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Abstract. Generalized Nash Equilibrium Problems (GNEP) have been attracted by
many researchers in the field of game theory, operational research, engineering, economics
as well as telecommunication in recent two decades. One of the most important classes
of GNEP is a convex GNEP with jointly convex or shared constraints which has been
studied extensively. It is considered to be one of the most challenging classes of problems
in the field. Moreover, there is a gap in the studies on the GNEP with coupling and
shared constraints. The aim of this paper is to investigate the relationship between an
exact penalty approach and conjugate duality in convex optimization for the GNEP with
coupling and shared constraints. In association with necessary optimality conditions, we
obtained the parameterized variational inequality problems. This problem has provided
an opportunity to solve many other GNEs. Some numerical results are also presented.
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1. Introduction

The GNEP is the extension of the classical Nash equilibrium problem
(NEP) in which each player’s strategy set depends on the rival player’s
strategies. Since the mid-1990s many efforts have been devoted to the
investigation of GNEP (see [4;9;11;13]), because it has many interesting
applications in the fields of economics, operational research and engineering.
For instance, Wei and Smeers [15] formulated oligopolistic electricity models
as GNEPs. Pang and Fukushima [10] considered a GNEP from multi-
leader-follower games.

It is well-known that in the classic NEP to each player corresponds
convex programming problem, and it can be reduced to a variational in-
equality problem (VIP). This formulation provides a powerful theoretical
and computational framework [8] for the solution of the classical NEP. On
the other hand, the GNEP can be reduced to a quasi-variational inequality
problem (QVI) ( see [12]). Unfortunately, comparing the VIP, there are
few methods available for solving a QVI efficiently.

In recent years, the penalty function methods which are based on elim-
inating the difficult coupling constraints in the GNEP have been attracted
by many researchers. Recently, Fukushima and Pang [10] proposed a se-
quential penalty approach to GNEP, which is reduced the GNEP to smooth
NEP’s for values of penalty parameter increasing to infinity. Facchinei and
Pang [6] proposed the exact penalization techniques whereby the GNEP is
reduced to the solution of a single nonsmooth NEP with a finite value of the
penalty parameter. More recently, Facchinei and Lampariello [7] proposed
the partial penalization techniques to GNEP with coupling constraints.

On the other hand, from a practical point of view, it is important to
find possible many solutions of GNEP (see [1] and [14]).

In this paper, we consider the GNEP with coupling and shared con-
straints, and aim to show how an exact penalty approach can be related
to conjugate duality in convex optimization for GNEP. After penalizing
only the coupling constraints, the problem reduces to the penalized GNEP
with shared constraints. Analyzing special perturbation function and the
formulating optimality conditions for corresponding dual problem, one gets
the parameterized variational inequality problem which allows us to find
possible many solutions for GNEP.

This paper is organized as follows. The next section deals with an exact
penalty approach for GNEP with coupling and shared constraints. In Sec-
tion 3,4 we obtain the parameterized variational inequality problem based
on necessary optimality conditions for primal-dual problems for solving
GNEP and show some numerical results.

Ussectns VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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2. Problem formulation and penalty function approach

The GNEP consists of NV players, and each player’s strategy set depends
on rival players’ strategies. Let xz € R™, ny € N be a player k’s strategy

N
and z := (z1,22,.....,25) € R", n:= > ng. By z_j denotes all players’
k=1

strategies except those of player k, i.e., x_j := (xk/)g:m,#k € R"*, and
n_p :=n —ng. Let O : R = R, k=1, N, be continuously, differentiable
functions such that 6 is convex with respect to k-th variable. Assume that
functions hy : R® — R™+, Lk =1, N, are vector-valued convex with respect
to k-th variable, and ¢ : R® — R! is a vector-valued convex function. We
consider the GNEP which consists in finding z = (z1,...,Zn) € R such
that each player’s strategy T € R™, k=1, N is a solution to the problem

Pp(2-k) inf Ok (21, T )

s.t. hk(:):k,a_c,k) <0,

which is the GNEP with coupling and shared constraints. For any z,y €
R?, x <y means
S

y—zeR ={z=(21,...,25) €R’| 2, > 0, i =1, s}.

