCTATHCS B PaM-
KaX TPAJUIMOHHBIX IIPEIIOJIOXKEHNI TEOPHUH ONTUMAJIBHOIO yIipaByieHus. Ero ocHoBa —
IOCTaTOYHBIE ycoBusi onTuMasbHocTH B. @. KpoToBa s JUCKpPETHBIX CUCTEM, Chop-
MYJIIPOBAHHBIE B TEDMUHAX IIPOU3BOJIBHBIX MHOYKECTB U OTOOPAarKeHMUIA.

B pabore paccmarpuBaeTcs ogHa W3 Pa3HOBUIHOCTEN HEOIHOPOIHBIX CHUCTEM: JIHC-
kperHo-HenpepbiBuble cucreMbl (JHC) mis ciydasi, Korja Bce OZHOPOAHBIE IIOJCHUCTE-

Nssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2020. T. 32. Cepust «Maremaruxas. C. 17-32



SECOND ORDER KROTOV METHOD FOR DCSs 31

Mbl HU2KHETO YPOBHSI HE TOJIBKO CBSI3aHBI OOIMUM (DYHKIIMOHAJIOM, HO UMEIOT M CBOHU
COOCTBEHHBIE 11EJIN.

HaJtee 11181 TOCTpOEHMST METO/1a ITPUMEHsIeTCsl 000DIIEeHNe TOCTATOYHBIX YCJIOBHUI OII-
TumaabaocTH B. @. Kporosa. Uneitnoit ocHoBoit ciyxkut Meron Kporosa rimo6aabrHOTO
VIIydIIeHnus, MIPEJIOXKEHHBIN H3HAYAJIBHO M1 OOBIMHBIX JUCKPETHBIX mporieccoB. IIpe-
WMYIIECTBO MIPEIaraeMOr0 METOJIa COCTOUT B TOM, UTO €r0 COIPsI’KEeHHAs] CHCTEMAa BEK-
TOPHO-MATPUYHBIX yDaBHEHHUIl JIMHENHas ¥, CJIEIOBATEJIbHO, €€ PeIlleHue BCEerja CyIle-
CTBYeT, 9TO IMO3BOJISET HAWTH MCKOMOE DEeIleHHe B 3aJa9e ONTHUMAJIBLHOTO YIIPABICHUST
st JIHC.

KuroueBrbie ciioBa: IUCKPETHO-HENPEPBIBHBIE CUCTEMBI, JIOCTATOYHBIE YCIOBUS OII-
TUMAaJIbHOCTH, METOJ YJIyYIleH sI YIIPABJICHUSI.
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