Using the notation [T = max(l,0) for a given function [ : R® — R, the exact
penalty function is defined by

let @)l =) ¢f (),
i=1

where ¢ : R” — R® ¢(z) = (c1(x),...,cs(x)), and x € R™. Then the
GNEP reduces to the problem GNEP,., which consists in finding ¥ =
(Z1,...,Zn) € R™ such that each player’s strategy T € R™, k = 1, N is a
solution to the penalized problem

Prp(Z—k) iﬁf O (xh, T_1) + pre - |17y (2, Tl

st glwr k) <O,
l

which turns out to the penalized GNEP with shared constraints and nons-
mooth cost functions (see [1]), where p, > 0, k = 1, N, are parameters.

Introducing auxiliary variables y = (y1,...,yn), yx € R™, k=1, N, let us
consider the problem GNEP,,, consists in finding (Z,y) € R x R™, m =
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my + -+ + my such that (Zp,gx) € R™ x R™ k =1, N is a solution to
the problem (cf. [3])

mg
Pep(@_)  inf [Ok(zp, Z—k) + ok Y U]

st g(wg, 7k) <0,
]
hi (g, k) — yx < 0,
my
0< Yk,
mg
where Yg == (Y1, - Yhomy,) . € R™F.

Proposition 1. For a fized x_ € R"*, k=1, N, it holds

U(Pk,p(x—k)) = U(-'Blc,p@—lc)),

where by v(P) we denote the optimal value of the problem (P).

Proof. Let x_j, € R"-* be fixed and z; € R™ be feasible to the problem
Py p(x_1). Denoting yi, ; = h;j(xk,x_k) implies that yi ; > hy (T, 2_k)
and yr; > 0, j = 1,my. Whence (z,yr) is feasible to the problem
Py p(w_1), where yr = (Yx,1, --s Yk,m,,) and

hi(wp, k) = (M1 (Th, Tp)s ooy Py (Th, 7))

Consequently, we have

Ok (zhy i) + prllhi (zg, 2—i) ||

my,
= Okl(wr, x k) + pk Y hi(k, wk)
j=1

my,
= Op(zp, v_) + pr Z Ur,j > v(Prp(x_)).
j=1

Taking the infimum over all (z,yx) in the left side of the inequality, one
gets V(P p(r—k)) > v(Pp(z—k))-

Conversely, let (zx, yx) be feasible to problem ]3;{7,,(:6_;{). Since xy, is feasible
to Py p(x_k), we obtain that

my
V(Prp(r—k)) < Oz, v—k) + pr Z h;j(xk, T_g)
j=1
mg
< Ok, k) + pi Z Yk j-
j=1

Wssectns VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
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Taking the infimum over all (x, yx) in the right side of the inequality, one
gets v( Py p(r—)) < v(Pyj(x_k)). In conclusion, we have

V(Pep(x-1)) = v(Prpla_s)).

3. Parameterized variational inequality via duality and
optimality conditions

Duality theory plays important role in convex optimization. For the
excellent comprehensive survey dealing with conjugate duality we refer to
[2]. Before go into detail, let us give a short summary about conjugate
duality. Let X C R™ be a nonempty set and f : R = R, g = (g1, ..., gm)" :
R™ — R™ be given functions. Let us consider the optimization problem

(P)  inf f@), G={weX]|gl)<0}.

We consider the function @ : R® x R™ — R fulfilling ®(z,0) = f(x) for
all x € R™. The function ® is the so-called perturbation function of the
problem (P). One can obtain so-called perturbed problem

(Py) inf ®(z,vy).

zER”

The conjugate dual problem to (P,) can be now formulated as being

(D) sup { - <I>*(0,p)},

peER™

where ®* : R® x R™ — R is the conjugate function of ®. The conjugate
function of a given function h : R' — R is defined by

h*(p) = Sup "z — h(x)].

Between the primal and the dual problems weak duality always holds, i.e.,
—o00 < sup(D) < inf(P) < +o0.

In [2], different dual problems based on special perturbation functions have
been investigated. Moreover, the strong duality results and optimality
conditions have been proved.
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Let us now consider a dual problem to Py(x_j) for a fixed xz_; €

R"=#, k =1, N. In association with problem P} ,(x_j), one can introduce
the perturbation function by

my,
Or(zr, k) + pi Y Ykj, if g(zr, x—k) % 0,
j=1

P (Thy Tk, Y) = hi(xr, k) — yr <0,

mp

400, otherwise.

Then the corresponding conjugate function becomes

O} (P, Tk, qx) = sup [pfak + i vk — P(vk, T, i)
T ER™k
YL ER™ME

mg
sup [k ek + @ gk — Ok (@r, @ k) — i Y Uiy,
g(mkvsz)§0 j=1

hi(zg,x—x)—yx < 0
m
where py, ¢ € R* are the perturbation variables. Taking zj instead of vy,
by zx = hg(zk, 2_1) — Yk, and using the notation ey = (1,...,1)T € R™* we
have

Q5 (Pry T—k, Qi) = sup  [pfak + el ha(Tr, vog) — @i’ 2k
g(Zk,ID,k)§0
2z <0

M

— O (g, T_k) — prer’ hi(zr, T_1) + prex’ 21)

= sup  [pfak 4+ qpl ha(wk, v_g) — Ok (zh, 24
9(%@—1&?0

— prex’ hi(zr, z_g)] + sup (orer — qx)” 2k
2z <0

M

Taking the first variable by zero, it holds

P10, 2k, qr) = sup  [qr” hi(zr, 7—1)
9(%,3671@)%0

— Op(zr, 2—1) — prex” hy(wg, v_p)] + SU<pO(Pk€k — ar)" 2.
2k =

mp
Since

sup (prex — qr)’ 2x =
Zk S 0

M

07 PEEE — gk > 07
my,
400, otherwise,

Wssectus VIpKyTCKOro rocyapCTBEHHOIO YHUBEPCUTETA.
2020. T. 32. Cepus «Maremaruka». C. 3-16
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the dual problem for Py(x_j) can be written as

Dy(z_p) sup [—®%(0,2_g, qx)]
qrER™E
= sup { —  sup (g he(wg, wog) — Ok (wk, 1)
prer—qr > 0 g(ﬁvk7x—k)§0

mp

- Pkefhk(%,ﬂf—k)]}

= sup inf  [Ok(zk, k) + (orer — ar)” hu(@p, 2_k)].
Prek—qr > (]g(mk,m,k)§0

mp

Remark 1. Since the perturbation in the objective function is linear, it
turns out to be the Lagrange duality with penalty parameters.

Now we formulate the sufficient condition for the primal-dual pair P (x_x)
and Dy (z_y) as follows (cf. [2]):

Proposition 2. Let x_j € R"* k =1,N be fivred. If T € Cp(T_y) :=
{rr € R™| g(og, T_x) <0}, (Pr,qr) € Ry x R™* such that prey, — G > 0

l mp
and satisfy conditions

(i)
O (Th, T_1) + (Prer — Gr) " ha(Tp, T_g)
= inf  [Ok(zk, o) + (Prer — @) hu(z, Tk)];
ry€CK(T—k)
(ii) (Prex — ax) T hi (T, T—g) = 0,

then Ty is an optimal solution to Py(x_p), qr is an optimal solution to
Dy (z_y), respectively.

Proof. Let z_j, € R"-* be fixed. By (i) and (i7), we obtain that

v(Dp(Z-k)) > inf [ (zk, T_g) + (Prex — @) he(zn, Ti)]
2, €Cx(T 1)

= Op(Zp, ) > v(Pr(Z_4))

and taking into account the weak duality, the strong duality is fulfilled
which leads to the expected conclusion. ]

Remark that the condition (i) in Proposition 2 can be rewritten as
Ok (Tk, 1) + (Prex — )" b (Tg, T_g) + 0c(z_) (Tk)

= inf [Ok(zk, Zok) + (Prer — @) hi(@r, Zk) + Sy @) ()],

R €ER™K
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where the indicator function of a set D C R® is defined by

0, ifre X
400, otherwise.

5D : R —>§,(5D(ac) = {

Let the functions 0k, hg, k € {1,..., N} be differentiable. Then for each
k € {1,..., N} the above condition becomes equivalently
0 € O(0k(T, T—k) + (Prex — )" h (fk, k) + 00z ) (Tk))
= VO(Zr, Zt) + (Prex — @)" - Vhi(Zr, Tok) + Ny (Tn),

where the subdifferential of a function h : R® — R at & € R® is the set
Oh(z) = {p ER’| fly) — flx) > p"(y—x), Vy € RS}

and Np = 0dp which is called a normal cone of a given set D C R®.
On the other hand, the above inclusion reduces into the following vari-
ational inequality problem for k € {1,..., N} :

(VIS (V0T T Hprer—Ti) " Vhi(Th, Z_g), 2 —Tk) >0, Vai € Cr(Z_).
Introducing the function F,, : R* — R" by
_ _\T _ N
Fpq(z) = (Vé’k(ﬂ%w k) + (Prer — @) th(kaﬂ?—k))k:lv
we have the following parameterized variational inequality problem of find-
ing z € G such that
where x € R” and G := {z € R"| g(zk, z_j) <0}.
1

The following assertion deals with relationships between problems (VI Zf’q)
and (V1,4).

Proposition 3. Let pp > and q. € R™, k = 1,N be fired. For each
k=1,N and for a fited T_;, € R"-*, X} is a solution to the problem Vlgq
if and only if T = (Z1,...,ZN) s a solution to VI, g.

Proof. If for each k = 1, N and for a fixed T_; € R"*, I} is a solution to
the problem VI% 5.5 then summing all variational inequalities, it holds

N

> (VO (@k, Ti) + (Prer — Gr) " Vii(Ta, Tog), 2 — Tp) > 0,
k=1

Vx— xl,..., EHCkl‘ k:

Wssectus VIpKyTCKOro rocy1apCTBEHHOIO YHUBEPCUTETA.
2020. T. 32. Cepus «Maremaruka». C. 3-16
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In other words, = (Z1, ..., Zn) is a solution of VI .
Conversely, let Z be a solution of V4. Assume that 35 € {1,..., N} and
zj € R™ such that
<v9j(if‘j,.i‘fj) + (,(_)jek - Qj)Tth(.i’j,i‘f '),ffj — J_?j> < 0.
Setting z = (i‘l, vy Tj—1, %j,i‘j_u, ., TN) in V15, it holds
_ _ _\T _ ~ _
(VO0;(z;,2—5) + (pjer — @;)" Vh;(Z5,7—;5), 75 — ;) 2 0,

which leads to a contradiction. Therefore for each k € {1,..., N}, Ty is a
solution of VI g,q-
O

Theorem 1. Let ¢ = (q1,G2, - ,qn) € R™ be fived, and choose p =
(p1, .., pN) Such that py > max Qrj- If T = (Tg, Z—1) € R™ is a solution to
J=L1mg

the problem (VIsg) and for each k =1, N, the conditions

hi(z, 2—k) < @m,,0, and (prex — qx)" - hi(Zg, 1) = 0, (3.1)

are fulfilled, then T is a generalized Nash equilibrium point, i.e., for each
k=1,N, Ty solves the problem Py(Z_y).

Proof. According to the choice of py, and by assumptions for each k = 1, N,
Zr, and @y are feasible to problems Py (Z_j) and Dy(Z_j), respectively. On
the other hand, since z € R™ is a solution to the problem (VI;4), the
conditions (i) — (i7) are fulfilled, and this means that by Proposition 2, for
each k = 1, N, &y solves the problem Py (Z_y). d

Based on the above theorem, let us summarize how to find a solution of
GNEP with coupling and shared constraints.

Let ¢ = (G1,G2, -+ ,qn) € R™ be a fixed parameter.

1) Choose p = (p1, ..., pn) such that pp, > max g;.
j

=1,mg

2) Solve the variational inequality problem (VI;4) and let Z be the solu-
tion of (VIpyq)

3) If the conditions (3.1) are fulfilled, then Z is GNE point, otherwise,
choose parameter ¢ and Goto 1.

Remark 2. If we choose p = (p1, ..., pn) such that g, = max gg;, then
Jj=1my

it is obvious that the second condition in (3.1) is fulfilled.
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4. Numerical Results

In order to solve the variational inequality (V' I; ), we use the hyperplane
projection method and numerical results were tested by using Matlab tools
on a Toshiba L305D 2.0Ghz processor with 3.0 GB RAM.

Example 1.( [7]) We consider the following two players game, where
the first player controls the variable € R and the second y € R.

min(z? — 2xy)
T
0<z<1
+ 3<0
T4y — 2
Y 5 =

1
min <fy2 + (z — 1)y>
y \2
0<y<l1
We penalize the coupled constraint only for the first player.

. 3
min, <x2 —2zy+p1(z+y— §)+)
0<zx<1

1
min,, <§y2 + (z — l)y)
O<y=<1,

where h, is an exact penalty function. Applying results in Section 3, we
obtain the following parameterized VIP.

(Fpg(z™),x —2*) >0, Yz € G,

where

20 -2y+p1—aq
y+z—1

G = {(z,y) eR?0<z <1, 0<y<1}.

ﬂQ(xvy) =

We choose a penalty parameter as p; > g1, where ¢; is uniformly distributed
in (0,1] and the starting point is (z°,¢%) = (1,3)7.

Wssectus VIpKyTCKOro rocysapCTBEHHOIO YHUBEPCUTETA.
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n | time(sec) | iter p1/q GNE

1 0.5313 36 0/0 (0.50003, 0.500039)
2 0.5 35 | 1.09283/0.606843 | (0.378536,0.621536)
3 0.4844 34 1.6534/0.891299 | (0.309508,0.690575)
4 0.4844 35 | 0.474971/0.456468 | (0.49541,0.504682)
) 0.5000 35 | 1.26611/0.821407 | (0.388856,0.611217)
6 0.5313 34 | 1.40737/0.615432 | (0.302048,0.698035)
7 0.5313 34 | 1.66002/0.921813 | (0.315481,0.684603)
8 0.5156 34 | 0.581972/0.176266 | (0.398608,0.601471)
9 0.5156 34 1.85237/0.93547 | (0.270805,0.729275)
10 0.5625 33 1.30392/0.41027 | (0.276619,0.723462)

Table 1: Some GNE points by Parameterized VIP.

Example 2. (see [5]) Now we consider the internet switching model. There
are N players, each player having a single variable x; € R. The utility
functions are given by

Hk(m): (1_$1+...—|—x]\[
r1+...+xN

kE=1,.,N
B )7 ’ ’

for some constant B. The constraints are
1+ ...+any < B, xp > i

for some lower bounds I, > 0. We also take the lower bounds [, = 0.01, k =
1,....,N and N =10, B =1. We know that in this case the problem has a
9 9
100" 7100
hi(z) = —2% +0.01 < 0 and have the parameterized VIP with

T
solution T = ( ) . For each player, we penalize the constraints

FPQ(‘T) = (kaek(a?) - (Pk - Qk))llfozh
G ={z|z1+...+x10< 1},
where
Ve 0u(r) = e
x1+...+x0  (r1+...+x10)?
p = (p1,-p10), 4= (q1,--,q10), Pk > Gk

and g, k = 1,...,10 are uniformly distributed in (0,1]. We choose the

starting point as z° = (0, ...

,0)T.
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ntime(sec)|iter r/q GNE
0.0899953
0.0899953
0.0899953
0.0899953
. . 0.0899953
1] 0.3750 | 9 p=1(0,..,00",g=(0,..,0) 0.0899953
0.0899953
0.0899953
0.0899953
0.0899953
1.21352 0.561196 0.134652
0.878855 0.77268 0.01
0.542837 0.00107337 0.0241183
0.458195 0.00685779 0.01
0.982805 0.195662 0.269438
2] 04844 |14 |p= , @ =
0.634084 0.618563 0.01
1.65256 0.890854 0.244004
1.6656 0.907035 0.24087
0.711841 0.38073 0.01
1.06865 0.504078 0.0469175

Table 2: Some GNE points by Parameterized VIP.

In this paper, we have examined a generalized Nash equilibrium problem

5. Conclusion

with coupling and shared constraints.
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Tounsie mTpadbl U CONPsi2KeHHAsI IBOMCTBEHHOCTD JIJIsI
0000I11IeHHBbIX 337a49 paBHOBecus H»aima co cBsi3aHHBIMU U
OOIIMMHU OrpaHUYEHUSIMU

JI. Anranrepen’, I'. Barryp?

! Hemeuxo-morzonverut uncmumym pecypcos u mexnonrozuti, Haratiz, Monezosus
2 Monezonverkut Hayuorasohudl yrnusepcumem, Yaan-Bamop, Monzoaus

AHHOTALUS. O6o61ennble 3aaun pasHoBecust Hama (GNEP) ucnonssyiorces B
TEOPHUH WUTD, ONEPAIMOHHBIX UCCJIEJIOBAHMAX, TEXHUKE, SIKOHOMHKE, 8 TAK¥Ke TEeJIEKOMMY-
HUKAIUIX B MOCaeaHne aBa necatuierus. OmgauM n3 Hambojiee BayKHBIX KJIACCOB 3a7aY
GNEP sBiisiercst Kjacc 3a71a4 ¢ COBMECTHO BBIILYKJIBIMU HJIA OOIIUMU OTPAHUYEHUSIMU,
KOTOPBIH MIUPOKO U3YIAETCsI. DTHU 33JIaUU CIUTAIOTCST OHIMHI U3 CAMBIX CJIOKHBIX 3321
B 310l obnactu. Kpome Toro, mocrarouano masio uccienosaunii GNEP ¢ conpsizkeHHBIMU
u obmmMu orpanndeHusIMu. 11es1bio TaHHON CTATHU SBJISIETCST UCCIIEOBAHNE B3aNMOCBSI3U
MEKJy MCIOJb30BAHUEM METOJ[a TOYHBIX HITPA(OB U CONPSZKEHHON JBOWCTBEHHOCTHIO B
3agade BeImyKoi onrumusanuu 1t GNEP co cBasanubiMu 1 00IIuMu OrpaHUICHUSIMUA.
ABTOpPBI CTATBHU C TOMOIIBIO HEOOXOIUMBIX YCJIOBUM ONTUMAILHOCTH TIOJTY YUJIA TIAPAMET-
pU30BaHHBbIE 339U BAPUAIMOHHOI'O HEPABEHCTBA. PacCMOTPEHHBbIE 3a[a9U IIOMOTAOT
HCCJIEIOBATh MHOTHE ApyTue o600IeHHble 3a1adn paBHOBecusi Hama. B crarbe Takxke
[IPEJICTABJIEHBI HEKOTOPBIE YUCJIEHHBIE PE3YJIbTATHL.

KuaroueBbie ciioBa: 0000IeHHbIe 3a7a49u paBHOBecusi Hamma, TounHast QyHKIMS
mrrpada, COnpsizKeHHasl JIBOHCTBEHHOCTD, CBSI3aHHBIE W OOIIME OrPAHUYICHUSI.
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